

UML&FM'10

SysML to UML transformation for test generation purpose

November the 16th 2010

Jonathan Lasalle JONATHAN Lasalle Fabrice Bouquet – Bruno Legeard – Fabien Peureux

UML&FM'10 – Nov. 16th 2010 – Shanghai – J. Lasalle

- VETESS: verification of vehicle embedded system by automatic test generation from specifications.
- Project labeled by the French competitiveness cluster "automotive of future" (2008/2010).

Project members:

- Smartesting: editor of tooled MBT solution (Test Designer).
- Clemessy: testing bench provider (Test In View).
- PSA Peugeot Citroën: car manufacturer.
- LIFC: Model-Based Testing expertise (MBT).
- MIPS: Model Driven Engineering expertise (MDE).

Toolchain

SysML4MBT

Transformation from SysML4MBT to UML4MBT

Experimentations

Conclusion & future works

Class Diagram

- Static view of the system.
- Classes, associations, enumerations, class attributes and operations.

Object Diagram

- Concrete objects used to compute test cases.
- Define the initial state of the system.
- Must be an instanciation of the Class Diagram.

Oynamic view:

- OCL expressions on pre/post condition of operations.
- One Statemachine Diagram (annotated with OCL constraint).
 - parallel states
 - historic states
 - fork and join states

Several restrictions on OCL.

Block Definition Diagram (BDD)

- Static view of the system and its environment.
- Blocks, associations, compositions enumerations, blocks attributes and operations, PORTS and SIGNALS.
- Internal Block Diagram (IBD)
 - Interconnection between blocks.
 - Represent electrical or mechanical communications.

Oynamic view:

- OCL expressions on pre/post conditions of operations.
- One or more Statemachine Diagram(s) (annotated with OCL constraints).
 - parallel states
 - historic states
 - fork and join states

Triggers: signal reception.

- Same restrictions than in UML4MBT.
- Addition of OCL ^ operator (signal sending).

Requirements Diagram

- Represents system requirements.
- Links requirements with model elements that satisfy them.

SysML4MBT to UML4MBT transformation – Algorithm

Algorithm outline:

- **1.** Transformation of BDD & IBD to Class Diagram.
- **2**. Rewriting of Requirement Diagram.
- **3.** Translation of signal sends/receives.
- **4.** Transformation of fork/join states to parallel states.
- 5. Rewriting of each composite, historic and parallel states by hierarchical stage.
- 6. Merging of parallel Statemachines.
- 7. Building of the Object Diagram.

SysML4MBT to UML4MBT transformation – BDD

SysML BDD to UML Class Diagram

No changes: blocks (classes), associations, operations, attributes and enumerations on both.

SysML4MBT to UML4MBT transformation – Signals

SysML IBD to UML Class Diagram

- Signals:
 - ➡Used on IBD.
 - Defined on BDD => UML classes.
 - Add a new attribute isUsed.

SysML4MBT to UML4MBT transformation – Ports

SysML IBD to UML Class Diagram

- Ports:
 - Used on IBD.
 - Defined on BDD.
 - Which signal is pending on which port.

UFC

SysML4MBT to UML4MBT transformation – Requirements

SysML Requirement Diagram to OCL

OCL for MBT: expression of requirements: /**@REQ: description of the requirement*/

For each requirement of diagram

- If satisfied by a transition: OCL added to effect.
- If satisfied by an operation: OCL added to post condition.
- If satisfied by an onEntry/onExit expression: OCL added to onEntry/onExit effect.

SysML4MBT to UML4MBT transformation – Dynamic view

Statemachine Diagrams

- Shared concepts:
 - ➡initial states,
 - ➡final states,
 - standard states,
 - composite states,
 - transitions without signal reception,
 - ➡OCL expressions without the circumflex operator.

SysML4MBT to UML4MBT transformation – Signal sending

Signal sending: ^ OCL operator

- Block.Port ^ Signal(parameters).
- Useful information: a new signal is pending in the corresponding port.
- Instantiation of associations:

let s = Sig.allInstances()->any(isUsed = false) in s:Param1 = Val1 and s:Param2 = Val2 and s:isUsed = true and Block.Port_Sig->includes(s)

SysML4MBT to UML4MBT transformation – Signal receiving

Signal receiving (trigger on transitions)

- The corresponding signal is pending.
- After crossing the transition, the signal was read.
- Check of link and deletion.

A trigger defining the reception of "Sig" on "Port" hosted by "Block".

Add of guard: [Block.Port_Sig -> notEmpty()]

Add of effect: *let s* = *Block.Port_Sig.allInstances()->any(true) in s:isUsed* = *false and Block.Port_Sig->excludes(s)*

SysML4MBT to UML4MBT transformation – Fork & join states

Fork & join states

Rewriting to parallel states.

UFC

SysML4MBT to UML4MBT transformation – Composite states

Composite states

Must not contain parallel or historic states.

SysML4MBT to UML4MBT transformation – Historic states

SysML4MBT to UML4MBT transformation – Parallelism

Parallel states

- Same steps to merge parallel states and parallel Statemachines.
- Parallelism of Statemachine Diagram
 - Multiple Statemachines in SysML4MBT.
 - Single Statemachine in UML4MBT.
 - => Merging of Statemachines

SysML4MBT to UML4MBT transformation – Parallelism

Following steps:

- 1. Translation of all complex states (fork, join, composite, parallel and historic states).
- 2. Cartesian product of all Statemachines:
 - 1. Draw transition only if a path to reach start state exists.
 - **2.** Informations of pending signals are stored on states.
 - **3.** Transitions triggered by signal receiving: drawn only if the signal is pending on the root state.

υFC

SysML4MBT to UML4MBT transformation – Object Diagram

UML Object Diagram

- Each class => one instance.
- Associations => instantiated using the minimum number of links (lower multiplicity).
- Classes representing signals: instantiated according how many times it can be pending at the same time.

UFC

Lighting

- Front lighting system of a car.
- Light on and light off independently headlights and highlights with a control lever.

Steering

- Representation of the steering column of a car.
- Reaction of the steering column in regard of road.

Wiper

- Specification of the front wiper system of a car.
- The modeled functionalities are slow speed drying up, high speed drying up, intermittently speed drying up and cleaning with drying up.

		Lightings	Steering	Wiper
SYSML4MBT	Blocks	6	9	15
	Connectors	4	10	18
	Statemachines	5	6	12
	States	(2,2,2,2,4)	(2,2,2,2,2,2)	(1,1,1,1,1,2, 17,10,2,2,2,2)
	Transitions	(3,3,3,3,9)	(3,3,3,3,2,8)	(3,4,3,5,2,4, 53,17,3,3,3,3)
U M L 4 M B T	Classes	10	16	29
	Objects	15	20	57
	States	64	18	2526
	Transitions	256	123	31873

Conclusion & future works

- Rewriting rules to translate SysML4MBT models into UML4MBT models.
- Made it possible to generate test cases from SysML4MBT models with Test Designer.
- Problem about Scalability.
 - Improving rewriting rules.
 - Increasing UML4MBT expressiveness (native support of parallelism).
- About testing: Increasing model coverage with new test generation strategies.

Any questions?

[BGL+07] F. Bouquet, C. Grandpierre, B. Legeard, F. Peureux, N. Vacelet, and M. Utting. A sub-set of precise UML for model-based testing. In Proceedings of the 3rd International Workshop on Advances in Model Based Testing (A-MOST'07), pages 95{104, London, UK, July 2007. ACM Press.