
 
 

Source: Bobak Ha’Eri (Wikipedia) 

 

PPrroocceeeeddiinnggss  
 

22001100  WWoorrkksshhoopp  oonn  EEmmbbeeddddeedd  
SSyysstteemmss  EEdduuccaatt iioonn  

 
  

WWEESSEE  22001100  
 
 

 
Editors   

Peter Marwedel 
Jeff Jackson 

Kenneth G. Ricks 
 
 
 

Scottsdale, AZ, USA 
 

October 28 th, 2010 
 
  
  
  



 
 

Source: Bobak Ha’Eri (Wikipedia) 

  
  
OOrrggaanniizzeerr ’’ss  MMeessssaaggee  
 

 

Embedded systems (ES) is a multidisciplinary field, requiring skills from control and signal processing 
theory, electronics, computer engineering and science, telecommunication, etc., as well as application 
domain knowledge. As ES designs grow more complex and the time to market diminishes, quality ES 
education becomes more and more important. This sixth workshop on the subject aims to bring 
researchers, educators, and industrial representatives together to assess needs and share design, 
research, and experiences in embedded systems education. 

The program of this workshop promises to be a very interesting one incorporating many topics from 
both academia and industry tied together with the underlying theme of ES education.  The program 
includes both presentations and discussion sessions to help stimulate and disseminate ideas among 
the participants.   

Due to the high importance of ES education and the good quality of the selected papers, we are 
making these proceedings accessible via the ACM digital library. This availability should help the 
contributions to become visible electronically.  

The papers have been selected by the program committee comprising well-known specialists from all 
over the world. We would like to thank the program committee members for their time and efforts in 
reviewing the submitted papers. Without their efforts the workshop would not have been possible. We 
would like to thank the authors for their manuscript submissions and their timely response to 
implement improvements suggested by the reviewers. We would like to also thank the ESWEEK 
organizers and their support for the WESE2010 workshop. Finally, we would like to thank the 
European ArtistDesign network of excellence for the support. 

There exist many opportunities for international cooperation in the community of embedded systems 
researchers and educators and we look forward to those efforts. 
 
 
Dortmund (Germany) and Tuscaloosa, Alabama (US), Oct. 2010 
 
Peter Marwedel 

Jeff Jackson 

Kenneth G. Ricks  

 

 

 

 

 

ii 

 



 
 

Source: Bobak Ha’Eri (Wikipedia) 

  
  
OOrrggaanniizzeerrss  
  
  
JJeeffff   JJaacckkssoonn ,,  TThhee  UUnniivveerrssiittyy  ooff  AAllaabbaammaa,,  UUSS  

PPeetteerr  MMaarrwweeddeell ,,  TTUU  DDoorrttmmuunndd,,  GGeerrmmaannyy  

KKeennnneetthh  RRiicckkss ,,  TThhee  UUnniivveerrssiittyy  ooff  AAllaabbaammaa,,  UUSS  

  
  
  
IInntteerrnnaatt iioonnaall   PPrrooggrraamm  CCoommmmii tt tteeee  
  
  
AAlleexx  DDeeaann ,,  NNoorrtthh  CCaarroolliinnaa  SSttaattee  UUnniivveerrssiittyy,,  UUSSAA  

MMaarrtt iinn  GGrr iimmhheeddeenn ,,  RRooyyaall  IInnssttiittuuttee  ooff  TTeecchhnnoollooggyy,,  SSwweeddeenn  

YYaannnn--HHaanngg  LLeeee,,  AArriizzoonnaa  SSttaattee  UUnniivveerrssiittyy,,  UUSSAA  

SSiinn  MMiinngg  LLoooo ,,  BBooiissee  SSttaattee  UUnniivveerrssiittyy,,  UUSSAA  

JJooggeesshh  KK..  MMuuppppaallaa,,  TThhee  HHoonngg  KKoonngg  UUnniivveerrssiittyy  ooff  SScciieennccee  aanndd  TTeecchhnnoollooggyy,,    

HHoonngg  KKoonngg  

FFaallkk  SSaalleewwsskkii ,,  LLaaccrrooiixx  EElleeccttrroonniiccss,,  WWiilllliicchh,,  GGeerrmmaannyy  

SStteewwaarrtt   TTaannsslleeyy,,  MMiiccrroossoofftt  CCoorrppoorraattiioonn,,  UUSSAA  

