Modeling a Distributed Intrusion Detection System Using Collaborative Building Blocks

L.A. Gunawan*, M. Vogel^o, F.A. Kraemer*, S. Schmerl^o, V. Slåtten*, P. Herrmann*, H. König^o

*Department of Telematics, NTNU, Norway

Of Computer Science Department, BTU Cottbus, Germany

Engineering Distributed Systems

- difficult task [Jennings01]
 - interdependency
 - reconfiguration

distributed Intrusion Detection System (IDS) using

Collaborative Building Blocks (SPACE + Arctis)

- ❖ SPACE + Arctis
 - graphical models, UML 2.x
 - formal
 - collaborative, high degree of reuse

IDS Components

Dat

Detection Techniques

- Signature-based
 - attack patterns
 - pro: high accuracy
 - con: reactive
- Anomaly detection-based
 - abnormal behavior
 - e.g., statistical anomaly, artificial intelligence, data mining
 - pro: proactive
 - con: «normal»?

Event Description Language (EDL) Signatures

- Places
 - system states of an attack
 - four types:
 - √ initial
 - **√** interior
 - √ escape (
 - ✓ exit
- Transitions
 - state changes triggered by audit event type
- ❖ Directed edges →
- ❖ Tokens
 - ongoing attacks

EDL Signature - an Example

Distributed Analysis - Why? **Analysis** Sensor+ Filter Innovation and Creativity

Distributed Analysis

Atomic clusters

Distributed Analysis + Reconfiguration

- Overload situation
 - move an atomic cluster

Modeling IDS Core Functionality - Atomic Cluster

All ACs are executed in a single host

IDS Core System

Group Communication

The Distributed IDS Model

Validation

- cTLA (compositional Temporal Logic of Action)
- model checker
 - hidden from user
 - simulation
 - error trace
- incremental verification -- block by block (ESM)
 - small state space
- challenge: group communication type block

Evaluation

- Reuse
 - other cases > 70%
- metrics:
 - number of nodes & edges (≈ line of codes)
 - two types of experts: IDS, communication

Metrics

Building Block	Complexity n	Reused	Experts			
Distributed IDS [Fig. 6]	39		C			
Reactive Buffer	39	✓				
_ Distribution Service		_	•			
_ One	4	✓				
Load Monitoring	37		C			
Component Monitor	10		C			
☐ Find Host With Minimal Load		_	•			
Collected Group Response	26	✓				
└ Countdown · · · · · · ·	18	✓				
L Atomic Cluster Manager [Fig. 7]	86		C			
_ Router	29		I + C			
— Distribute Signature Parts	23		I + C			
Literator	22	✓				
— Atomic Cluster · · · · · · · · · · · · · · · · · · ·	52		I + C			
Security Event Listener	14		I + C			
— Pause Handler · · · · · · · · · · · · · · · · · · ·	13		C			
Conf. Group Notif. [Fig. 86]	(a)] 21					
Countdown	18	✓				
└ Move Handler [Fig. 8(b)]						
Conf. Group Notif. [Fig. 86]						
└ Countdown · · · · · ·	18	✓				
Total complexity 599						

ts	Building Block	Complexity n	Reused	Experts
	IDS Core [Fig. 4]	34		···· I + C
	_ Distribute Signature Parts	23		· · · I + C
	└ Iterator	22	✓	
	Atomic Cluster [Fig. 5(a)]			_
	Security Event Listener			
	_Router	29	ine e delet	···· I + C

Total complexity 174

Evaluation

- Reuse
 - other cases > 70%
- metrics:
 - number of nodes & edges (≈ line of codes)
 - two types of experts: IDS, communication
- ❖ reduction of the overall development effort: ± 50%

Current/Future Work

- Verification of IDS specific properties:
 - All AC instances in all hosts are in state inactive, when a handover of analysis function is in progress
 - An EDL token is never routed to an inactive AC instance
 - Only one move is in progress at a time
 - Every AC is assigned to at most one host at all times
 - An AC is always eventually assigned to a host
- Distributed IDS model implements IDS Core model
- Real execution environment:
 - a host may crash

