Modelling, Refining, and Proving with Event-B

Jean-Raymond Abrial



Outline

- General concepts and comments

- An illustrating example

- A demo with the Rodin Platform

- Slides can be distributed

- Text of example can be distributed



An Ambition in System and Software Developments

- Being correct by construction

- Some simple ingredients:
1. Informal (but precise) Requirements
2. Modeling vs. programming
3. Refining

4. Proving



1. Requirements



Purpose of the Informal Requirement Document

- Contains the properties of the future system

- Allowing us to judge eventually that the final product is correct

- Made of short labeled “fragments” (traceability)

- Should be easy to read (different font) and easy to extract (boxed)



Place of the Requirement Document in Development Cycle

1. Feasibility Study

2. Requirement Document

3. Technical Specification

4. Design

4. Coding

5. Test

6. Documentation

7. Maintenance



Difficulties and weak point

- Importance of this document (due to its position in the life cycle)

- Obtaining a good requirement document is not easy:
- missing points

- too specific (over-specified)

- Requirement document are usually difficult to exploit



Some Structuring Rules

- Two separate texts in the same document:
- explanatory text: the why
- reference text: the what

- Embedding the reference text within the explanation text

- The reference text eventually becomes the official document

- Must be signed by concerned parties



2. Modeling vs. Programming



Purpose of Formal Methods

- Helping people in doing the following transformation:

software requirements

Formal

Method

running code

- It does not seem to be different from ordinary programming




Preliminary Definitions and Categories

- A formal method is a systematic approach

- It is used to determine whether a program has certain properties

- Different kinds of formal methods (according to this definition)
- Type checking
- Static analysis
- Model checking

- Theorem proving



Theorem Proving: Model Construction

- This is the approach developed here

- It concentrates on the construction of models by refinements

- The properties to be proved are parts of the models

- The most refined model is automatically translated into a program



How About Other Engineering Disciplines 10

- Some mature engineering disciplines:
- Avionics,
- Civil engineering,
- Mechanical engineering,
- Train systems,
- Ship building,

- Are there any equivalent approaches to Formal Methods with Proofs?

- Yes, BLUE PRINTS



More Precise Definition of Formal Methods Used Here 11

- Formal methods are techniques for building and studying blue prints

- These blue prints are ADAPTED TO OUR DISCIPLINE

- Our discipline is the design of hardware and software SYSTEMS

- Such blue prints are now called formal models



Conventions for Model Writing and Reasoning

12

- Models allow to reason about a FUTURE system

- The basis is lacking (hence you cannot “execute” all models)

- Using pre-defined conventions in order to facilitate reasoning:

- Classical Logic (Predicate Calculus)

- Basic Set Theory (sets, relations and functions)



Characterizing the Systems we Intend to Build

13

- These systems operate in a discrete fashion

- Their dynamical behavior can be abstracted by:
- A succession of steady states (enriched by invariants)

- Intermixed with sudden jumps (events)

- Usually such systems never halt

- They are called DISCRETE TRANSITION SYSTMS



3. Refinement



Refinement

14

- Refinement allows us to build models gradually

- We shall build an ordered sequence of more precise models

- A useful analogy: looking through a microscope

- Spatial as well as temporal extensions

- Data refinement



4. Proving



Reasoning about Discrete Transition Systems

15

- Test reasoning (a vast majority): VERIFICATION

- Blue Print reasoning (a very few): CORRECT CONSTRUCTION



Test Reasoning: VERIFICATION

16

- Based on laboratory execution

- Obvious incompleteness

- The oracle is usually missing

- |Properties to be checked are chosen a posteriori

- Re-adapting and re-shaping after testing

- |Reveals an immature technology




Blue Print Reasoning: CORRECT CONSTRUCTION 17

- Based on a formal model: the “blue print”

- Gradually describing the system with the needed precision

- |Relevant Properties are chosen a priori

- Serious thinking made on the model, not on the final system

- Reasoning is validated by proofs

- |Reveals a mature technology




Blue Print Reasoning: Outcome of Proving

18

- The proof succeeds

- The proof fails but refutes the statement to prove

- the model is erroneous: it has to be modified

- The proof fails but is probably provable

- the model is badly structured: it has to be reorganized

- The proof fails and is probably not provable nor refutable

- the model is too poor: it has to be enriched



An lllustrating Example



Purpose of the Example

19

- lllustrating the previous points:
1. Informal (but precise) Requirements
2. Modeling
3. Refining

4. Proving



Informal Requirements: Explanations 20

- We want to build a business protocol

- A seller S wants to order a product from a warehouse clerk C.

