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Fig.: Example workflow for designing an embedded application.
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Which level should be statically analyzed ?

I Static Analysis can be applied at many levels :
I machine-readable specification
I program source
I binary

I Static Analysis of high level, pros :

I purer information
I feedback easier
I has information on hardware (imperfections)

I de-synchronization analysis (made at Modeling level)

I Static Analysis of high level, cons :

I some aspects of computations abstracted (real arithmetics VS
actual implementation)

I numeric overflows analysis (made at C level)
I precision of floating-point computations analysis (made at C

level)
I worst case execution time analysis (made at binary level)
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Static Analysis and Abstract Interpretation

Static analyzers should extract automatically properties.
Difficulties :

I most interesting properties are undecidable

I the analyzer may consider spurious behaviors
I what about errors in interpreting the specifications or the

behavior of the code

Solutions :

I the analyzer explores machine-representable supersets of
actual behaviors

I refine the analysis, it is always sound
I work is done directly on the concrete system (i.e. input of

compilers or code generators)

Abstract Interpretation framework :

I an analyzer focuses on a subset of properties and programs
I growing library of abstraction domains
I modularity of domains or close cooperation between them
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Semantics and Specifications

Semantics :

I Semantics defined for each primitive

I We focus on safety properties

I The set of reachable states is therefore enough

I Theoretically computable as a fixpoint of an operator T
summarizing all the effects of primitives used in the program

Specifications :

I We consider a set of bad states ε that shouldn’t be reached.

I So lfp
T ∩ ε = ∅
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Example of Abstract Domain : Intervals

I We abstract a set V ⊆ Z of integers by the interval
αi (V ) , [min V ,max V ]

I this is an over-approximation

I z 6∈ αi (V )⇒ z 6∈ V

I z ∈ αi (V ) 6=⇒ z ∈ V

I Concretization function γi ([`, h]) , {z ∈ Z | ` 6 z 6 h}.
I ∀V ∈ ℘(Z) : ∀[`, h] ∈ V ]

i : αi (V ) ⊆ [`, h]⇐⇒ V ⊆ γi ([`, h])
and so, by definition, the pair 〈α, γ〉 is a Galois connection

〈℘(Z), ⊆〉 −−−→←−−−αi

γi 〈V ]
i , ⊆〉
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Fixpoint Abstraction

I Intermediate goal : α(lfp
�

T ) = A with γ(A) ∩ ε = ∅

I α(lfp
�

T ) is often non-computable

I However, if α ◦ T v̇ T ] ◦ α, then α(lfp
�

T ) v lfp
v

T ].

I New goal : γ(α(lfp
�

T )) ∩ ε = ∅.
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Abstract Fixpoint Approximation

The iterates of the T ] operation converge to the fixpoint :

I but maybe in infinitely many iterations

I and at a combinatorial time and memory cost

I convergence has to be accelerated using a widening O

I A näıve example of widening for intervals is

[`i , hi ]O[`i+1, hi+1]

, [if `i+1 < `i then −∞ else `i , if hi+1 > hi then +∞ else `i ]
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ASTREE

Semantics :

I Astrée input written in large subset of C, (not dynamic
memory allocation, recursivity, and parallelism)

I syntax and semantics based on the C99 norm, supplemented
with the IEEE 754-1985 norm

Properties proved : run-time errors

I overflows in unsigned and signed integer and float arithmetics
and casts

I divisions by zero

I out-of-bound array accesses

I NULL, dangling, out-of-bound and misaligned pointer
dereferences,

I assertion failures (in calls to the assert C function).
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Analyzed Codes

I Astrée focuses on analyzing control/command synchronous
programs automatically generated from Modeling Languages.

I communication by “volatile” memory locations allowed

I proof of absence of run-time errors in 2 families of industrial
embedded avionic control/command software generated from
high level specifications :

I aeronautics 100 K code lines and 10 K global variables — half
of which are floats in around 2 h up to 1 M code lines analyzed
in 50 h

I space software 14 K lines C code generated from a SCADE
model designed by Astrium ST.

I Astrée now handle code generated by dSPACE TargetLink
(code generator for MATLAB, Simulink and Stateflow)
(added by AbsInt).
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Toward Relational Domains

AIAA Infotech@Aerospace 2010, Atlanta, georgia, 04/20/2010                                                                                                                                                                                                                                             © P Cousot et Al.2 2 2

I relational domains bring fine-tuned preciseness (more precise
than intervals)

I at a bounded computational cost.
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Imperfectly-Clocked Synchronous Systems
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Imperfectly-Clocked Synchronous Systems
A new semantics

This non-standard semantics : continuous-time
I allows a more precise modeling of reality

I imperfect clocks
I communication channels with unknown latency

I reuses continuous theories
I integral theory
I directed homology

I allows a precise and efficient static analysis
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Imperfectly-Clocked Synchronous Systems
1st temporal abstract domain : constraints

1 32 4

[3,4]:false

<1,2>:true

false

true

I express many local temporal properties

I and prove some of these properties

[VMCAI’05] J. Bertrane. Static analysis by abstract of the
quasi-synchronous composition of synchronous programs. Paris
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Imperfectly-Clocked Synchronous Systems
More temporels abstract domains

value changes counting integral boundings
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I express stability
specifications.

           <1
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β
β+2

α
α+2

false

true

           <1

I express quantitative
properties (average
value, ...)

[SAS’06] J. Bertrane. Proving the properties of communicating
imperfectly-clocked synchronous systems. Seoul

Semantics and Abstract Interpreation team Static Analysis by A. I. of Embedded Critical Software



Reduce product Constraints - Value changes counting
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Reduce product Constraints - Value changes counting
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Conclusion

I Abstract Interpretation is able to define a static analysis at
several levels of the development of embedded systems

I It may help designers from early stages to product shipping

I It may even check that the translation from one level to
another is correct

I Static analysis community can only benefit from a better
formalization of different layers, as proposed by UML
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