
On the Use of Context Information for Precise
Measurement-Based Execution Time Estimation

Stefan Stattelmann Florian Martin

FZI Forschungszentrum Informatik AbsInt Angewandte Informatik GmbH

Karlsruhe Saarbrücken

Introduction

◮ Nontrivial interaction of performance enhancing features
◮ Caches
◮ Speculative Execution

◮ Execution time depends on execution history

◮ Static WCET analysis
◮ Based on safe/pessimistic abstract models
◮ Incorporating context information increases precision

◮ Dynamic WCET analysis
◮ How to get accurate traces on the real hardware?
◮ How to represent the execution history of measurements?

2/9

Trace Data Generation

◮ Off-Chip Trace Memory (e.g. Nexus)
◮ Large off-chip memory allows very long traces
◮ Executed instructions can be missing in trace
◮ Timestamps created upon transport to off-chip buffer

◮ On-Chip Trace Memory with Programmable Event Logic
◮ Vendors: ARM (CoreSight), Infineon (Multi-Core Debug

Solution)
◮ Cycle-accurate traces with complex trigger conditions
◮ Programmable triggers with access to processor state
◮ Limited trace memory ⇒ no complete program traces

3/9

Trace Data Generation

◮ Off-Chip Trace Memory (e.g. Nexus)
◮ Large off-chip memory allows very long traces
◮ Executed instructions can be missing in trace
◮ Timestamps created upon transport to off-chip buffer

◮ On-Chip Trace Memory with Programmable Event Logic
◮ Vendors: ARM (CoreSight), Infineon (Multi-Core Debug

Solution)
◮ Cycle-accurate traces with complex trigger conditions
◮ Programmable triggers with access to processor state
◮ Limited trace memory ⇒ no complete program traces
◮ Idea: Use state machines to encode execution history of traces

3/9

Context Representation

◮ Control flow extracted from binary executable
◮ Transform loops into recursive routines
◮ Extend interprocedural control flow graph by “duplicating”

nodes: virtual inlining, virtual unrolling (VIVU)
◮ Execution history for different instances of a basic block can

be described by a call string

4/9

Context Representation

◮ Control flow extracted from binary executable
◮ Transform loops into recursive routines
◮ Extend interprocedural control flow graph by “duplicating”

nodes: virtual inlining, virtual unrolling (VIVU)
◮ Execution history for different instances of a basic block can

be described by a call string

4/9

Proposed Tracing Method

◮ Program Partitioning
◮ Divide CFG into traceable segments

◮ Cache Behavior Analysis
◮ Estimate cache hits and misses

◮ Context Translation
◮ Trigger conditions per segment
◮ Merge contexts with similar cache

behavior ⇒ reduce #measurements

◮ Program Execution
◮ Measure often to cover local

worst-case
◮ Preserve context information

◮ Timing Extraction
◮ Process traces
◮ Annotate execution times to CFG

5/9

Example

6/9

Example

6/9

Example

6/9

Example

6/9

Experiments

◮ Integration into the AbsInt aiT WCET analyzer

◮ Target processor: Infineon TriCore TC1797

◮ Applied to several embedded applications successfully
◮ DEBIE-1 benchmark
◮ Examples from Mälardalen WCET benchmark suite
◮ MatLab and SCADE generated code

◮ Cache behavior analysis reduces measurements without
affecting WCET estimate

◮ Contexts can have significant effect on WCET estimates

7/9

Results

8/9

Conclusion

◮ Ignoring the execution history can add severe pessimism to
measurement-based WCET estimates

◮ First iteration of a loop is likely to be slowest one
◮ Parameter-dependent execution time of routines

◮ Context-preserving traces are possible with off-the-shelf
hardware

◮ Future work
◮ Parallelize trace generation and timing extraction
◮ Reconstruct execution context from arbitrary traces

9/9

Thank you for your attention!

Stefan Stattelmann
FZI Research Center for Information Technology, Karlsruhe, Germany

Email: stefan.stattelmann@fzi.de

Florian Martin
AbsInt Angewandte Informatik GmbH, Saarbrücken, Germany

Email: florian.martin@absint.com

mailto:stefan.stattelmann@fzi.de
mailto:florian.martin@absint.com

Backup Slides

Trace Automata

Call String: (0x4004, addnb)

Trace Automaton:

TQL Program: // global configuration
config.memorysize = 0x3ffff;
config.trigger = 0x0;
config.absmode = 0x1;

// define trigger conditions for the TriCore PC
pob_tc.ptu_trig [0]. bound = 0xd4004;
pob_tc.ptu_trig [0]. range = 0x2;
pob_tc.ptu_trig [1]. bound = 0xd4008;
pob_tc.ptu_trig [1]. range = 0x2;
pob_tc.tc_act [0] = pob_tc.ptu_trig [0];
pob_tc.tc_act [1] = pob_tc.ptu_trig [1];

// automata states and transitions
mcx.cnt_trig [0]. limit = 0x0;
mcx.cnt_trig [0]. inc = mcx.tc_act [0];
mcx.cnt_trig [0]. clear = mcx.tc_act [1];
mcx.tc_trig [0] = mcx.cnt_trig [0];

// define when to store trace data
pob_tc.ptu_enable [0] = pob_tc.tc_trig [0];
pob_tc.ptu_sync [0] = pob_tc.tc_trig [0];
mcx.trace_done [0] = rise mcx.lmb_act [0];
mcx.tick_enable [0] = true;

Cache Behavior Metrics

Goal: detect contexts with similar cache behavior

dist(v , w) :=
√

(ahv − ahw)2 + (amv − amw)2 + (ncv + ncw)2

δ(s, s ′) := {dist(v , w) | v ∈ s, w ∈ s
′, address(v) = address(w)}

Average Distance Metric: mavg (s, s ′) :=
∑

d∈δ(s,s′)
d

|δ(s,s′)|

Maximum Distance Metric: mmax(s, s
′) := max{d | d ∈ δ(s, s ′)}

Cache Behavior Analysis & Context Merging

Program segments s,s ′ are similar iff

◮ identical start and end block

◮ call strings share common suffix

◮ m(s, s ′) < C

⇒ similar segments can use same trace automaton

⇒ reduces number of measurements