MMaarrtt iinn  TTöörrnnggrreenn ,,  RRooyyaall  IInnssttiittuuttee  ooff  TTeecchhnnoollooggyy,,  SSwweeddeenn  

MMaarr iiaaggiioovvaannnnaa  SSaammii ,,  AALLaaRRII,,  LLuuggaannoo,,  SSwwiittzzeerrllaanndd  

CChhii --SShheenngg  ((DDaanniieell ))  SShhiihh ,,  NNaattiioonnaall  TTaaiiwwaann  UUnniivveerrssiittyy,,  TTaaiiwwaann  

SShhiiaaoo--LLii   TTssaaoo ,,  NNaattiioonnaall  CChhiiaaoo  TTuunngg  UUnniivveerrssiittyy,,  TTaaiiwwaann  

FFrraannkk  VVaahhiidd ,,  UUnniivveerrssiittyy  ooff  CCaalliiffoorrnniiaa  RRiivveerrssiiddee,,  UUSSAA  

MMaarr ii llyynn  WWooll ff ,,  GGeeoorrggiiaa  TTeecchh,,  UUSSAA  

  

  

iiiiii  



 
 

Source: Bobak Ha’Eri (Wikipedia) 

PPrrooggrraamm   OOccttoobbeerr  2288tthh,,  22001100  

0088::3300  hhrrss    KKeennnneetthh  RRiicckkss,,  BBrruunnoo  BBoouuyyssssoouunnoouussee::  OOppeenniinngg  

0088::4400  hhrrss  EEddwwaarrdd  AA..  LLeeee,,  SSaannjjiitt  AA..  SSeesshhiiaa  ((UUCC  BBeerrkkeelleeyy,,  UUSS))  
MMoorrnniinngg  KKeeyynnoottee::  AAnn  IInnttrroodduuccttoorryy  TTeexxttbbooookk  oonn  CCyybbeerr--PPhhyyssiiccaall   SSyysstteemmss 
  

0099::3300  hhrrss  BBrreeaakk  

1100::0000  hhrrss    SSiinn  MMiinngg  LLoooo,,  JJoosshh  KKiieeppeerrtt,,  MMiicchhaaeell  PPooookk,,  JJiimm  HHaallll,,  DDeerreekk  KKlleeiinn,,  VViikkrraamm  PPaatteell,,  CCaarrll  LLeeee,,  
AArrlleenn  PPllaannttiinngg  ((BBooiissee  SSttaattee  UUnniivveerrssiittyy,,  BBooiissee,,  UUSSAA))::  FFrroomm  SSccrraattcchh  ttoo  SSyysstteemm::  AA  HHaannddss--oonn  
IInnttrroodduuccttoorryy  EEmmbbeeddddeedd  SSyysstteemmss  CCoouurrssee  
  

1100::3300  hhrrss  AAlleexxaannddeerr  GG..  DDeeaann  ((NNCCSSUU,,  RRaalleeiigghh,,  UUSSAA))::  TTeeaacchhiinngg  OOpptt iimmiizzaatt iioonn  ooff   TTiimmee  aanndd  EEnneerrggyy  iinn  
EEmmbbeeddddeedd  SSyysstteemmss   

1111::0000  hhrrss  BBrruunnoo  BBoouuyyssssoouunnoouussee  ((IIMMAAGG,,  FFrraannccee))::  CCoommmmoonn  TTeecchhnniiccaall   BBaasseell iinnee  --  AA  ccoommmmoonn  
rreeffeerreennccee  ooff   ccoonncceeppttss  aanndd  ddeeff iinnii tt iioonnss  aaccrroossss  aall ll   iinndduussttrr iiaall   sseeccttoorrss  

1111::3300  hhrrss  MMeenngg--TTiinngg  WWaanngg  ((NNTTHHUU)),,  PPoo--CChhuunn  HHuuaanngg  ((NNTTUU)),,  JJeennqq--KKuueenn  LLeeee  ((NNTTHHUU)),,  SShhaanngg--HHoonngg  LLaaii  
((NNTTHHUU)),,  RRooggeerr  JJaanngg  ((NNTTHHUU)),,  CChhuunn--FFaa  CChhaanngg  ((NNTTNNUU)),,  CChhiihh--WWeeii  LLiiuu  ((NNCCTTUU)),,  TTeeii--WWeeii  KKuuoo  
((NNTTUU)),,  SStteevvee  LLiiaaoo  ((GGooooggllee))  ((TTaaiiwwaann,,  RROOCC)):: SSuuppppoorrtt   ooff   AAnnddrrooiidd  LLaabb  MMoodduulleess  ffoorr  
EEmmbbeeddddeedd  SSyysstteemm  CCuurrrr iiccuulluumm  