- The seller may reserve some products before making a final choice

- S and C communicate by means of messages



A Business Protocol: Abstract Informal Requirements

21

This protocol involves a seller S and a warehouse with products

ENV-1

S may reserve products (one at a time) FUN-1

S may delete the reservation of products (one at a time)

FUN-2

At the end, S may order one of the reserved products

FUN-3




A Business Protocol: Concrete Informal Requirements (1)

22

The protocol also involves a warehouse clerk C ENV-2
S and C communicate by means of messages ENV-3
S can make a reservation by sending a message to C. FUN-4
C always confirms a reservation by sending a message to S. FUN-5




A Business Protocol: Concrete Informal Requirements (2)

23

S can delete a reserved product by sending a message to C. FUN-6

S can order a reserved product by sending a message to C. FUN-7

Order, deletion or reservation messages cannot be sent by S

beteween a reservation message and its confirmation. FUN-8
The ordered product must be the same for both partners FUN-9




A Business Protocol: Concrete Informal Requirements (3)

24

Messages can be reordered before being treated by C ENV-4
Messages are never lost ENV-5
At the end, all pending messages must be treated by C ENV-6




A Business Protocol: Refinement Strategy 25

1. Formalising the overall purpose of the protocol: FUN-3

2. The Seller S is alone in the Warehouse: FUN-1 and FUN-2

3. Introducing the Warehouse Clerk C: other requirements

4. Technical refinement (to make things implementable)



Initial Model: the State

26

- We just formalise what the seller can eventually do: order a product.

- First, we define a carrier set P RD: the product information.

sets: PRD

- A single variable S O RD denoting the set of ordered product.

variables: S_ORD

- S_ORD is at most a singleton set

inv0_1:

inv0 2:

S ORD C PRD
S ORD # o = x-S ORD = {x}




Initial Model: the Events 27
- The INIT event making S_ORD empty at the beginning
- The Order event making S_ ORD a singleton set
Order
any p where
€ PRD
INIT N
S ORD := o S ORD =2
then
S ORD := {p}
end
At the end, S may order one of the reserved products FUN-3




First Refinement: State 28

-We define two more variables:

- S USD is the set of used products (already reserved in the past)

- S _RES is the set of reserved products (candidates for ordering)



First Refinement: Invariants

29

invl_1:

invl _2:

invl_3:

SUSD C PRD
S RES C SUSD

S ORD C S RES




First Refinement: Events (1)

30

Reserve Delete

Order

TRUE means protocol active

FALSE means protocol terminated



First Refinement: Events (2) 31

Initially: The protocol is made active and no products are used,

reserved, or ordered

Reserve: When protocol is active, choose a new product (not used)

and make it used and reserved

Delete: When protocol is active, choose a reserved product and make

It not reserved

Order: When protocol is active, choose a reserved product and make

it ordered. Make protocol inactive



Refining Abstract Events

32

INIT
SUSD =9
S RES (=g
S ORD := o

Order
any p where
pe S RES
S ORD = o
then
S ORD := {p}
end




Adding New Eevents

33

- The protocol is active while S ORD is empty

Reserve
any p where
p& SUSD
S ORD = o
then

S RES :=S RES U {p}
end

SUSD := SUSD U {p}

Delete
any p where
p € S RES
S ORD = o
then
S RES :=S RES \ {p}
end




First Refinement: Proofs

34

- Invariant preservation by the events requires 7 proofs

- All proved automatically by the prover of the Rodin Platform.



Taking Account of Requirements FUN_1, FUN 2, and FUN_3

35

- Event Reserve

During the protocol, S may reserve a product FUN-1

- Event Delete

During the protocol, S may delete the reservation of a product

FUN-2

- Event Order

At the end of the protocol, S may order a reserved product

FUN-3




Second Refinement: the Complete Picture of the State

36

- Adding C variables:
CUSD,C RES,and C ORD

- Adding channel variables:

res_chn, cfm_chn, del_chn, and ord_chn

S

S_USD
S_RES
S_ORD

res_chn (singleton)

cfm_chn (singleton)

——

T

del chn

ord_chn (singleton)

T

C_USD
C_RES
C_ORD




Invariants (1)

37

inv2 1:

inv2 2:

inv2 3:

C USD C PRD
C RES C CUSD

C ORD C C RES




Invariants (2)

