
Andreas Ermedahl MdH, 8 Nov 2006

Worst-Case Execution Time Analysis 1

The Mälardalen
WCET Benchmarks:
past, present and future

Jan Gustafsson, Adam Betts,
Andreas Ermedahl, and Björn Lisper
School of Innovation, Design and Engineering

Mälardalen University, Västerås, Sweden

Presentation outline

Presentation of benchmarks
Motivation and characteristicsMotivation and characteristics
Website organisation
Additional information provided

Identified shortcomings & new ideas
Addition of new types of benchmarks

Suggested way forwardSuggested way forward
Open wiki, with easy uploads of benchmarks
Committee handling management of benchmarks

2

Andreas Ermedahl MdH, 8 Nov 2006

Worst-Case Execution Time Analysis 2

The MDH WCET benchmarks

A collection of C programs
Collected in 2005 from researchers within theCollected in 2005 from researchers within the
WCET field

Targeting WCET analysis
To support testing and evaluation of WCET
analysis tools and methods

Easy to access, download, compile, and run
Freely available – no licenses needed

Available on a web page:
www.mrtc.mdh.se/projects/wcet/benchmarks.html

3

Benchmarks characteristics
One .c file per benchmark

No .h files, no library calls
O d di t d t t f ti (ll i (id))One dedicated start function (usually main(void))

Calling other functions
Inputs as globals or as arguments to start function

Easy to run on different HW platforms
Limited use of I/O, no direct HW accesses,
no inline assembler, …

Includes a large variety of program constructsIncludes a large variety of program constructs
Unstructured code, array and matrix calculations, nested
loops, input-dependent loops, inner loops depending on
outer loops, switch cases, nested if-statements, floating
point calculations, bit manipulations, recursive code,
automatically generated code

4

Andreas Ermedahl MdH, 8 Nov 2006

Worst-Case Execution Time Analysis 3

Input value annotations
All benchmark contain their own input, and can run “as is”

Single path programs WCET analysis easy, just run once
Not realistic Most embedded programs are input-dependant

Examples of real-world inputs:
Environmental inputs using ports or memory mapped I/O
Parameters to main() or to function that invokes the task
Static variables keeping state of task between invocations
Task communication, e.g. global memory or message queues

Some benchmark have input value annotations

Intervals hold possible values of inputs at certain program points
Stored as .ann files at web-site
Only few programs, most benchmarks are single path

5

/* At entry to the call to complex: a = [0..18] b = [0..18] */
FUNC_ENTRY complex ASSIGN a INT 0 18 || b INT 0 18;

Provided graphs

Call-graph
Sh h diff t

Example:
Call-graph for

Shows how different
functions may call
each other
Provided as a
.pdf file

compress

6

Andreas Ermedahl MdH, 8 Nov 2006

Worst-Case Execution Time Analysis 4

Provided graphs
Scope-hierarchy graph

Context-sensitive graph
S f i d l (h i i i)Scopes are functions and loops (each is given an unique name)
Each call-site creates scope(s) of the called function(s)
Allow for highly-context sensitive flow-information

Example: snippet of
scope-hierarchy

graph for compress

7

Upper loop bounds
No. of iterations for main_initbuffer_L1 = 50
No. of iterations for main_compress_L1 = 8
No. of iterations for main_compress_L2 = 49

Example:
compress
.facit file

Bounds valid for all possible inputs
Derived by exhaustive runs of all possible input value
combinations

Two levels of context-sensitivity

Max no. of iterations per invocation for main_compress_L2_L1 is 1
Max no. of iterations per invocation for main_compress_L2_cl_block_cl_hash_L1 is 16
Max no. of iterations per invocation for main_compress_L2_cl_block_cl_hash_L2 is 1

Global bounds - valid for each invocation of program
Local bounds - valid for each entry of loop in certain
calling context (names refer to scopes in scope-hierarchy)

Iteration bounds refer to loop headers
Some tools prefer bounds on loop bodies

8

Andreas Ermedahl MdH, 8 Nov 2006

Worst-Case Execution Time Analysis 5

Benchmark usage
The benchmarks have been extensively used
during their 5 years of existenceduring their 5 years of existence