1122::0000  hhrrss  LLuunncchh     

1133::0000  hhrrss  PPhhiilliipp  KKooooppmmaann  ((CCMMUU,,  PPiittttssbbuurrgghh,,  UUSSAA))  
AAfftteerrnnoooonn  KKeeyynnoottee:: RRiisskk  AArreeaass  IInn  EEmmbbeeddddeedd  SSooff ttwwaarree  IInndduussttrryy  PPrroojjeeccttss  
  

1133::5500  hhrrss  DDiissccuussssiioonn::  HHooww  ttoo  tteeaacchh  ccyybbeerr--pphhyyssiiccaall   ssyysstteemmss??  

1144::3300  hhrrss  SSaammiiaa  BBoouuzzeeffrraannee  ((CCNNAAMM,,  PPaarriiss,,  FFrraannccee))::  TThhee  EEmmbbeeddddeedd  aanndd  MMoobbii llee  SSyysstteemmss  MMaasstteerr  aatt   
tthhee  CCNNAAMM  ooff   PPaarr iiss  
  

1155::0000  hhrrss  MMaatttthheeww  HH..  NNeettkkooww  ((SSAAVVOO,,  CChhiiccaaggoo,,  UUSSAA)),,  DDeennnniiss  BBrryyllooww  ((MMaarrqquueettttee  UU..,,  MMiillwwaauukkeeee,,  UUSSAA)):: 
XXeesstt ::   AAnn  AAuuttoommaatteedd  FFrraammeewwoorrkk  ffoorr  RReeggrreessssiioonn  TTeesstt iinngg  ooff   EEmmbbeeddddeedd  SSooff ttwwaarree  

1155::3300  hhrrss  BBrreeaakk     

1166..0000  hhrrss  AAnnddrréé  SSttoolllleennwweerrkk,,  AAnnddrreeaass  DDeerrkkss,,  SStteeffaann  KKoowwaalleewwsskkii  ((RRWWTTHH  AAaacchheenn,,  GGeerrmmaannyy)),,  FFaallkk  
SSaalleewwsskkii  ((LLaaccrrooiixx  EElleeccttrroonniiccss,,  WWiilllliicchh,,  GGeerrmmaannyy))::  AA  MMoodduullaarr,,  RRoobbuusstt   aanndd  OOppeenn  SSoouurrccee  
MMiiccrrooccoonnttrrooll lleerr  PPllaatt ffoorrmm  ffoorr  BBrrooaadd  EEdduuccaatt iioonnaall   UUssaaggee  
  

1166::3300  hhrrss  DDiissccuussssiioonn::  WWhhaatt   hhaavvee  wwee  lleeaarrnneedd  ttooddaayy??  

1177::0000  hhrrss  CClloossee    
  
  

iv 
  



 
 

Source: Bobak Ha’Eri (Wikipedia) 

  

TTaabbllee  ooff   CCoonntteennttss  
  
  

OOrrggaanniizzeerrss  MMeessssaaggee  …………………………………………………………………………………………  iiii  

OOrrggaanniizziinngg  aanndd  PPrrooggrraamm  CCoommmmiitt tteeee  MMeemmbbeerrss  ………………………………………………………… iiiiii  

PPrrooggrraamm ……………………………………………………………………………………………………….. iivv  

TTaabbllee  ooff   CCoonntteennttss  ………………………………………………………………….…………………………. v-vi  

  
  
  
AAnn  IInnttrroodduuccttoorryy  TTeexxttbbooookk  oonn  CCyybbeerr--PPhhyyssiiccaall  SSyysstteemmss……………………………………………………..11  

Edward A. Lee, Sanjit A. Seshia, University of California, Berkeley, United States of America 
  
  
  
FFrroomm  SSccrraattcchh  ttoo  SSyysstteemm::  AA  HHaannddss--oonn  IInnttrroodduuccttoorryy  
EEmmbbeeddddeedd  SSyysstteemmss  CCoouurrssee…………………………..……………………………………………………………………..…77  

