
QVT-Based Model Transformation

Using XSLT

Dan LI, Xiaoshan LI

Faculty of Science and Technology, University of Macau

Volker Stolz

University of Oslo, Norway
International Institute for Software Technology, UNU

UML&FM 2010 �

Motivation�

 Graphical notation of QVT Relations (QVTR) provides a
concise, intuitive way to specify model transformations.
 But there is NO practical support tool.

  XSLT is a powerful and widely used language with many
industrial-strength processors.
 But programming in XSLT is difficulty during to its low

level syntax

 QVTR-XSLT: a practical model transformation framework
that combines the power of graphical notation of QVTR
and XSLT

MDA : Model Driven Architecture �

 OMG’s standards for model-driven development. The
core notion includes:

 Metamodeling – defining models
— MOF : Meta Object Facility

-  Simple class diagrams to define abstract syntax and
-  OCL to define static semantics

 Model Transformation – manipulating models
— QVT : MOF 2.0 Query, View, and Transformation

language

Model Transformation

model�

QVT Overview�

(Taken from the QVT specification)�

QVT Relations�

  A declarative model transformation language with textual
and graphical notation.

  A transformation is specified as a set of relations
between model elements of source and target models.

  A relation specifies how two types of object diagrams,
called domain patterns, relate to each other.

  Some support tools, but not for graphical notation.
 Tata Consultancy ModelMorf
 IKV++ medini QVT�

QVTR in Graphical Notation�

  Provides a concise, intuitive way to specify
transformations.

 Graphical specification is a higher-level view that is
easier to understand and communicate than the lexical
counterpart.

  UML people might expect to continue the graphical
tradition of class diagrams and favor a graphical notation

  A picture is worth a thousand words

A Relation in QVTR Graphical Syntax

XSLT

  Extensible Stylesheet Language for Transformations
(XSLT) is one of the W3C standards.

  A declarative rule-based programming language for
transforming XML documents

 Widely used in developing data-intensive applications

  An XSLT stylesheet consists of a set of rule templates

  Each rule template matches elements in source model,
and produces output to the target model.

Why XSLT

  All major CASE tools can export (or import) model as
XMI files;

  XSLT is the most common and powerful language for
XML transformation;

  XSLT (Xpath) has strong support to complex pattern
matching;

  XSLT has many industrial strength implementations,
including commercial and open source tools, can also be
embedded in Java;

Why XSLT (Cont.)

 Both QVTR and XSLT are declarative languages.
Implementing QVTR as XSLT is done by mapping
QVTR expresses to XSLT expresses.

  XSLT stylesheet s can be easily executed and
integrated into different system environments and
platforms, without additional packages and libraries.

An Example of XSLT Rule Template

<xsl:template match="packagedElement[@xmi:type='uml:Class' and
not(@isAbstract='true')]" mode="ClassToTable">

 <xsl:variable name="c" select=“current()"/>
 <xsl:variable name="cn" select=“current()/@name"/>
 <xsl:variable name=”prefix” select=”’’”/>
 <xsl:element name="Table">
 <xsl:attribute name="name" select="$cn"/>
 <xsl:element name="Column">
 <xsl:attribute name="name" select="concat($cn,'_tid')"/>
 <xsl:attribute name="type" select="'integer'"/>
 <xsl:attribute name="key" select="concat($cn,'_pk')"/>
 </xsl:element>
 <xsl:element name="Key">
 <xsl:attribute name="name" select="concat($cn,'_pk')"/>
 <xsl:attribute name="column" select="concat($cn,'_tid')"/>
 </xsl:element>
 <xsl:apply-templates mode="AttributeToColumn" select="$c">
 <xsl:with-param name="prefix" select=“$prefix”/>
 </xsl:apply-templates>
 <xsl:apply-templates mode="AssocEndToFKey" select="$c"/>
 </xsl:element>
</xsl:template>�

Rule Name�
Match Pattern�

Variable Binding�

Target Construction�

Invoke Rules�

XSLT Cons

  Lower level of abstract
 verbosity and poor readability of XML

  XSLT programming is different from other program
languages

  Requires considerable effort to define complex model
transformations directly using XSLT�

 Get the Best of Both Worlds�

 Define the transformation using QVT Relations
in graphical notation

 Mapping the transformation into XSLT

 Execute the XSLT program to transform the
source model to target model

Approach Overview �

QVTR-XSLT Tool

  A Graphical Editor
 support design of QVTR transformations in graphical

notation;
 save the QVTR transformation models as XML files.

  A Code Generator
 reads in the transformation model, generates

corresponding XSLT stylesheets.

QVTR Graphical Editor �

  Built on top of MagicDraw UML , a popular UML CASE
tool;

  A UML profile to define QVTR transformation models;

  A toolbar to edit QVTR diagrams;

  A set of OCL rules to validate the transformation models.�

UML Profile for QVTR Model

QVTR Transformation Model

Consist of :
 MetaModels

 classes, associations
 class diagrams

  Transformations
 Relations

— Domains
— Objects and Links
— When clause
— Where clause
— QVTR diagram

  Functions

Toolbar for QVTR Diagram

QVTR Transformation Model Validation�

Overall Interface of the QVTR Editor

Code Generator �

  The generator itself is an XSLT stylesheet;

  It reads in the XML file saved from the transformation
model, analyzes the model’s structure, parses the OCL
expressions, and generates an XSLT stylesheet that
represents the QVTR transformation. �

Mapping Transformation to Stylesheet

QVTR

  Transformation

  Relation

  Primitive domain

  Function

  Key

 OCL expression

XSLT

  Stylesheet

  Rule template

  Template parameter

  Function

  Key

  XPath expression

Mapping Relation to Rule Template�

Relation

  Source domain pattern
 When clause

  Source domain pattern
 Where clause

  Target domain pattern

  Relation calls

Rule Template

 Match expression

  Variable declarations

  Construction instructions

  Template calls

Mapping OCL to XPath�

OCL :

dn.outgoing->
 select(name=‘else’)->size()=1

XPath:

count(my:xmiXMIrefs(current()/
 @outgoing)[@name=‘else’])=1

Comparison - UML to RDBMS Example

  XSLT generated by the tool: 130 lines of code

 QVT relations in textual : 120 lines

 QVT operational: 100 lines

 QVT core : 400 lines

 MT : 140 lines

 medini QVT : 240 lines

Tool Features�

  Unidirectional transformation;
  Single source model, target model creating ;
  Complex pattern matching of object templates, property

templates, collection templates, and not templates;
 OCL expression referenced source domain pattern

elements;
  In-place transformation;
  Transformation parameters;
  Transformation extensions (inheritance);
  Execution trace output;

Potential Tool Users �

 Model Community

 A practical QVTR-compliance tool with graphical

syntax support;

  XML Community

 A higher-level XSLT generator with user-friendly IDE

Case Studies �

 Model-to-Model
 UML to RDBMS transformation
 UML Activity Diagrams to CSP transformation

 Model-to-Text (Html)
 CSP to Html transformation
 RDBMS to SQL transformation

  In-Place
 Multiplicity to OCL transformation
 Small-step refinement

Integrate Transformation into CASE Tool�

 Thank You !

