
page 1 . Shanghai, Nov 16th, 2010 UML&FM 2010

Toward a Specific Software Development Process for High Integrity Systems
Isabelle Perseil (INSERM)

page 2 . Shanghai, Nov 16th, 2010 UML&FM 2010

Roadmap

  -1- Introduction

  -2- RUP advantages / shortcomings

  -3- Real-time languages and best practices

  -4- Formal methods integration in real-time software development

  -5- From RUP to the C-Method software development process

  -6- Conclusions

page 3 . Shanghai, Nov 16th, 2010 UML&FM 2010

Introduction

  The main tool of project management
  An integrated process in a methodological approach
  State-of-the-art of good practices in software process development techniques for DRES
  RUP and DRES
  Discrepancy between

  Evolution of modeling languages, practices of model transformation and verification AND
  Evolution of the processes which use them during the phases of requirements specification, analysis, design

and certified code generation
  Very rare integration approaches in industrial environments

  B-Method at RATP
  Esterel at Dassault
  Intensive use of PVS at NASA

  Our approach
  To enrich the current process with other phases
  Consider that the requirements of strategic type must first be completely identified, specified, verified
  Parallelization of sub-processes
  A seamless development involving intermediate languages

page 4 . Shanghai, Nov 16th, 2010 UML&FM 2010

RUP advantages / shortcomings
1 / RUP iterations

page 5 . Shanghai, Nov 16th, 2010 UML&FM 2010

RUP advantages / shortcomings
2/ RUP advantages

  IBM Rational definitely banished the waterfall process
  Unfortunately this good resolution have not been followed by

everyone, even in the research field.

  The ``use case driven'' approach is definitively a very
good approach that is even kept in the Agile methods
  allows the requirements to be traced

  The ``architecture-centric'' process is adopted for all
complex and large systems

  The possible customization enables an adaptable
process framework in which each company may
choose the most convenient elements.

page 6 . Shanghai, Nov 16th, 2010 UML&FM 2010

RUP advantages / shortcomings
3/ RUP shortcomings

  The homogeneous decomposition between Inception Elaboration and
Construction is too much simplistic
  Because depending on activities types, cycles are more or less complex, therefore

not homogeneous
  The RUP is supported by a very heavy tool, which is not intuitive

  The learning period is long and requires significant investments
  Depending on the environment, the parameterization may also be very long

  the parameterization gives the impression of genericity,
  but the process is not fundamentally different for a any kind of project

(telecommunications, automotive, aeronautics, financial, etc) : the phases and
activities are the very same.

  The RUP is only suitable for very big projects
  its intrinsic logic is so much linked to the IBM Rational world that it is mostly applied

with the entire tool suite.
  The entire process is rather a set of good recipes than the result of a rigorous

``rationale'' as the name should suggest
  The inception phase should be global with respect to a systemic approach.

page 7 . Shanghai, Nov 16th, 2010 UML&FM 2010

Real-time languages and best practices
 Languages and their abstraction levels

abstraction

page 8 . Shanghai, Nov 16th, 2010 UML&FM 2010

Formal methods integration in real-time software development
1/ a formal use-case driven method

 formal uc

proofs
repository

PVS proof

Why specification

+CAL specification MARTE specification

AADL specification Ada program

Sq => Zq

integration

MARTE2AADL

Ocarina

SRM modeling framework

SW_interaction package

SwMutualExclusionResource

Concurrency_Control_Protocol
 property
thread enters a critical region :

Get_Resource
 (on the shared data component)

exit from a critical region:

Release_Resource

while ((Rank [q] / = 0) /\
((Rank [q] , q) <
(Rank [a_process] ,
a_process)))
 do skip ;
end while ;

exit when (Rank (q)=0)
 or (Rank (a_process)>
 (Rank (q))
 or (a_process > q)

safety_property :
THEOREM invariant(LAMBDA(s:State)
: (NOT (s`pi2 = critical AND
s`pi1 = critical)))

while ((Rank [q] / = 0) /\
((Rank [q] , q) <
(Rank [a_process] , a_process)))
 do ;
done;

Complex

simple

page 9 . Shanghai, Nov 16th, 2010 UML&FM 2010

Formal methods integration in real-time software development
2/ Proof-based use cases: a sub-objectives technique

z

Z(a2) Z(n2) Z(k2)

Z(ah) z(kt) z(nu)

[S1] [Sj] [Sq]

Root specification

.

.

proofs
repository [S] = ∪i∈{1,q} [Si]

«include» «include» «include»

«include» «include» «include»

sub-problem
specification

. . .

page 10 . Shanghai, Nov 16th, 2010 UML&FM 2010

From RUP to the C-Method software development process
Process iterations for complex systems

Inception Elaboration Validation

Generation Construction

Binding Validation

Simulation Transition

page 11 . Shanghai, Nov 16th, 2010 UML&FM 2010

From RUP to the C-Method software development process
C-Method and its lifecycle guided by the abstraction levels

Non Functional

Functional

Proofs / Verification

page 12 . Shanghai, Nov 16th, 2010 UML&FM 2010

From RUP to the C-Method software development process
The C-Method foundations

  The strategy: multiple and // preparations of the other
phases seamless transitions
  Activities are not sequential
  Many strata in the requirement phases
  20% models generate 80% code

  3 very large sub-processes to establish the guidelines
  C-brain software skeleton, global integration, verification
  C-heart architecture and execution framework
  C-limb functional part, final realization

page 13 . Shanghai, Nov 16th, 2010 UML&FM 2010

From RUP to the C-Method software development process
The C-Method software development sub-processes

team_1
C_brain

team_2
C_heart

team_3
C_limb

Strategic UC sequence
diagrams

class
diagrams

Analysis
model

System
requirements
NFP

Proofs Why +CAL MARTE AADL

Code

Structure

Behavior Algorithm +CAL xUML Code

sequence
diagrams

class
diagrams

Analysis
model

integration verification validation updates

User
requirements

Code quality

� functional

 non functional

 Strategic

Structure

Behavior Algorithm +CAL xUML Code

sequence
diagrams

class
diagrams

Analysis
model

User
requirements

page 14 . Shanghai, Nov 16th, 2010 UML&FM 2010

From RUP to the C-Method software development process
The c-brain activities

page 15 . Shanghai, Nov 16th, 2010 UML&FM 2010

From RUP to the C-Method software development process
The c-heart activities

page 16 . Shanghai, Nov 16th, 2010 UML&FM 2010

From RUP to the C-Method software development process
The c-limb activities

page 17 . Shanghai, Nov 16th, 2010 UML&FM 2010

Future & ongoing works

  A certified translator PCAL2Ada (written in PVS)

  Integration of +CAL in a professional modeling tool (as
Rhapsody)

  Automate the abstraction phase of the C-Method (IA)

  Creation of user group / working group at the OMG

page 18 . Shanghai, Nov 16th, 2010 UML&FM 2010

Conclusions

  New phases

  New activities

  Other iteration types

  New lifecycle, new method

  Intermediate languages

  Languages integration techniques

  Same overall logic: distribution of activities along the lifecycle