Sin Ming Loo, Josh Kiepert, Michael Pook, Jim Hall, Derek Klein, Vikram Patel,  
Carl Lee, Arlen Planting, Boise State University, Idaho, United States of America 

  
  
  
TTeeaacchhiinngg  OOppttiimmiizzaattiioonn  ooff  TTiimmee  aanndd  EEnneerrggyy  iinn  EEmmbbeeddddeedd  SSyysstteemmss  ….………..………………..……. 1122  

Alexander G. Dean, North Carolina State University, United States of America 
 

  
  
CCoommmmoonn  TTeecchhnniiccaall  BBaasseelliinnee  --  AA  ccoommmmoonn  rreeffeerreennccee  ooff  ccoonncceeppttss  aanndd    
ddeeffiinniittiioonnss    aaccrroossss  aallll  iinndduussttrriiaall  sseeccttoorrss  

Bruno Bouyssounouse 
  
  
  
SSuuppppoorrtt  ooff  AAnnddrrooiidd  LLaabb  MMoodduulleess  ffoorr  EEmmbbeeddddeedd  SSyysstteemm  CCuurrrriiccuulluumm  ……………………………………….1188  

Meng-Ting Wang, Jenq-Kuen Lee, Shang-Hong Lai, Roger Jang, National Tsing-Hua  
University, Hsin-Chu, Po-Chun Huang, Tei-Wie Kuo, National Taiwan University, Taipei, 
Chun-Fa Chang, National Taiwan Normal University, Taipei, Chih-Wie Liu, National  
Chiao-Tung University, Hsin-Chu, Steve Lao, Google Inc., all Taiwan 

 
  
  
  

v 
  
  



 
 

Source: Bobak Ha’Eri (Wikipedia) 

  
  
RRiisskk  AArreeaass  IInn  EEmmbbeeddddeedd  SSooffttwwaarree  IInndduussttrryy  PPrroojjeeccttss …………………………………………………..…2266  

Philip Koopman, Carnegie Mellon University, Pittsburgh, United States of America 
  
  
DDiissccuussssiioonn  --  HHooww  ttoo  tteeaacchh  ccyybbeerr--pphhyyssiiccaall  ssyysstteemmss??  …………………………….…………………….... 3344  
  
  
  
TThhee  EEmmbbeeddddeedd  aanndd  MMoobbiillee  SSyysstteemmss  MMaasstteerr  aatt  tthhee  CCNNAAMM  ooff  PPaarriiss  …………………………………….3355  

Samia Bouzefrane, Conservatoire National des Arts et Métiers, Paris, France 
 
 
 

XXeesstt::  AAnn  AAuuttoommaatteedd  FFrraammeewwoorrkk  ffoorr  RReeggrreessssiioonn  TTeessttiinngg    
ooff  EEmmbbeeddddeedd  SSooffttwwaarree….………………………………….…………………………………………...…….4400 

Matthew H. Netkow, The SAVO Group, Chicago,  
Dennis Brylow, Marquette University, Milwaukee, both United States of America 

 
 
  
AA  MMoodduullaarr,,  RRoobbuusstt  aanndd  OOppeenn  SSoouurrccee  MMiiccrrooccoonnttrroolllleerr  PPllaattffoorrmm    
ffoorr  BBrrooaadd  EEdduuccaattiioonnaall  UUssaaggee……..............................................……………………………………………………………. 4488 

André Stollenwerk, Andreas Derks, Stefan Kowaleswski, RWTH Aachen University 
Falk Salewaski, Lacroix Electronics, Willich, all Germany 

 
 
  
DDiissccuussssiioonn  ––  WWhhaatt  hhaavvee  wwee  lleeaarrnneedd  ttooddaayy?? ……………………………………..……………………….. 5555 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

