
Modelling, Refining, and Proving with Event-B

Jean-Raymond Abrial

1

Outline 1

- General concepts and comments

- An illustrating example

- A demo with the Rodin Platform

- Slides can be distributed

- Text of example can be distributed

2

An Ambition in System and Software Developments 2

- Being correct by construction

- Some simple ingredients:

1. Informal (but precise) Requirements

2. Modeling vs. programming

3. Refining

4. Proving

3

1. Requirements

4

Purpose of the Informal Requirement Document 3

- Contains the properties of the future system

- Allowing us to judge eventually that the final product is correct

- Made of short labeled “fragments” (traceability)

- Should be easy to read (different font) and easy to extract (boxed)

5

Place of the Requirement Document in Development Cycle 4

1. Feasibility Study 4. Coding

2. Requirement Document 5. Test

3. Technical Specification 6. Documentation

4. Design 7. Maintenance

6

Difficulties and weak point 5

- Importance of this document (due to its position in the life cycle)

- Obtaining a good requirement document is not easy:

- missing points

- too specific (over-specified)

- Requirement document are usually difficult to exploit

7

Some Structuring Rules 6

- Two separate texts in the same document:

- explanatory text: the why

- reference text: the what

- Embedding the reference text within the explanation text

- The reference text eventually becomes the official document

- Must be signed by concerned parties

8

2. Modeling vs. Programming

9

Purpose of Formal Methods 7

- Helping people in doing the following transformation:

Method

Formal
software requirements running code

- It does not seem to be different from ordinary programming

10

Preliminary Definitions and Categories 8

- A formal method is a systematic approach

- It is used to determine whether a program has certain properties

- Different kinds of formal methods (according to this definition)

- Type checking

- Static analysis

- Model checking

- Theorem proving

11

Theorem Proving: Model Construction 9

- This is the approach developed here

- It concentrates on the construction of models by refinements

- The properties to be proved are parts of the models

- The most refined model is automatically translated into a program

12

How About Other Engineering Disciplines 10

- Some mature engineering disciplines:

- Avionics,

- Civil engineering,

- Mechanical engineering,

- Train systems,

- Ship building,

- . . .

- Are there any equivalent approaches to Formal Methods with Proofs?

- Yes, BLUE PRINTS

13

More Precise Definition of Formal Methods Used Here 11

- Formal methods are techniques for building and studying blue prints

- These blue prints are ADAPTED TO OUR DISCIPLINE

- Our discipline is the design of hardware and software SYSTEMS

- Such blue prints are now called formal models

14

Conventions for Model Writing and Reasoning 12

- Models allow to reason about a FUTURE system

- The basis is lacking (hence you cannot “execute” all models)

- Using pre-defined conventions in order to facilitate reasoning:

- Classical Logic (Predicate Calculus)

- Basic Set Theory (sets, relations and functions)

15

Characterizing the Systems we Intend to Build 13

- These systems operate in a discrete fashion

- Their dynamical behavior can be abstracted by:

- A succession of steady states (enriched by invariants)

- Intermixed with sudden jumps (events)

- Usually such systems never halt

- They are called DISCRETE TRANSITION SYSTMS

16

3. Refinement

17

Refinement 14

- Refinement allows us to build models gradually

- We shall build an ordered sequence of more precise models

- A useful analogy: looking through a microscope

- Spatial as well as temporal extensions

- Data refinement

18

4. Proving

19

Reasoning about Discrete Transition Systems 15

- Test reasoning (a vast majority): VERIFICATION

- Blue Print reasoning (a very few): CORRECT CONSTRUCTION

20

Test Reasoning: VERIFICATION 16

- Based on laboratory execution

- Obvious incompleteness

- The oracle is usually missing

- Properties to be checked are chosen a posteriori

- Re-adapting and re-shaping after testing

- Reveals an immature technology

21

Blue Print Reasoning: CORRECT CONSTRUCTION 17

- Based on a formal model: the “blue print”

- Gradually describing the system with the needed precision

- Relevant Properties are chosen a priori

- Serious thinking made on the model, not on the final system

- Reasoning is validated by proofs

- Reveals a mature technology

22

Blue Print Reasoning: Outcome of Proving 18

- The proof succeeds

- The proof fails but refutes the statement to prove

- the model is erroneous: it has to be modified

- The proof fails but is probably provable

- the model is badly structured: it has to be reorganized

- The proof fails and is probably not provable nor refutable

- the model is too poor: it has to be enriched

23

An Illustrating Example

24

Purpose of the Example 19

- Illustrating the previous points:

1. Informal (but precise) Requirements

2. Modeling

3. Refining

4. Proving

25

Informal Requirements: Explanations 20

- We want to build a business protocol

- A seller S wants to order a product from a warehouse clerk C.

