
Static Analysis by Abstract Interpretation of
Embedded Critical Software

Julien Bertrane
ENS, Julien.bertrane@ens.fr

Patrick Cousot
ENS & CIMS, Patrick.Cousot@ens.fr

Radhia Cousot
CNRS & ENS, Radhia.Cousot@ens.fr

JÃ c©rÃ´me Feret
INRIA & ENS, J~A c©r~A´me Feret@ens.fr

Laurent Mauborgne
IMDEA laurent.mauborgne@imdea.org

Antoine Miné
CNRS & ENS, Antoine.Mine@ens.fr

Xavier Rival
INRIA & ENS, Xavier.Rival@ens.fr

SÃ c©mantics and Abstract Interpreation team

November 16th, 2010
Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

a

i

d

t

i
o

n

a

l

V

M

L

U

B

N

I

C

static analysis

modeling

code

static analysis

validation

generation

translation

test

compilation

execution

static analysis

Fig.: Example workflow for designing an embedded application.

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Which level should be statically analyzed ?

I Static Analysis can be applied at many levels :
I machine-readable specification
I program source
I binary

I Static Analysis of high level, pros :

I purer information
I feedback easier
I has information on hardware (imperfections)

I de-synchronization analysis (made at Modeling level)

I Static Analysis of high level, cons :

I some aspects of computations abstracted (real arithmetics VS
actual implementation)

I numeric overflows analysis (made at C level)
I precision of floating-point computations analysis (made at C

level)
I worst case execution time analysis (made at binary level)

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Which level should be statically analyzed ?

I Static Analysis can be applied at many levels :
I machine-readable specification
I program source
I binary

I Static Analysis of high level, pros :
I purer information
I feedback easier
I has information on hardware (imperfections)

I de-synchronization analysis (made at Modeling level)

I Static Analysis of high level, cons :

I some aspects of computations abstracted (real arithmetics VS
actual implementation)

I numeric overflows analysis (made at C level)
I precision of floating-point computations analysis (made at C

level)
I worst case execution time analysis (made at binary level)

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Which level should be statically analyzed ?

I Static Analysis can be applied at many levels :
I machine-readable specification
I program source
I binary

I Static Analysis of high level, pros :
I purer information
I feedback easier
I has information on hardware (imperfections)

I de-synchronization analysis (made at Modeling level)

I Static Analysis of high level, cons :
I some aspects of computations abstracted (real arithmetics VS

actual implementation)

I numeric overflows analysis (made at C level)
I precision of floating-point computations analysis (made at C

level)
I worst case execution time analysis (made at binary level)

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Which level should be statically analyzed ?

I Static Analysis can be applied at many levels :
I machine-readable specification
I program source
I binary

I Static Analysis of high level, pros :
I purer information
I feedback easier
I has information on hardware (imperfections)

I de-synchronization analysis (made at Modeling level)

I Static Analysis of high level, cons :
I some aspects of computations abstracted (real arithmetics VS

actual implementation)
I numeric overflows analysis (made at C level)
I precision of floating-point computations analysis (made at C

level)
I worst case execution time analysis (made at binary level)

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Static Analysis and Abstract Interpretation

Static analyzers should extract automatically properties.
Difficulties :

I most interesting properties are undecidable

I the analyzer may consider spurious behaviors
I what about errors in interpreting the specifications or the

behavior of the code

Solutions :

I the analyzer explores machine-representable supersets of
actual behaviors

I refine the analysis, it is always sound
I work is done directly on the concrete system (i.e. input of

compilers or code generators)

Abstract Interpretation framework :

I an analyzer focuses on a subset of properties and programs
I growing library of abstraction domains
I modularity of domains or close cooperation between them

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Static Analysis and Abstract Interpretation

Static analyzers should extract automatically properties.
Difficulties :

I most interesting properties are undecidable
I the analyzer may consider spurious behaviors

I what about errors in interpreting the specifications or the
behavior of the code

Solutions :

I the analyzer explores machine-representable supersets of
actual behaviors

I refine the analysis, it is always sound

I work is done directly on the concrete system (i.e. input of
compilers or code generators)