vi 



An Introductory Textbook on Cyber-Physical Systems ∗

Edward A. Lee
EECS Department

University of California, Berkeley
Berkeley, CA, USA

eal@eecs.berkeley.edu

Sanjit A. Seshia
EECS Department

University of California, Berkeley
Berkeley, CA, USA

sseshia@eecs.berkeley.edu

ABSTRACT
We introduce a textbook that strives to identify and intro-
duce the durable intellectual ideas of embedded systems as
a technology and as a subject of study. The emphasis is on
modeling, design, and analysis of cyber-physical systems,
which integrate computing, networking, and physical pro-
cesses. The book is intended for students at the advanced
undergraduate level or the introductory graduate level, and
for practicing engineers and computer scientists who wish
to understand the engineering principles of embedded sys-
tems. It is also an experiment in publishing. The book is
available free in electronic form, in the form of PDF file de-
signed specifically for on-line reading. Specifically, the lay-
out is optimized for medium-sized screens, particularly the
iPad and forthcoming tablets. Extensive use of hyperlinks
and color enhance the online reading experience. A print
version will be available through a print-on-demand service,
enabling rapid evolution and immediate correction of errors.
See http://LeeSeshia.org.

1. INTRODUCTION
The most visible use of computers and software is pro-

cessing information for human consumption. We use them

∗This work was supported in part by NSF CAREER grant
#0644436, an Alfred P. Sloan Research Fellowship, and
the Center for Hybrid and Embedded Software Systems
(CHESS) at UC Berkeley, which receives support from the
National Science Foundation (NSF awards #CCR-0225610
(ITR), #0720882 (CSR-EHS: PRET), #0647591 (CSR-
SGER), #0931843 (ActionWebs) and #0720841 (CSR-
CPS)), the U. S. Army Research Office (ARO #W911NF-
07-2-0019), the U. S. Air Force Office of Scientific Research
(MURI #FA9550-06-0312 and AF-TRUST #FA9550-06-1-
0244), the Air Force Research Lab (AFRL), the Multiscale
Systems Center (MuSyc), and the following companies: Ag-
ilent, Bosch, National Instruments, Thales, and Toyota.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Workshop on Embedded Systems Education October 28, 2010, Scottsdale,
USA.
Copyright 2010 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

to write books (like the one presented here), search for infor-
mation on the web, communicate via email, and keep track
of financial data. The vast majority of computers in use,
however, are much less visible. They run the engine, brakes,
seatbelts, airbag, and audio system in your car. They digi-
tally encode your voice and construct a radio signal to send
it from your cell phone to a base station. They control
your microwave oven, refrigerator, and dishwasher. They
run printers ranging from desktop inkjet printers to large
industrial high-volume printers. They command robots on
a factory floor, power generation in a power plant, processes
in a chemical plant, and traffic lights in a city. They search
for microbes in biological samples, construct images of the
inside of a human body, and measure vital signs. They pro-
cess radio signals from space looking for supernovae and for
extraterrestrial intelligence. They bring toys to life, enabling
them to react to human touch and to sounds. They control
aircraft and trains. These less visible computers are called
embedded systems, and the software they run is called
embedded software.

Despite this widespread prevalence of embedded systems,
computer science has, throughout its relatively short history,
focused primarily on information processing. Only recently
have embedded systems received much attention from re-
searchers. And only recently has the community recognized
that the engineering techniques required to design and ana-
lyze these systems are distinct. Although embedded systems
have been in use since the 1970s, for most of their history
they were seen simply as small computers. The principal en-
gineering problem was understood to be one of coping with
limited resources (limited processing power, limited energy
sources, small memories, etc.). As such, the engineering
challenge was to optimize the designs. Since all designs ben-
efit from optimization, the discipline was not distinct from
anything else in computer science. It just had to be more
aggressive about applying the same optimization techniques.

Recently, the community has come to understand that the
principal challenges in embedded systems stem from their
interaction with physical processes, and not from their lim-
ited resources. The term cyber-physical systems (CPS)
was coined by Helen Gill at the National Science Founda-
tion in the U.S. to refer to the integration of computation
with physical processes. In CPS, embedded computers and
networks monitor and control the physical processes, usually
with feedback loops where physical processes affect compu-
tations and vice versa. The design of such systems, there-
fore, requires understanding the joint dynamics of comput-
ers, software, networks, and physical processes. It is this

1 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA

http://LeeSeshia.org


study of joint dynamics that sets this discipline apart.
When studying CPS, certain key problems emerge that

are rare in so-called general-purpose computing. For exam-
ple, in general-purpose software, the time it takes to perform
a task is a performance issue, not a correctness issue. It is
not incorrect to take longer to perform a task. It is merely
less convenient and therefore less valuable. In CPS, the time
it takes to perform a task may be critical to correct func-
tioning of the system. In the physical world, as opposed to
the cyber world, the passage of time is inexorable.

