

Model-based development of real-time systems

- Timing validation at early design stages
- Optimum: a methodology for schedulability guided design of real-time systems

Agenda

- Outline
- The Modeling Language
- The Optimum Methodology for Early Stage Schedulability Analysis
- Conclusions and Future Work

Modeling and Analysis of Real-Time and Embedded systems

- OMG standard: version 1.0 standardized in july 2009
- **Structured in sub-profiles** covering RTE systems development aspects
- **Model libraries of RTE specific** types
- **Textual language for value** specifications (VSL)

Public website:

www.omgmarte.org

MARTE UML Profile

1. NFPs & Time

« rtUnit»

ObstacleDetecto

« dataType»

startDetection()

stopDetection()

2. Application

taSpeed Speed

pkg Application

« rtUnit»

CruiseControle

«rtService» (exeKind=deferred) start()

« ppUnit» {concPolicy=guarded} Speedometer

getSpeed(): Speed

act Behavior

behaviour

4. HW/SW Resources

5. Quantitative Analysis

analysis scenarios

MARTE Concepts to Perform Analysis

MARTE4Optimum

- MARTE subset for Optimum methodology (out of MARTE 158 stereotypes)
- Restriction of stereotypes applicability (w.r.t UML base elements)
 - Reduces complexity of methodological rules validation
 - Reduces complexity of automation support

MARTE4Optimum stereotype	Covered analysis concept	MARTE4Optimum UML extensions	
Alloc::Allocate	Resource allocation	Abstraction	
Alloc::Allocated	Resource allocation	CallAction, Property	
GRM::SchedulableResource	Platform abstraction: task	Property	
GQAM::GaPlatformResources	Platform abstraction: container	Class	
GQAM::GaWorkloadBehavior	Workload behavior	Activity	
GQAM::GaWorkloadEvent	Load: event with arrival pattern	AcceptEventAction	
SAM::SaAnalysisContext	Analysis context	Activity	
SAM:: SaEndToEndFlow	Scenario with deadline	ActivityPartition	
SAM::SaExecHost	Platform abstraction: exec host	Property	
SAM::SaSharedResource	Platform abstraction: shared res.	Property	
SAM::SaStep	Workload behavior: action	CallAction	

Agenda

- Outline
- The Modeling Language
- The Optimum Methodology for Early Stage Schedulability Analysis
- Conclusions and Future Work

Optimum Methodology: Inputs

Functional Model

An Automotive Example

System-level functions structure

An Automotive Example

System end-to-end scenarios

Textual requirements

- The acquisition for ABS occurs every 60ms
- The acquisition for diagnosis can occur every 100ms at minimum
- ...

Build the Workload Model

Build the Workload Model

End-to-end flow:

- Activity partition
- Deadline
- Event arrival pattern

- Allocation on exec host
- Time budget

Build the Schedulability Analysis Model

Build the Schedulability Analysis Model

« gaPlatformResources» **SaResources** <<saExecHost>> hecu:HECU « saExecHost» schedPolicy = FixedPriority « schedulableResource» [schedParams = fp(20)« schedulableResource » task1: Task « schedulableResource» schedParams = fp(10)« schedulableResource » task2: Task <<saSharedResource>> AntiLock:SharedResource « saSharedResource» protectKind = PriorityCeling

Schedulability Analysis Evaluation

Evaluation and Results

Schedulability analysis input model

task	e_i	T_i	C_i	P_{i}	B_i	D_i
task1	acquisitionForAbs	60	25	20	15	60
task2	acquisitionForDiagnosis	100	25	10	0	100

Schedulability analysis output results (back annotated)

task	response time	isSched
task1	40	true
task2	50	true

Back annotated schedulability analysis models provides guidance to build a schedulable design model

- Schedulable task mapping
- Shared resources identified

Agenda

- Outline
- The Modeling Language
- The Optimum Methodology for Early Stage Schedulability Analysis
- Conclusions and Future Work

Conclusions

MARTE-based methodology for schedulability guided design of RTS

- Reduces design cycle
- Eliminates unfeasible design at early stage
- Gives correct by construction real-time design patterns

Tooling support

- Optimum framework is integrated in Papyrus UML modeling tool
- Provides wizards for capturing real-time properties in a simple way
- Automatic construction of the schedulability analysis model
- Bridges to external schedulability analysis tools (MAST and Rt-Druid)
- Provides basic schedulability analysis tests (RMA for fixed priority)

Future work

- Enrich the set of task mapping construction
- Enrich internal schedulability analysis algorithms
- Real-time component models generation