- The seller may reserve some products before making a final choice

- S and C communicate by means of messages

26

A Business Protocol: Abstract Informal Requirements 21

This protocol involves a seller S and a warehouse with products ENV-1

S may reserve products (one at a time) FUN-1

S may delete the reservation of products (one at a time) FUN-2

At the end, S may order one of the reserved products FUN-3

27

A Business Protocol: Concrete Informal Requirements (1) 22

The protocol also involves a warehouse clerk C ENV-2

S and C communicate by means of messages ENV-3

S can make a reservation by sending a message to C. FUN-4

C always confirms a reservation by sending a message to S. FUN-5

28

A Business Protocol: Concrete Informal Requirements (2) 23

S can delete a reserved product by sending a message to C. FUN-6

S can order a reserved product by sending a message to C. FUN-7

Order, deletion or reservation messages cannot be sent by S

beteween a reservation message and its confirmation. FUN-8

The ordered product must be the same for both partners FUN-9

29

A Business Protocol: Concrete Informal Requirements (3) 24

Messages can be reordered before being treated by C ENV-4

Messages are never lost ENV-5

At the end, all pending messages must be treated by C ENV-6

30

A Business Protocol: Refinement Strategy 25

1. Formalising the overall purpose of the protocol: FUN-3

2. The Seller S is alone in the Warehouse: FUN-1 and FUN-2

3. Introducing the Warehouse Clerk C: other requirements

4. Technical refinement (to make things implementable)

31

Initial Model: the State 26

- We just formalise what the seller can eventually do: order a product.

- First, we define a carrier set PRD: the product information.

sets: PRD

- A single variable S ORD denoting the set of ordered product.

variables: S ORD

- S ORD is at most a singleton set

inv0 1: S ORD ⊆ PRD

inv0 2: S ORD 6= ∅ ⇒ ∃x · S ORD = {x}

32

Initial Model: the Events 27

- The INIT event making S ORD empty at the beginning

- The Order event making S ORD a singleton set

INIT
S ORD := ∅

Order
any p where
p ∈ PRD
S ORD = ∅

then
S ORD := {p}

end

At the end, S may order one of the reserved products FUN-3

33

First Refinement: State 28

-We define two more variables:

- S USD is the set of used products (already reserved in the past)

- S RES is the set of reserved products (candidates for ordering)

34

First Refinement: Invariants 29

inv1 1: S USD ⊆ PRD

inv1 2: S RES ⊆ S USD

inv1 3: S ORD ⊆ S RES

35

First Refinement: Events (1) 30

TRUE

Order

FALSE

TRUE means protocol active

FALSE means protocol terminated

Reserve Delete

36

First Refinement: Events (2) 31

Initially: The protocol is made active and no products are used,

reserved, or ordered

Reserve: When protocol is active, choose a new product (not used)

and make it used and reserved

Delete: When protocol is active, choose a reserved product and make

it not reserved

Order: When protocol is active, choose a reserved product and make

it ordered. Make protocol inactive

37

Refining Abstract Events 32

INIT
S USD := ∅
S RES := ∅
S ORD := ∅

Order
any p where
p ∈ S RES
S ORD = ∅

then
S ORD := {p}

end

38

Adding New Eevents 33

- The protocol is active while S ORD is empty

Reserve
any p where

p /∈ S USD
S ORD = ∅

then
S USD := S USD ∪ {p}
S RES := S RES ∪ {p}

end

Delete
any p where

p ∈ S RES
S ORD = ∅

then
S RES := S RES \ {p}

end

39

First Refinement: Proofs 34

- Invariant preservation by the events requires 7 proofs

- All proved automatically by the prover of the Rodin Platform.

40

Taking Account of Requirements FUN 1, FUN 2, and FUN 3 35

- Event Reserve

During the protocol, S may reserve a product FUN-1

- Event Delete

During the protocol, S may delete the reservation of a product FUN-2

- Event Order

At the end of the protocol, S may order a reserved product FUN-3

41

Second Refinement: the Complete Picture of the State 36

- Adding C variables:

C USD, C RES, and C ORD

- Adding channel variables:

res chn, cfm chn, del chn, and ord chn

S C

C_USD

C_RES

C_ORD

S_RES

S_ORD

S_USD

cfm_chn (singleton)

res_chn (singleton)

ord_chn (singleton)

del_chn

42

Invariants (1) 37

inv2 1: C USD ⊆ PRD

inv2 2: C RES ⊆ C USD

inv2 3: C ORD ⊆ C RES

43

Invariants (2) 38

- Connecting S and C variables

inv2 4: S USD = C USD ∪ res chn

inv2 5: C USD ∩ res chn = ∅

- C USD and res chn partition S USD

S C

C_USD

C_RES

C_ORD

S_RES

S_ORD

S_USD

cfm_chn (singleton)

res_chn (singleton)

ord_chn (singleton)

del_chn

44

Invariants (3) 39

- We have similar connections for other channels

inv2 6: S RES ∪ del chn = C RES ∪ res chn

inv2 7: S RES ∩ del chn = ∅

inv2 8: S ORD = C ORD ∪ ord chn

inv2 9: C ORD ∩ ord chn = ∅

45

Refinement of the Abstract Events 40

snd Reserve
refines

Reserve
any p where
p /∈ S USD
S ORD = ∅
res chn = ∅
cfm chn = ∅

then
S USD := S USD ∪ {p}
S RES := S RES ∪ {p}
res chn := {p}

end

snd Delete
refines

Delete
any p where
p ∈ S RES
S ORD = ∅
res chn = ∅
cfm chn = ∅

then
S RES := S RES \ {p}
del chn := del chn ∪ {p}

end

snd Order
refines

Order
any p where
p ∈ S RES
S ORD = ∅
res chn = ∅
cfm chn = ∅

then
S ORD := {p}
ord chn := {p}

end

46

New Events (rcv Confirm in S, others in C) 41

rcv Confirm
when
cfm chn 6= ∅

then
cfm chn := ∅

end

rcv Reserve
when
res chn 6= ∅

then
C USD := C USD ∪ res chn
C RES := C RES ∪ res chn
cfm chn := res chn
res chn := ∅

end

rcv Delete
any p where
p ∈ del chn

then
C RES := C RES \ {p}
del chn := del chn \ {p}

end

rcv Order
when
ord chn 6= ∅

then
C ORD := ord chn
ord chn := ∅

end

47

Proofs (1) 42

(1) We cannot prove that the event rcv Delete

rcv Delete
any p where
p ∈ del chn

then
C RES := C RES \ {p}
del chn := del chn \ {p}

end

preserves invariant inv2 6:

inv2 6: S RES ∪ del chn = C RES ∪ res chn

- We have to introduce the following new invariant:

inv2 11: res chn ∩ del chn = ∅

48

Proofs (2) 43

(2) Then we cannot prove that the event rcv Order preserves invariant inv2 3

rcv Order
when
ord chn 6= ∅

then
C ORD := ord chn
ord chn := ∅

end

inv2 3: C ORD ⊆ C RES

- This amounts to proving:

ord chn ⊆ C RES

- We, simply add this statement as a new invariant:

inv2 12: ord chn ⊆ C RES

49

Taking Account of the Requirements(1) 44

S can make a reservation by sending a message to C. FUN-4

snd Reserve
refines

Reserve
any p where
p /∈ S USD
S ORD = ∅
res chn = ∅
cfm chn = ∅

then
S USD := S USD ∪ {p}
S RES := S RES ∪ {p}
res chn := {p}

end

50

Taking Account of the Requirements (2) 45

C always confirms a reservation by sending a message to S. FUN-5

rcv Reserve
when
res chn 6= ∅

then
C USD := C USD ∪ res chn
C RES := C RES ∪ res chn
cfm chn := res chn
res chn := ∅

end

51

Taking Account of the Requirements (3) 46

S can delete a reserved product by sending a message to C. FUN-6

snd Delete
refines

Delete
any p where
p ∈ S RES
S ORD = ∅
res chn = ∅
cfm chn = ∅

then
S RES := S RES \ {p}
del chn := del chn ∪ {p}

end

52

Taking Account of the Requirements (4) 47

S can order a reserved product by sending a message to C. FUN-7

snd Order
refines

Order
any p where
p ∈ S RES
S ORD = ∅
res chn = ∅
cfm chn = ∅

then
S ORD := {p}
ord chn := {p}

end

Order, deletion or reservation messages cannot be sent by S

beteween a reservation message and its confirmation. FUN-8

53

Taking Account of Requirements (5) 48

The ordered product must be the same for both partners FUN-9

- This is achieved thanks to the following theorem:

thm2 2: ord chn = ∅ ⇒ S ORD = C ORD

54

Systematic Methodology 49

- Requirements

- Refinement strategy

- Successive refined models:

- constants

- variables

- invariants

- events

- proofs

- requirements meeting

55

Conclusion 50

- I shortly presented a practice of formal modeling

- It is done with an approach called Event B

- Modeling in Event-B: System and Software Engineering

by J-R. Abrial. Cambridge University Press (2010)

- It is developed within some European Projects: Rodin and Deploy

- Loading the free software of the Rodin Platform: http://event-b.org

- An illustrating demo
56