In CPS, moreover, many things happen at once. Physi-
cal processes are compositions of many things going on at
once, unlike software processes, which are deeply rooted in
sequential steps. Abelson and Sussman [1] describe comput-
ing as “procedural epistemology,” knowledge through pro-
cedure. In the physical world, by contrast, processes are
rarely procedural. Physical processes are compositions of
many concurrent processes. Measuring and controlling the
dynamics of these processes by orchestrating actions that
influence the processes are the main tasks of embedded sys-
tems. Consequently, concurrency is intrinsic in CPS. Many
of the technical challenges in designing and analyzing em-
bedded software stem from the need to bridge an intrinsi-
cally sequential semantics with an intrinsically concurrent
physical world.

Today, getting computers to work together with physi-
cal processes requires technically intricate, low-level design.
Embedded software designers are forced to struggle with
interrupt controllers, memory architectures, assembly-level
programming (to exploit specialized instructions or to pre-
cisely control timing), device driver design, network inter-
faces, and scheduling strategies, rather than focusing on
specifying desired behavior. The sheer mass and complex-
ity of these technologies tempts us to focus an introductory
course on mastering them. But a better introductory course
would focus on how to model and design the joint dynamics
of software, networks, and physical processes. Such a course
would present the technologies only as today’s (rather prim-
itive) means of accomplishing those joint dynamics. The
book presented here is our attempt at a textbook for such a
course.

2. RELATED BOOKS
Most texts on embedded systems focus on the collection of

technologies needed to get computers to interact with phys-
ical systems [2, 3, 4, 9, 14, 16, 19, 22, 23]. Others focus on
adaptations of computer-science techniques (like program-
ming languages, operating systems, networking, etc.) to
dealing with technical problems in embedded systems [5,
6, 18]. While these implementation technologies are (to-
day) necessary for system designers to get embedded sys-
tems working, they do not form the intellectual core of the
discipline. The intellectual core is instead in models and ab-
stractions that conjoin computation and physical dynamics.

A few textbooks offer efforts in this direction. Jantsch [8]
focuses on concurrent models of computation, Marwedel [12]
focuses on models of software and hardware behavior, and
Sriram and Bhattacharyya [20] focus on dataflow models
of signal processing behavior and their mapping onto pro-
grammable DSPs. These are excellent starting points. Mod-
els and concurrency (such as dataflow) and abstract models
of software (such as Statecharts) provide a better starting
point than imperative programming languages (like C), in-

terrupts and threads, and architectural annoyances that a
designer must work around (like caches). These texts, how-
ever, are not suitable for an introductory course. They are
either too specialized or too advanced or both. This book
is our attempt to provide an introductory text that follows
the spirit of focusing on models and their relationship to
realizations of systems.

The variety of textbooks on embedded systems that have
appeared in recent years is surprising, often reflecting the
perspective of a more established discipline that has mi-
grated into embedded systems, such as VLSI design, control
systems, signal processing, robotics, real-time systems, or
software engineering. Some of these books complement the
one we present nicely. We strongly recommend them to the
reader who wishes to broaden his or her understanding of
the subject.

Specifically, Patterson and Hennessey [17], although not
focused on embedded processors, is the canonical reference
for computer architecture, and a must-read for anyone inter-
ested embedded processor architectures. Sriram and Bhat-
tacharyya [20] focus on signal processing applications, such
as wireless communications and digital media, and give par-
ticularly good coverage to dataflow programming method-
ologies. Wolf [23] gives an excellent overview of hardware de-
sign techniques and microprocessor architectures and their
implications for embedded software design. Mishra and Dutt
[13] give a view of embedded architectures based on archi-
tecture description languages (ADLs). Oshana [15] special-
izes in DSP processors from Texas Instruments, giving an
overview of architectural approaches and a sense of assembly-
level programming.

Focused more on software, Buttazzo [5] is an excellent
overview of scheduling techniques for real-time software. Liu
[11] gives one of the best treatments yet of techniques for
handling sporadic real-time events in software. Edwards [6]
gives a good overview of domain-specific higher-level pro-
gramming languages used in some embedded system designs.
Pottie and Kaiser [18] give a good overview of networking
technologies, particularly wireless, for embedded systems.

