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Cache replacement policies
I Least-recently used
I Pseudo-LRU
I First-in First-out
I Pseudo Round-Robin
I “Random”

PLRU
I is flying in MPC603E
I is flying in MPC755
I will fly in MPC7448
I will drive in TRICORE 1798
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Tree bits point to next victim

After access, tree bits on path are set to point away
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There are cache states that
I differ in physical arrangement of cached blocks
I exhibit the same replacement behavior

Inefficient to distinguish such states

⇒ Abstract from physical cache states to logical ones

Easy for LRU [b1, . . . , bk ]

LRUMRU

and for FIFO [b1, . . . , bk ]

first-inlast-in

How to do this for PLRU? How to abstract from the tree bits?
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Only differ in interchanged subtrees

What matters? Whether tree bit points towards an element or not

encode this “points towards”

Access path consists of edge bits from leaf to root

Access path of of d is 10
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1. Same replacement behavior ⇐⇒ coinciding access paths

q1 ∼ q2 ⇐⇒ ∀b ∈ B : ap(q1, b) = ap(q2, b)

2. Imply order on access paths (miss-replacement distance)

⇒ Unique representation for all equivalent physical states

Logical state q̃ = [a, d , b, c]∼ represents all physical states from above
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x inserted by miss

x evicted after log2(4) + 1 = 3 accesses

although size k = 4

⇒ Must-analysis easy up to log2(k) + 1 blocks

. . . But hard beyond that
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To evict b, its access path must be 0 . . . 0
Edge-bits need to be flipped bottom-up, i.e. e2 before e1

ap(q̃, b) : 111→ 011→ 001→ 000

⇒ Leading zeros in access paths are interesting
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How does ap(q̃, b) change when accessing a?

Depends on relative position of a to b

⇒ Subtree distance between blocks are interesting
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For log-time eviction, need to access blocks in increasing subtree
distance

Knowledge about subtree distances can exclude log-time eviction
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Potentially leading zeros

PLZk := B → {0, . . . , log2(k),>}

Approximated Distance

ADk := B × B → {{0} , [1, log2(k)), {log2(k)} ,>}

The complete domain

Plru∆
k := ADk ↪→ PLZk

Tradeoff possible by plugging in different ADk

Formalization and details in the paper
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There are access sequences that
I access arbitrarily many distinct blocks
I do not access x
I but x is still cached

⇒ Hard to prove eviction of blocks

No viable May-Analysis, yet
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Before ’97 LRU analyses

LCTRTS’97 Precise and efficient must- and may-analysis for LRU [1]

LCTES’08 Generic analyses for FIFO and PLRU [2]

SAS’09 Cache analysis framework and FIFO analysis [3]

WCET’10 Toward precise analysis for PLRU

ECRTS’10 Precise and efficient must- and may-analysis for FIFO [4]
→ 4pm session on Thursday
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Analyses:
RC Analysis based on relative competitiveness [2]
∆ Analysis based on subtree distances

Collecting semantics:
CS Limit for any static analysis

Spectrum of synthetic benchmarks:
I Random access sequences
I Loops
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Associativity k = 8

n 2 3 4 5 6 7 8

Lo
op

PlruRCH
k 93.8 93.8 93.8 0.0 0.0 0.0 0.0

Plru∆
k 93.8 93.8 93.8 92.5 90.6 0.0 0.0

PlruCS
k 93.8 93.8 93.8 92.5 91.7 90.2 86.7

R
an

d PlruRCH
k 98.0 97.0 96.0 77.7 64.4 55.7 48.1

Plru∆
k 98.0 97.0 95.8 93.0 84.3 63.5 52.0

PlruCS
k 98.0 97.0 96.0 93.9 91.0 84.0 68.4

Hit rates [%] guaranteed by the analyses and the collecting semantics

n is number of distinct elements that get accessed
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Logical PLRU-states
I abstract from tree-bits
I coarsest complete abstraction

Must-analysis / log-time eviction
I leading zeros
I subtree distance

May-analysis / arbitrary survival
I unsolved
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Both!

Cache analysis = value analysis⊕ replacement analysis

Value analysis approximates accessed addresses

Replacement analysis approximates cache contents

Imprecise value analysis results?

Replacement analysis can always join over all possibilities
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No!

Let f ∈ PLZk := B → {0, . . . , log2(k),>}
Let f (a) = 0, f (b) = 1, and f (x) = > otherwise

No need to explicitly represent the default value > for all x ∈ B
⇒ Can represent the function f as {(a, 0), (b, 1)}
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k and PlruRCH
k

Plru∆
k is not always better than PlruRCH

k

a b b c d a
PlruRCH

k > > H > > H
Plru∆

k > > H > > >

If d(q̃, a, b) = 1, Plru∆
k cannot remember this (for k ≥ 8)

In that case, it only knows d(q̃, a, b) ∈ [1, 2]

First access to b: d(q̃1, a, b) = 1 possible

Second access to b: d(q̃1, a, b) = 2 possible

Daniel Grund and Jan Reineke Toward Precise PLRU Cache Analysis WCET 2010 27 / 27


	Introduction and Problem
	Analysis Challenges
	Non-Trivial Logical States
	Logarithmic-Time Eviction
	Arbitrary Survival

	Proof of Concept
	Summary
	Bibliography
	Questions