Used to evaluate WCET methods and tools in papers
A subset was used during the WCET Challenge 2006
Also used by other RT researchers

We have received a lot of valuable feedback on the
benchmarks
Based on these we have:

Identified shortcoming
Come up with ideas for future changes

9

Identified shortcomings
& new ideas

Programs are targeting mostly flow analysis
and calculationand calculation

For example, nsichneu consists of 250 if-statements
which makes many path-based calculations freak out
Programs targeting analysis of hardware features, such as
branch prediction, caches, out-of-order execution, needed

Mostly small programs
Most programs � 900 LOC
Hard to test how algorithms scale with larger programs
Hard to evaluate cache analyses since whole program
fits in cache
Larger programs needed

10

Andreas Ermedahl MdH, 8 Nov 2006

Worst-Case Execution Time Analysis 6

Identified shortcomings
& new ideas

Not really real-time applications
Wanted: industrial real time applications with aWanted: industrial real-time applications with a
realistic code size, and a mix of code constructs
typical for such applications
Good example: DEBIE-1 benchmarks used in
WCET Tool Challenge 2008
Hard to get such applications from the industry
Even harder to get permission to publish theEven harder to get permission to publish the
code on an open web site
Use our and other industrial contacts to get more
realistic code examples

11

Identified shortcomings
& new ideas

Some program constructs are missing or
not tested in extensively enoughnot tested in extensively enough

Highly context-sensitive execution behaviour
Low-level code using bitoperations and shifts
Use of dynamic memory
Code with mode-specific behavior
Programs using function pointers
Highly recursive code
Unstructured code
Find or write new benchmarks which include
the missing features

12

Andreas Ermedahl MdH, 8 Nov 2006

Worst-Case Execution Time Analysis 7

Identified shortcomings & new ideas

Few multi-path programs
Most programs have only a single input-value combination
Problem for evaluating input-sensitive WCET analyses

No support for measurement-based WCET analysis
Program inputs are fixed in the file other inputs cannot
be supplied as parameters without support for value
annotations or by modifying the program
Test vectors are missing different tools and techniques
may generate different inputs, making comparisons hard
The worst-case test vector is not given

Provide more multi-path programs
Provide bounds on input variables as annotations
Provide test harness calling benchmark with a
predefined set of test vectors

13

Identified shortcomings
& new ideas

Only C programs
RT systems also coded in assembler, C++, Ada, Java, ..RT systems also coded in assembler, C , Ada, Java, ..
Code often generated from modelling tools, like UML,
SCADE, MatLab/Simulink, …

Only single-tasking code
Most RT programs consists of several parallel tasks

No multi-core applications
More and more RT systems make use of multi-coreMore and more RT systems make use of multi core
WCET research are moving towards multi-core

Investigate the possibility to get hold of
and include such benchmarks

14

Andreas Ermedahl MdH, 8 Nov 2006

Worst-Case Execution Time Analysis 8

Identified shortcomings
& new ideas

Few precompiled binaries
WCET comparisons hard since timing will depend theWCET comparisons hard since timing will depend the
compiler and linker used

No HW details provided with binaries
WCET comparisons hard since timing depend on HW
setup used (memory types, caches, …)

WCET for given binary not provided
The input value combination that gave the WCET alsoThe input value combination that gave the WCET also
interesting

Investigate the possibility to include more
binaries + associated information

15

Suggested way forward

1. Transform benchmark web site to an open wiki
Allow WCET community to easily upload andAllow WCET community to easily upload and
update benchmarks and the associated meta-data

2. Form committee with representatives from
WCET researchers, tool vendors and industry

Should be easy to become a member!
Handle wiki organization, benchmark categories,
accepting new benchmarks quality checks etcaccepting new benchmarks, quality checks, etc.
Industrial representatives could help in getting
permission to publish real applications as
benchmarks

16

Andreas Ermedahl MdH, 8 Nov 2006

Worst-Case Execution Time Analysis 9

Suggested way forward

Our research group offer to:
Host wiki at Mälardalen University
Create initial layout of the wiki
Start organizing the committee

Maybe combine work with
WCET challenge 2010?

17

Thank you for
your attention!your attention!
Questions or
comment?

18

comment?