No single textbook can comprehensively cover the breadth
of technologies available to the embedded systems engineer.
We have found useful information in many of the books that
focus primarily on today’s design techniques [2, 3, 4, 7, 9,
14, 16, 19].

3. THEME OF THE BOOK
The major theme of our book is on models and their rela-

tionship to realizations of systems. The models we study are
primarily about dynamics, the evolution of a system state in
time. We do not address structural models, which represent
static information about the construction of a system, al-
though these too are important to embedded system design.

Working with models has a major advantage. Models can
have formal properties. We can say definitive things about
models. For example, we can assert that a model is deter-
ministic, meaning that given the same inputs it will always
produce the same outputs. No such absolute assertion is
possible with any physical realization of a system. If our
model is a good abstraction of the physical system (mean-
ing that it omits only inessential details), then the definitive
assertion about the model gives us confidence in the physi-
cal realization of the system. Such confidence is enormously
valuable, particularly for embedded systems where malfunc-

2 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



tions can threaten human lives. Studying models of systems
gives us insight into how those systems will behave in the
physical world.

Our focus is on the interplay of software and hardware
with the physical environment in which they operate. This
requires explicit modeling of the temporal dynamics of soft-
ware and networks and explicit specification of concurrency
properties intrinsic to the application. The fact that the
implementation technologies have not yet caught up with
this perspective should not cause us to teach the wrong en-
gineering approach. We should teach design and modeling
as it should be, and enrich this with a critical presentation
of how to (partially) accomplish our objectives with today’s
technology. Embedded systems technologies today, there-
fore, should not be presented dispassionately as a collection
of facts and tricks, as they are in many of the above cited
books, but rather as stepping stones towards a sound design
practice. The focus should be on what that sound design
practice is, and on how today’s technologies both impede
and achieve it.

Stankovic et al. [21] support this view, stating that “ex-
isting technology for RTES [real-time embedded systems]
design does not effectively support the development of re-
liable and robust embedded systems.” They cite a need to
“raise the level of programming abstraction.” We argue that
raising the level of abstraction is insufficient. We have to
also fundamentally change the abstractions that are used.
Timing properties of software, for example, cannot be effec-
tively introduced at higher levels of abstraction if they are
entirely absent from the lower levels of abstraction on which
these are built.

We require robust and predictable designs with repeat-
able temporal dynamics [10]. We must do this by building
abstractions that appropriately reflect the realities of cyber-
physical systems. The result will be CPS designs that can be
much more sophisticated, including more adaptive control
logic, evolvability over time, improved safety and reliability,
all without suffering from the brittleness of today’s designs,
where small changes have big consequences.

In addition to dealing with temporal dynamics, CPS de-
signs invariably face challenging concurrency issues. Be-
cause software is so deeply rooted in sequential abstractions,
concurrency mechanisms such as interrupts and multitask-
ing, using semaphores and mutual exclusion, loom large. We
therefore devote considerable effort in this book to devel-
oping a critical understanding of threads, message passing,
deadlock avoidance, race conditions, and data determinism.

4. ORGANIZATION OF THE BOOK
As shown in Figure 1, this book is divided into three major

parts, focused on modeling, design, and analysis. Mod-
eling is the process of gaining a deeper understanding of a
system through imitation. Models imitate the system and
reflect properties of the system. Models specify what a
system does. Design is the structured creation of artifacts.
It specifies how a system does what it does. Analysis is
the process of gaining a deeper understanding of a system
through dissection. It specifies why a system does what it
does (or fails to do what a model says it should do).

The three parts of the book are relatively independent of
one another and are largely meant to be read concurrently.
Strong dependencies between chapters are shown with ar-
rows in black. Weak dependencies are shown in grey. When

there is a weak dependency from chapter i to chapter j, then
j may mostly be read without reading i, at most requiring
skipping some examples or specialized analysis techniques.
A systematic reading of the text can be accomplished in
seven segments, shown with dashed outlines. Each segment
includes two chapters, so complete coverage of the text is
possible in a 14 week semester, assuming each of the seven
modules takes two weeks. We now briefly describe the three
main parts.