38

- Connecting S and C variables

inv2 4:

inv2 5:

SUSD =CUSD U res chn

CUSD Nreschn =9

-C . USD and res_chn partition S USD

cfm_chn (singleton) C
-
S_USD del_chn C_USD
S_RES > C_RES

S_ORD | ord_chn (singleton) C_ORD

res_chn (singleton)

T

T




Invariants (3)

39

- We have similar connections for other channels

inv2 6:

inv2 7:

inv2 8:

inv2 9:

S RES Udel chn = C RES U res_chn

S RES Ndel chn = o

S ORD = C ORD U ord chn

C ORD N ord chn = o




Refinement of the Abstract Events

snd_Reserve

refines
Reserve

any p where
p¢& SUSD
S ORD = o
res chn = o
cfm_chn =2

then
SUSD :=SUSD U {p}
S RES : =S RES U {p}

res chn := {p}

end
snd_Delete snd_Order
refines refines
Delete Order
any p where any p where
p €S RES p €S RES
S ORD = o S ORD = o
res chn = o res chn = o
cfm_chn =2 cfm chn = o
then then
S RES : =S RES \ {p} S ORD := {p}
del chn := del chn U {p} ord chn := {p}
end end




New Events (rcv_Confirm in S, others in C)

41

rcv_Reserve

end

C RES :=C RES\ {p}
del chn := del chn \ {p} ord chn := &

. when
rC\‘/N%gp‘flrm res_chn # &
cfm_chn # & then
then CUSD :=CUSD U res_chn
cfm chn = o C RES :=C_RES Ures.chn
end " cfm chn := res chn
res_.chn :(= o
end
rcv_Delete rcv_Order
any p where when
p € del_chn ord_chn # o
then then

C ORD := ord chn

end




Proofs (1)

42

(1) We cannot prove that the event rcv_Delete

rcv_Delete
any p where
p € del_chn
then
C RES :=C RES\ {p}
del chn := del chn \ {p}
end

preserves invariant inv2_6:

inv26: S RES Udel chn =C RES U res chn

- We have to introduce the following new invariant:

inv2 11: res chn Ndel chn = o




Proofs (2)

(2) Then we cannot prove that the event rcv_Order preserves invariant inv2_3

rcv_Order
when
ord_chn # @ _
then inv23: C ORD C C RES
C ORD := ord chn

ord_chn := o
end

- This amounts to proving:
ord_.chn C C_RES

- We, simply add this statement as a new invariant:

inv2.12: ord.chn C C_RES




Taking Account of the Requirements(1)

44

S can make a reservation by sending a message to C.

FUN-4

snd_Reserve

refines
Reserve

any p where
pé& SUSD
S ORD = o
res chn = o
cfm_.chn =9

then
SUSD :=SUSD U {p}
S RES :=S RES U {p}
res chn := {p}

end




Taking Account of the Requirements (2)

45

C always confirms a reservation by sending a message to S.

FUN-5

rcv_Reserve

when
res_chn # o

then
CUSD :=CUSD U res chn
C RES :=C RFES U res.chn
cfm_chn := res_chn
res chn := o

end




Taking Account of the Requirements (3)

46

S can delete a reserved product by sending a message to C.

FUN-6

snd_Delete
refines
Delete
any p where
p€ESRES
S ORD = o
res chn = o
cfm.chn =9
then
S RES :=S RES \ {p}
del chn := del chn U {p}
end




Taking Account of the Requirements (4)

47

S can order a reserved product by sending a message to C. FUN-7
snd_Order
refines
Order
any p where
pe S RES
S ORD = o
res.chn = o
cfm_chn = o
then
S ORD := {p}
ord chn := {p}
end
Order, deletion or reservation messages cannot be sent by S
beteween a reservation message and its confirmation. FUN-8




Taking Account of Requirements (5)

48

The ordered product must be the same for both partners

FUN-9

- This is achieved thanks to the following theorem:

thm2 2: ordchn =9 = S ORD =C ORD




Systematic Methodology

49

- Requirements

- Refinement strategy

- Successive refined models:

- constants
- variables
- Invariants
- events

- proofs

- requirements meeting



Conclusion 50

- | shortly presented a practice of formal modeling

- It is done with an approach called Event B

- Modeling in Event-B: System and Software Engineering
by J-R. Abrial. Cambridge University Press (2010)

- It is developed within some European Projects: Rodin and Deploy

- Loading the free software of the Rodin Platform: http://event-b.org

- An illustrating demo



