
Toward Precise PLRU Cache Analysis

Daniel Grund1 Jan Reineke2

1Saarland University, Saarbrücken, Germany

2University of California, Berkeley, USA

Workshop on Worst-Case Execution-Time Analysis 2010

computer science

saarland
university

http://rw4.cs.uni-sb.de/people/grund.shtml
http://rw4.cs.uni-sb.de/people/reineke.shtml
http://www.artist-embedded.org/artist/WCET-2010,1848.html
http://frweb.cs.uni-sb.de/index.php?lang=en


computer science

saarland
universityOutline

1 Introduction and Problem

2 Analysis Challenges
Non-Trivial Logical States
Logarithmic-Time Eviction
Arbitrary Survival

3 Proof of Concept

4 Summary

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 2 / 27



computer science

saarland
universityMotivation

Cache replacement policies
I Least-recently used
I Pseudo-LRU
I First-in First-out
I Pseudo Round-Robin
I “Random”

PLRU
I is flying in MPC603E
I is flying in MPC755
I will fly in MPC7448
I will drive in TRICORE 1798

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 3 / 27



computer science

saarland
universityPLRU Replacement

1

1 0

a b c d

e−→
M

0

1 1

a b e d

a−→
H

1

1 1

a b e d

f−→
M

0

1 0

a b e f

Tree bits point to next victim

After access, tree bits on path are set to point away

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 4 / 27



computer science

saarland
universityOutline

1 Introduction and Problem

2 Analysis Challenges
Non-Trivial Logical States
Logarithmic-Time Eviction
Arbitrary Survival

3 Proof of Concept

4 Summary

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 5 / 27



computer science

saarland
universityOutline

1 Introduction and Problem

2 Analysis Challenges
Non-Trivial Logical States
Logarithmic-Time Eviction
Arbitrary Survival

3 Proof of Concept

4 Summary

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 6 / 27



computer science

saarland
universityNon-Trivial Logical States

There are cache states that
I differ in physical arrangement of cached blocks
I exhibit the same replacement behavior

Inefficient to distinguish such states

⇒ Abstract from physical cache states to logical ones

Easy for LRU [b1, . . . , bk ]

LRUMRU

and for FIFO [b1, . . . , bk ]

first-inlast-in

How to do this for PLRU? How to abstract from the tree bits?

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 7 / 27



computer science

saarland
universityEquivalent States

0

0 1

c d a b

1

1 0

a b c d

1

1 1

a b d c

Only differ in interchanged subtrees

What matters? Whether tree bit points towards an element or not

encode this “points towards”

Access path consists of edge bits from leaf to root

Access path of of d is 10

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 8 / 27



computer science

saarland
universityEquivalent States

0

0
0 1

0
1

1 0

1

c d a b

1

1
1 0

1
0

0 1

0

a b c d

1

1
1 0

1
1

1 0

0

a b d c

Only differ in interchanged subtrees

What matters? Whether tree bit points towards an element or not

Edge bits encode this “points towards”

Access path consists of edge bits from leaf to root

Access path of of d is 10

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 8 / 27



computer science

saarland
universityEquivalent States

0

0
0 1

0
1

1 0

1

c d a b

1

1
1 0

1
0

0 1

0

a b c d

1

1
1 0

1
1

1 0

0

a b d c

Only differ in interchanged subtrees

What matters? Whether tree bit points towards an element or not

Edge bits encode this “points towards”

Access path consists of edge bits from leaf to root

Access path of of d is 10

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 8 / 27



computer science

saarland
universityCoarsest Complete Abstraction

0

0 1

c d a b

1

1 0

a b c d

1

1 1

a b d c

1. Same replacement behavior ⇐⇒ coinciding access paths

q1 ∼ q2 ⇐⇒ ∀b ∈ B : ap(q1, b) = ap(q2, b)

2. Imply order on access paths (miss-replacement distance)

⇒ Unique representation for all equivalent physical states

Logical state q̃ = [a, d , b, c]∼ represents all physical states from above

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 9 / 27



computer science

saarland
universityOutline

1 Introduction and Problem

2 Analysis Challenges
Non-Trivial Logical States
Logarithmic-Time Eviction
Arbitrary Survival

3 Proof of Concept

4 Summary

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 10 / 27



computer science

saarland
universityLogarithmic-Time Eviction

x−→
M

0

1 0

c a b x

b−→
H

0

1 1

c a b x

c−→
H

1

1 1

c a b x

y−→
M

0

1 0

c a b y

x inserted by miss

x evicted after log2(4) + 1 = 3 accesses

although size k = 4

⇒ Must-analysis easy up to log2(k) + 1 blocks

. . . But hard beyond that

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 11 / 27



computer science

saarland
universityLeading Zeros

a b

e2

e1

lz
(q̃
,b
)

To evict b, its access path must be 0 . . . 0
Edge-bits need to be flipped bottom-up, i.e. e2 before e1

ap(q̃, b) : 111→ 011→ 001→ 000

⇒ Leading zeros in access paths are interesting

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 12 / 27



computer science

saarland
universitySubtree Distance

a b

e1

d
(q̃
,a
,b
)

lz
(q̃
,b
)

a b

e2

e1

d
(q̃
,a
,b
)

lz
(q̃
,b
)

a b

e1

d
(q̃
,a
,b
)

lz
(q̃
,b
)

How does ap(q̃, b) change when accessing a?

Depends on relative position of a to b

⇒ Subtree distance between blocks are interesting

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 13 / 27



computer science

saarland
universitySubtree Distance

a b

e1

d
(q̃
,a
,b
)

lz
(q̃
,b
)

a b

e2

e1

d
(q̃
,a
,b
)

lz
(q̃
,b
)

a b

e1

d
(q̃
,a
,b
)

lz
(q̃
,b
)

How does ap(q̃, b) change when accessing a?