Abstract Interpretation framework :

I an analyzer focuses on a subset of properties and programs
I growing library of abstraction domains
I modularity of domains or close cooperation between them

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Static Analysis and Abstract Interpretation

Static analyzers should extract automatically properties.
Difficulties :

I most interesting properties are undecidable
I the analyzer may consider spurious behaviors
I what about errors in interpreting the specifications or the

behavior of the code

Solutions :

I the analyzer explores machine-representable supersets of
actual behaviors

I refine the analysis, it is always sound
I work is done directly on the concrete system (i.e. input of

compilers or code generators)

Abstract Interpretation framework :

I an analyzer focuses on a subset of properties and programs
I growing library of abstraction domains
I modularity of domains or close cooperation between them

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Static Analysis and Abstract Interpretation

Static analyzers should extract automatically properties.
Difficulties :

I most interesting properties are undecidable
I the analyzer may consider spurious behaviors
I what about errors in interpreting the specifications or the

behavior of the code

Solutions :

I the analyzer explores machine-representable supersets of
actual behaviors

I refine the analysis, it is always sound
I work is done directly on the concrete system (i.e. input of

compilers or code generators)

Abstract Interpretation framework :

I an analyzer focuses on a subset of properties and programs
I growing library of abstraction domains
I modularity of domains or close cooperation between them

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Semantics and Specifications

Semantics :

I Semantics defined for each primitive

I We focus on safety properties

I The set of reachable states is therefore enough

I Theoretically computable as a fixpoint of an operator T
summarizing all the effects of primitives used in the program

Specifications :

I We consider a set of bad states ε that shouldn’t be reached.

I So lfp
T ∩ ε = ∅

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Semantics and Specifications

Semantics :

I Semantics defined for each primitive

I We focus on safety properties

I The set of reachable states is therefore enough

I Theoretically computable as a fixpoint of an operator T
summarizing all the effects of primitives used in the program

Specifications :

I We consider a set of bad states ε that shouldn’t be reached.

I So lfp
T ∩ ε = ∅

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Semantics and Specifications

Semantics :

I Semantics defined for each primitive

I We focus on safety properties

I The set of reachable states is therefore enough

I Theoretically computable as a fixpoint of an operator T
summarizing all the effects of primitives used in the program

Specifications :

I We consider a set of bad states ε that shouldn’t be reached.

I So lfp
T ∩ ε = ∅

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Semantics and Specifications

Semantics :

I Semantics defined for each primitive

I We focus on safety properties

I The set of reachable states is therefore enough

I Theoretically computable as a fixpoint of an operator T
summarizing all the effects of primitives used in the program

Specifications :

I We consider a set of bad states ε that shouldn’t be reached.

I So lfp
T ∩ ε = ∅

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Semantics and Specifications

Semantics :

I Semantics defined for each primitive

I We focus on safety properties

I The set of reachable states is therefore enough

I Theoretically computable as a fixpoint of an operator T
summarizing all the effects of primitives used in the program

Specifications :

I We consider a set of bad states ε that shouldn’t be reached.

I So lfp
T ∩ ε = ∅

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Semantics and Specifications

Semantics :

I Semantics defined for each primitive

I We focus on safety properties

I The set of reachable states is therefore enough

I Theoretically computable as a fixpoint of an operator T
summarizing all the effects of primitives used in the program

Specifications :

I We consider a set of bad states ε that shouldn’t be reached.

I So lfp
T ∩ ε = ∅

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Example of Abstract Domain : Intervals

I We abstract a set V ⊆ Z of integers by the interval
αi (V) , [min V ,max V]

I this is an over-approximation

I z 6∈ αi (V)⇒ z 6∈ V

I z ∈ αi (V) 6=⇒ z ∈ V

I Concretization function γi ([`, h]) , {z ∈ Z | ` 6 z 6 h}.
I ∀V ∈ ℘(Z) : ∀[`, h] ∈ V]

i : αi (V) ⊆ [`, h]⇐⇒ V ⊆ γi ([`, h])
and so, by definition, the pair 〈α, γ〉 is a Galois connection

