
Integrating Symbolic Pipeline
Analysis with Abstract Caches

Stephan Wilhelm, Christoph Cullmann

AbsInt Angewandte Informatik GmbH

Static WCET Analysis

• Computes: Safe upper bounds on WCET of a task
– safety critical applications, hard WCET

• Requires: Full coverage of
– feasible program paths
– inputs
– hardware states (pipeline, caches)

• Method: AI + ILP [aiT WCET analyzer]

– abstract interpretation
– integer linear programming
– several interacting analyses

Micro-architectural Analysis

• Pipeline analysis
– abstract model

• pipelining, speculation, branch prediction

– computes an over-approximates reaching states
– counts cycles on the basic block level

• Cache analysis
– computes an over-approximation of possible cache contents
– predicts sure hit or miss, or don’t know

• Analysis inputs
– from control flow and value analysis
– branch and call targets, possible register contents
– all inputs may be imprecise

Imprecise Inputs

• Intervals and sets instead of precise values for
– possible register contents
– call and branch targets

• Effect on hardware-level analysis
– must consider more possibilities

size of the
reachable
state space

precision
of inputs

State explosion.
For complex hardware, the

analysis may become infeasible.
t

t

Efficient State Space Coverage

Cache analysis

• Abstract interpretation

• Efficient join operator
– safe over-approximation

– loses precision

• Efficient abstract
representation

Pipeline analysis

• Enumerates all states
– Timing anomalies

– Domino effects

• Symbolic representation
– Implicit, Boolean functions

– Binary decision diagrams

– Exploits redundancies

• Efficient implicit
representation

Pipeline-Cache-Interaction

• Exchange information only between pipeline and cache states which cover
the same execution history.
– Requires a combination of pipeline and cache states.

• Explicit-state pipeline analysis uses tuples (Pk,Ck), (Pk’,Ck’) ...
• What to do for symbolic pipeline analysis?

{P1,P2,…,Pn} {C1,C2,…,Cm}

{P1’,P2’,…,Pn’} {C1’,C2’,…,Cm’}

classification:

{ A1:hit, A3:miss, …}

memory accesses:

{ A1:[…], A3:[…], …}

Pipeline Analysis Cache Analysis

update
update

BBn 

BBn 

Proposed Solution

• Combine many pipeline states with one cache state
– semi-symbolic domain
– 1 domain element = set of tuples:

• Maintain property
– all pipeline states in the same tuple access the same

cached memory interval

• Requirement
– memory is addressed via the first variables in the BDD

representation of pipeline states

)ˆ,(CBBn 

Memory Access Interval
X0

X1 X1

X2

X3

X4

X5

X2

1 0

X0 X1 X2 X3 X4 X5

1 0 0 0 0 0

0 1 - - - -

0 0 1 - - -

X0 X1 X2 X3 X4 X5 ub

1 0 0 0 0 0 32

0 1 1 1 1 1 31

0 0 1 1 1 1 15

X0 X1 X2 X3 X4 X5 lb

1 0 0 0 0 0 32

0 1 0 0 0 0 16

0 0 1 0 0 0 8

BDD of
pipeline
states

Update + Balancing

Partition

Join

Update

n

n+1

cycle
count

Pipeline states
stored implicitly

in BDD

Abstract cache
state

Element of the
semi-symbolic

domainUpdate cache with common
memory access interval from

associated BDD.

Restrict allowed pipeline
transitions according to cache

analysis classification.

Experiments

• Goal: asses the efficiency of the proposed domain
– efficient if combining many pipeline states with single cache

state

• Instrumented the (explicit-state) MPC755 pipeline model
to report for each access into cached memory:
– accessed memory address or interval
– type of access: instruction or data
– cycle count since start of the current basic block

• 6 tasks of a typical industrial software project
– fully unrolled & annotated (avoid serious state explosion)
– still reaches up to a few thousand states per cycle

Results

Explicit-state experiment

• cycle count since start of
the current basic block

• # states with same cycle
count and memory access

• # different memory
accesses with same cycle
count

Semi-symbolic domain

• state space exploration
layer

• # pstates per BDD
– Average : 27 / 20

– Maximum : 8544 / 8115

• # tuples per domain
element
– Average : 2 / 1

– Maximum : 42 / 6

Conclusion

• Covering the state space of complex hardware can
become a problem in static WCET analysis.

• Solutions for caches and pipelines already exist.
– abstract interpretation of caches, symbolic pipeline

analysis

• Proposed an approach for integration.
– Efficient if combining many pipeline states with a single

abstract cache state.
– Experimental data indicates that favorable combinations

can be expected.
– May lose precision due to additional joins of cache states.

Q & A