Depends on relative position of a to b

⇒ Subtree distance between blocks are interesting

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 13 / 27



computer science

saarland
universityExcluding Logarithmic-Time Eviction

x−→
M

0

1 0

c a b x

b−→
H

0

1 1

c a b x

c−→
H

1

1 1

c a b x

y−→
M

0

1 0

c a b y

For log-time eviction, need to access blocks in increasing subtree
distance

Knowledge about subtree distances can exclude log-time eviction

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 14 / 27



computer science

saarland
universityAbstract Domain

Potentially leading zeros

PLZk := B → {0, . . . , log2(k),>}

Approximated Distance

ADk := B × B → {{0} , [1, log2(k)), {log2(k)} ,>}

The complete domain

Plru∆
k := ADk ↪→ PLZk

Tradeoff possible by plugging in different ADk

Formalization and details in the paper

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 15 / 27



computer science

saarland
universityOutline

1 Introduction and Problem

2 Analysis Challenges
Non-Trivial Logical States
Logarithmic-Time Eviction
Arbitrary Survival

3 Proof of Concept

4 Summary

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 16 / 27



computer science

saarland
universityArbitrary Survival

There are access sequences that
I access arbitrarily many distinct blocks
I do not access x
I but x is still cached

⇒ Hard to prove eviction of blocks

No viable May-Analysis, yet

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 17 / 27



computer science

saarland
universityOutline

1 Introduction and Problem

2 Analysis Challenges
Non-Trivial Logical States
Logarithmic-Time Eviction
Arbitrary Survival

3 Proof of Concept

4 Summary

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 18 / 27



computer science

saarland
universityBrief History of Replacement Analysis

Before ’97 LRU analyses

LCTRTS’97 Precise and efficient must- and may-analysis for LRU [1]

LCTES’08 Generic analyses for FIFO and PLRU [2]

SAS’09 Cache analysis framework and FIFO analysis [3]

WCET’10 Toward precise analysis for PLRU

ECRTS’10 Precise and efficient must- and may-analysis for FIFO [4]
→ 4pm session on Thursday

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 19 / 27



computer science

saarland
universityEvaluation Setup

Analyses:
RC Analysis based on relative competitiveness [2]
∆ Analysis based on subtree distances

Collecting semantics:
CS Limit for any static analysis

Spectrum of synthetic benchmarks:
I Random access sequences
I Loops

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 20 / 27



computer science

saarland
universityEvaluation Results

Associativity k = 8

n 2 3 4 5 6 7 8

Lo
op

PlruRCH
k 93.8 93.8 93.8 0.0 0.0 0.0 0.0

Plru∆
k 93.8 93.8 93.8 92.5 90.6 0.0 0.0

PlruCS
k 93.8 93.8 93.8 92.5 91.7 90.2 86.7

R
an

d PlruRCH
k 98.0 97.0 96.0 77.7 64.4 55.7 48.1

Plru∆
k 98.0 97.0 95.8 93.0 84.3 63.5 52.0

PlruCS
k 98.0 97.0 96.0 93.9 91.0 84.0 68.4

Hit rates [%] guaranteed by the analyses and the collecting semantics

n is number of distinct elements that get accessed

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 21 / 27



computer science

saarland
universityOutline

1 Introduction and Problem

2 Analysis Challenges
Non-Trivial Logical States
Logarithmic-Time Eviction
Arbitrary Survival

3 Proof of Concept

4 Summary

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 22 / 27



computer science

saarland
universitySummary

Logical PLRU-states
I abstract from tree-bits
I coarsest complete abstraction

Must-analysis / log-time eviction
I leading zeros
I subtree distance

May-analysis / arbitrary survival
I unsolved

a b

e1

d
(q̃
,a
,b
)

lz
(q̃
,b
)

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 23 / 27



computer science

saarland
universityFurther Reading

C. Ferdinand
Cache Behaviour Prediction for Real-Time Systems
PhD Thesis, Saarland University, 1997

J. Reineke and D. Grund
Relative competitive analysis of cache replacement policies
LCTES 2008

D. Grund and J. Reineke
Abstract Interpretation of FIFO Replacement
SAS 2009

D. Grund and J. Reineke
Precise and Efficient FIFO-Replacement Analysis Based on
Static Phase Detection
ECRTS 2010

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 24 / 27



computer science

saarland
universityInstruction or Data Cache?

Both!

Cache analysis = value analysis⊕ replacement analysis

Value analysis approximates accessed addresses

Replacement analysis approximates cache contents

Imprecise value analysis results?

Replacement analysis can always join over all possibilities

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 25 / 27



computer science

saarland
universityDo you Need a Functional Language?

No!

Let f ∈ PLZk := B → {0, . . . , log2(k),>}
Let f (a) = 0, f (b) = 1, and f (x) = > otherwise

No need to explicitly represent the default value > for all x ∈ B
⇒ Can represent the function f as {(a, 0), (b, 1)}

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 26 / 27



computer science

saarland
universityComparing Plru∆

k and PlruRCH
k

Plru∆
k is not always better than PlruRCH

k

a b b c d a
PlruRCH

k > > H > > H
Plru∆

k > > H > > >

If d(q̃, a, b) = 1, Plru∆
k cannot remember this (for k ≥ 8)

In that case, it only knows d(q̃, a, b) ∈ [1, 2]

First access to b: d(q̃1, a, b) = 1 possible

Second access to b: d(q̃1, a, b) = 2 possible

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 27 / 27


	Introduction and Problem
	Analysis Challenges
	Non-Trivial Logical States
	Logarithmic-Time Eviction
	Arbitrary Survival

	Proof of Concept
	Summary
	Bibliography
	Questions