〈℘(Z), ⊆〉 −−−→←−−−αi

γi 〈V]
i , ⊆〉

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Example of Abstract Domain : Intervals

I We abstract a set V ⊆ Z of integers by the interval
αi (V) , [min V ,max V]

I this is an over-approximation

I z 6∈ αi (V)⇒ z 6∈ V

I z ∈ αi (V) 6=⇒ z ∈ V

I Concretization function γi ([`, h]) , {z ∈ Z | ` 6 z 6 h}.
I ∀V ∈ ℘(Z) : ∀[`, h] ∈ V]

i : αi (V) ⊆ [`, h]⇐⇒ V ⊆ γi ([`, h])
and so, by definition, the pair 〈α, γ〉 is a Galois connection

〈℘(Z), ⊆〉 −−−→←−−−αi

γi 〈V]
i , ⊆〉

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Example of Abstract Domain : Intervals

I We abstract a set V ⊆ Z of integers by the interval
αi (V) , [min V ,max V]

I this is an over-approximation

I z 6∈ αi (V)⇒ z 6∈ V

I z ∈ αi (V) 6=⇒ z ∈ V

I Concretization function γi ([`, h]) , {z ∈ Z | ` 6 z 6 h}.
I ∀V ∈ ℘(Z) : ∀[`, h] ∈ V]

i : αi (V) ⊆ [`, h]⇐⇒ V ⊆ γi ([`, h])
and so, by definition, the pair 〈α, γ〉 is a Galois connection

〈℘(Z), ⊆〉 −−−→←−−−αi

γi 〈V]
i , ⊆〉

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Example of Abstract Domain : Intervals

I We abstract a set V ⊆ Z of integers by the interval
αi (V) , [min V ,max V]

I this is an over-approximation

I z 6∈ αi (V)⇒ z 6∈ V

I z ∈ αi (V) 6=⇒ z ∈ V

I Concretization function γi ([`, h]) , {z ∈ Z | ` 6 z 6 h}.
I ∀V ∈ ℘(Z) : ∀[`, h] ∈ V]

i : αi (V) ⊆ [`, h]⇐⇒ V ⊆ γi ([`, h])
and so, by definition, the pair 〈α, γ〉 is a Galois connection

〈℘(Z), ⊆〉 −−−→←−−−αi

γi 〈V]
i , ⊆〉

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Example of Abstract Domain : Intervals

I We abstract a set V ⊆ Z of integers by the interval
αi (V) , [min V ,max V]

I this is an over-approximation

I z 6∈ αi (V)⇒ z 6∈ V

I z ∈ αi (V) 6=⇒ z ∈ V

I Concretization function γi ([`, h]) , {z ∈ Z | ` 6 z 6 h}.

I ∀V ∈ ℘(Z) : ∀[`, h] ∈ V]
i : αi (V) ⊆ [`, h]⇐⇒ V ⊆ γi ([`, h])

and so, by definition, the pair 〈α, γ〉 is a Galois connection

〈℘(Z), ⊆〉 −−−→←−−−αi

γi 〈V]
i , ⊆〉

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Example of Abstract Domain : Intervals

I We abstract a set V ⊆ Z of integers by the interval
αi (V) , [min V ,max V]

I this is an over-approximation

I z 6∈ αi (V)⇒ z 6∈ V

I z ∈ αi (V) 6=⇒ z ∈ V

I Concretization function γi ([`, h]) , {z ∈ Z | ` 6 z 6 h}.
I ∀V ∈ ℘(Z) : ∀[`, h] ∈ V]

i : αi (V) ⊆ [`, h]⇐⇒ V ⊆ γi ([`, h])
and so, by definition, the pair 〈α, γ〉 is a Galois connection

〈℘(Z), ⊆〉 −−−→←−−−αi

γi 〈V]
i , ⊆〉

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Fixpoint Abstraction

I Intermediate goal : α(lfp
�

T) = A with γ(A) ∩ ε = ∅

I α(lfp
�

T) is often non-computable

I However, if α ◦ T v̇ T] ◦ α, then α(lfp
�

T) v lfp
v

T].

I New goal : γ(α(lfp
�

T)) ∩ ε = ∅.

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Fixpoint Abstraction

I Intermediate goal : α(lfp
�

T) = A with γ(A) ∩ ε = ∅
I α(lfp

�
T) is often non-computable

I However, if α ◦ T v̇ T] ◦ α, then α(lfp
�

T) v lfp
v

T].

I New goal : γ(α(lfp
�

T)) ∩ ε = ∅.

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Fixpoint Abstraction

I Intermediate goal : α(lfp
�

T) = A with γ(A) ∩ ε = ∅
I α(lfp

�
T) is often non-computable

I However, if α ◦ T v̇ T] ◦ α, then α(lfp
�

T) v lfp
v

T].

I New goal : γ(α(lfp
�

T)) ∩ ε = ∅.

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Fixpoint Abstraction

I Intermediate goal : α(lfp
�

T) = A with γ(A) ∩ ε = ∅
I α(lfp

�
T) is often non-computable

I However, if α ◦ T v̇ T] ◦ α, then α(lfp
�

T) v lfp
v

T].

I New goal : γ(α(lfp
�

T)) ∩ ε = ∅.

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Abstract Fixpoint Approximation

The iterates of the T] operation converge to the fixpoint :

I but maybe in infinitely many iterations

I and at a combinatorial time and memory cost

I convergence has to be accelerated using a widening O

I A näıve example of widening for intervals is

[`i , hi]O[`i+1, hi+1]

, [if `i+1 < `i then −∞ else `i , if hi+1 > hi then +∞ else `i]

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Abstract Fixpoint Approximation

The iterates of the T] operation converge to the fixpoint :

I but maybe in infinitely many iterations

I and at a combinatorial time and memory cost

I convergence has to be accelerated using a widening O

I A näıve example of widening for intervals is

[`i , hi]O[`i+1, hi+1]

, [if `i+1 < `i then −∞ else `i , if hi+1 > hi then +∞ else `i]

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Abstract Fixpoint Approximation

The iterates of the T] operation converge to the fixpoint :

I but maybe in infinitely many iterations

I and at a combinatorial time and memory cost

I convergence has to be accelerated using a widening O

I A näıve example of widening for intervals is

[`i , hi]O[`i+1, hi+1]

, [if `i+1 < `i then −∞ else `i , if hi+1 > hi then +∞ else `i]

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Abstract Fixpoint Approximation

The iterates of the T] operation converge to the fixpoint :

I but maybe in infinitely many iterations

I and at a combinatorial time and memory cost

I convergence has to be accelerated using a widening O

I A näıve example of widening for intervals is

[`i , hi]O[`i+1, hi+1]

, [if `i+1 < `i then −∞ else `i , if hi+1 > hi then +∞ else `i]

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

ASTREE

Semantics :

I Astrée input written in large subset of C, (not dynamic
memory allocation, recursivity, and parallelism)

I syntax and semantics based on the C99 norm, supplemented
with the IEEE 754-1985 norm

Properties proved : run-time errors

I overflows in unsigned and signed integer and float arithmetics
and casts

I divisions by zero

I out-of-bound array accesses

I NULL, dangling, out-of-bound and misaligned pointer
dereferences,

I assertion failures (in calls to the assert C function).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/

ASTREE

Semantics :

I Astrée input written in large subset of C, (not dynamic
memory allocation, recursivity, and parallelism)

I syntax and semantics based on the C99 norm, supplemented
with the IEEE 754-1985 norm

Properties proved : run-time errors

I overflows in unsigned and signed integer and float arithmetics
and casts

I divisions by zero

I out-of-bound array accesses

I NULL, dangling, out-of-bound and misaligned pointer
dereferences,

I assertion failures (in calls to the assert C function).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/

ASTREE

Semantics :

I Astrée input written in large subset of C, (not dynamic
memory allocation, recursivity, and parallelism)

I syntax and semantics based on the C99 norm, supplemented
with the IEEE 754-1985 norm

Properties proved : run-time errors

I overflows in unsigned and signed integer and float arithmetics
and casts

I divisions by zero

I out-of-bound array accesses

I NULL, dangling, out-of-bound and misaligned pointer
dereferences,

I assertion failures (in calls to the assert C function).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/

ASTREE

Semantics :

I Astrée input written in large subset of C, (not dynamic
memory allocation, recursivity, and parallelism)

I syntax and semantics based on the C99 norm, supplemented
with the IEEE 754-1985 norm

Properties proved : run-time errors

I overflows in unsigned and signed integer and float arithmetics
and casts

I divisions by zero

I out-of-bound array accesses

I NULL, dangling, out-of-bound and misaligned pointer
dereferences,

I assertion failures (in calls to the assert C function).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/

ASTREE

Semantics :

I Astrée input written in large subset of C, (not dynamic
memory allocation, recursivity, and parallelism)

I syntax and semantics based on the C99 norm, supplemented
with the IEEE 754-1985 norm

Properties proved : run-time errors

I overflows in unsigned and signed integer and float arithmetics
and casts

I divisions by zero

I out-of-bound array accesses

I NULL, dangling, out-of-bound and misaligned pointer
dereferences,

I assertion failures (in calls to the assert C function).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/

ASTREE

Semantics :

I Astrée input written in large subset of C, (not dynamic
memory allocation, recursivity, and parallelism)

I syntax and semantics based on the C99 norm, supplemented
with the IEEE 754-1985 norm

Properties proved : run-time errors

I overflows in unsigned and signed integer and float arithmetics
and casts

I divisions by zero

I out-of-bound array accesses

I NULL, dangling, out-of-bound and misaligned pointer
dereferences,

I assertion failures (in calls to the assert C function).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/

ASTREE

Semantics :

I Astrée input written in large subset of C, (not dynamic
memory allocation, recursivity, and parallelism)

I syntax and semantics based on the C99 norm, supplemented
with the IEEE 754-1985 norm

Properties proved : run-time errors

I overflows in unsigned and signed integer and float arithmetics
and casts

I divisions by zero

I out-of-bound array accesses

I NULL, dangling, out-of-bound and misaligned pointer
dereferences,

I assertion failures (in calls to the assert C function).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/

Analyzed Codes

I Astrée focuses on analyzing control/command synchronous
programs automatically generated from Modeling Languages.

I communication by “volatile” memory locations allowed

I proof of absence of run-time errors in 2 families of industrial
embedded avionic control/command software generated from
high level specifications :

I aeronautics 100 K code lines and 10 K global variables — half
of which are floats in around 2 h up to 1 M code lines analyzed
in 50 h

I space software 14 K lines C code generated from a SCADE
model designed by Astrium ST.

I Astrée now handle code generated by dSPACE TargetLink
(code generator for MATLAB, Simulink and Stateflow)
(added by AbsInt).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/
http://www.astree.ens.fr/

Analyzed Codes

I Astrée focuses on analyzing control/command synchronous
programs automatically generated from Modeling Languages.

I communication by “volatile” memory locations allowed

I proof of absence of run-time errors in 2 families of industrial
embedded avionic control/command software generated from
high level specifications :

I aeronautics 100 K code lines and 10 K global variables — half
of which are floats in around 2 h up to 1 M code lines analyzed
in 50 h

I space software 14 K lines C code generated from a SCADE
model designed by Astrium ST.

I Astrée now handle code generated by dSPACE TargetLink
(code generator for MATLAB, Simulink and Stateflow)
(added by AbsInt).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/
http://www.astree.ens.fr/

Analyzed Codes

I Astrée focuses on analyzing control/command synchronous
programs automatically generated from Modeling Languages.

I communication by “volatile” memory locations allowed

I proof of absence of run-time errors in 2 families of industrial
embedded avionic control/command software generated from
high level specifications :

I aeronautics 100 K code lines and 10 K global variables — half
of which are floats in around 2 h up to 1 M code lines analyzed
in 50 h

I space software 14 K lines C code generated from a SCADE
model designed by Astrium ST.

I Astrée now handle code generated by dSPACE TargetLink
(code generator for MATLAB, Simulink and Stateflow)
(added by AbsInt).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/
http://www.astree.ens.fr/

Analyzed Codes

I Astrée focuses on analyzing control/command synchronous
programs automatically generated from Modeling Languages.

I communication by “volatile” memory locations allowed

I proof of absence of run-time errors in 2 families of industrial
embedded avionic control/command software generated from
high level specifications :

I aeronautics 100 K code lines and 10 K global variables — half
of which are floats in around 2 h up to 1 M code lines analyzed
in 50 h

I space software 14 K lines C code generated from a SCADE
model designed by Astrium ST.

I Astrée now handle code generated by dSPACE TargetLink
(code generator for MATLAB, Simulink and Stateflow)
(added by AbsInt).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/
http://www.astree.ens.fr/

Analyzed Codes

I Astrée focuses on analyzing control/command synchronous
programs automatically generated from Modeling Languages.

I communication by “volatile” memory locations allowed

I proof of absence of run-time errors in 2 families of industrial
embedded avionic control/command software generated from
high level specifications :

I aeronautics 100 K code lines and 10 K global variables — half
of which are floats in around 2 h up to 1 M code lines analyzed
in 50 h

I space software 14 K lines C code generated from a SCADE
model designed by Astrium ST.

I Astrée now handle code generated by dSPACE TargetLink
(code generator for MATLAB, Simulink and Stateflow)
(added by AbsInt).

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

http://www.astree.ens.fr/
http://www.astree.ens.fr/

Toward Relational Domains

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010 © P Cousot et Al.2 2 2

I relational domains bring fine-tuned preciseness (more precise
than intervals)

I at a bounded computational cost.

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Imperfectly-Clocked Synchronous Systems

a

i

d

t

i
o

n

a

l

V

M

L

U

B

N

I

C

static analysis

modeling

code

static analysis

validation

generation

translation

test

compilation

execution

static analysis

−→

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Imperfectly-Clocked Synchronous Systems

a

i

d

t

i
o

n

a

l

V

M

L

U

B

N

I

C

static analysis

modeling

code

static analysis

validation

generation

translation

test

compilation

execution

static analysis

−→
a

i

d

t

i
o

n

a

l

V

M

L

U

M

L

U

M

L

U

B

N

I

C

static analysis

code

static analysis

validation

generation

translation

test

compilation

execution

modeling

static analysis

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Imperfectly-Clocked Synchronous Systems
A new semantics

This non-standard semantics : continuous-time
I allows a more precise modeling of reality

I imperfect clocks
I communication channels with unknown latency

I reuses continuous theories
I integral theory
I directed homology

I allows a precise and efficient static analysis

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Imperfectly-Clocked Synchronous Systems
1st temporal abstract domain : constraints

1 32 4

[3,4]:false

<1,2>:true

false

true

I express many local temporal properties

I and prove some of these properties

[VMCAI’05] J. Bertrane. Static analysis by abstract of the
quasi-synchronous composition of synchronous programs. Paris

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Imperfectly-Clocked Synchronous Systems
More temporels abstract domains

value changes counting integral boundings

21 3 4

width=δ
value chng 5

width=δ
value chng 5

width=δ

false

true

value chng 5

I express stability
specifications.

 <1

21 3 4

β
β+2

α
α+2

false

true

 <1

I express quantitative
properties (average
value, ...)

[SAS’06] J. Bertrane. Proving the properties of communicating
imperfectly-clocked synchronous systems. Seoul

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Reduce product Constraints - Value changes counting

value chng 1
δ

:x :x

.

.

. :x

: x

:x

width=

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Reduce product Constraints - Value changes counting

value chng 1
δ.

.

.

:x :x

.

.

:x.

width=

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

Conclusion

I Abstract Interpretation is able to define a static analysis at
several levels of the development of embedded systems

I It may help designers from early stages to product shipping

I It may even check that the translation from one level to
another is correct

I Static analysis community can only benefit from a better
formalization of different layers, as proposed by UML

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software