4.1 Modeling
This part of the book focuses on models of dynamic behav-

ior. It begins with a light coverage of the modeling of phys-
ical dynamics, specifically focusing on continuous dynamics
in time. It then talks about discrete dynamics, using state
machines as the principal formalism. It then combines the
two with a discussion of hybrid systems. The fourth chapter
focuses on concurrent composition of state machines, em-
phasizing that the semantics of composition is a critical is-
sue that designers must grapple with. The fifth chapter
gives an overview of concurrent models of computation, in-
cluding many of those used in design tools that practitioners
frequently leverage, such as Simulink and LabVIEW.

In this part of the book, we define a system to be sim-
ply a combination of parts that is considered a whole. A
physical system is one realized in matter, in contrast to
a conceptual or logical system such as software and algo-
rithms. The dynamics of a system is its evolution in time:
how its state changes. A model of a physical system is a
description of certain aspects of the system that is intended
to yield insight into properties of the system. In this text,
models have mathematical properties that enable systematic
analysis. The model imitates properties of the system, and
hence yields insight into that system.

A model is itself a system. It is important to avoid con-
fusing a model and the system that it models. These are two
distinct artifacts. A model of a system is said to have high
fidelity if it accurately describes properties of the system.
It is said to abstract the system if omits details. Models
of physical systems inevitably do omit details, so they are
always abstractions of the system. A major goal of this text
is to develop an understanding of how to use models, of how
to leverage their strengths and respect their weaknesses.

A cyber-physical system (CPS) is a system composed of
physical subsystems together with computing and network-
ing. Models of cyber-physical systems must include all three
parts. The models will typically need to represent both
static properties (those that do not change during the
operation of the system) and dynamics.

Each of the modeling techniques described in this part
of the book is an enormous subject, much bigger than one
chapter, or even one book. In fact, such models are the focus
of many branches of engineering, physics, chemistry, and bi-
ology. Our approach is aimed at engineers. We assume some
background in mathematical modeling of dynamics (calcu-
lus courses that give some examples from physics are suffi-
cient), and then focus on how to compose diverse models.
This will form the core of the cyber-physical system prob-
lem, since joint modeling of the cyber side, which is logical
and conceptual, with the physical side, which is embodied
in matter, is the core of the problem. We therefore make no
attempt to be comprehensive, but rather pick a few mod-
eling techniques that are widely used by engineers and well

3 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Figure 1: Map of the book with strong and weak dependencies between chapters.

understood, review them, and then compose them to form
a cyber-physical whole.

4.2 Design
The second part of the book has a very different flavor,

reflecting the intrinsic heterogeneity of the subject. This
part focuses on the design of embedded systems, with em-
phasis on the role they play within a CPS. Chapter 6 dis-
cusses processor architectures, with emphasis on specialized
properties most suited to embedded systems. Chapter 7 de-
scribes memory architectures, including abstractions such as
memory models in programming languages, physical proper-
ties such memory technologies, and architectural properties
such as memory hierarchy (caches, scratchpads, etc.). The
emphasis is on how memory architecture affects dynamics.
Chapter 8 is about the interface between the software world
and the physical world. It discusses input/output mecha-
nisms in software and computer architectures, and the dig-
ital/analog interface, including sampling. Chapter 9 intro-
duces the notions that underly operating systems, with par-
ticularly emphasis on multitasking. The emphasis is on the
pitfalls of using low-level mechanisms such as threads, with
a hope of convincing the reader that there is real value in
using the modeling techniques covered in the first part of the
book. Chapter 10 introduces real-time scheduling, covering
many of the classic results in the area.

In all chapters in this part, we particularly focus on the
mechanisms that provide concurrency and control over tim-
ing, because these issues loom large in the design of cyber-
physical systems. When deployed in a product, embedded

processors typically have a dedicated function. They control
an automotive engine or measure ice thickness in the Arctic.
They are not asked to perform arbitrary functions with user-
defined software. Consequently, the processors, memory ar-
chitectures, I/O mechanisms, and operating systems can be
more specialized. Making them more specialized can bring
enormous benefits. For example, they may consume far less
energy, and consequently be usable with small batteries for
long periods of time. Or they may include specialized hard-
ware to perform operations that would be costly to perform
on general-purpose hardware, such as image analysis. Our
goal in this part is to enable the reader to critically evaluate
the numerous available technology offerings.

One of the goals in this part of the book is to teach stu-
dents to implement systems while thinking across traditional
abstraction layers — e.g., hardware and software, computa-
tion and physical processes. While such cross-layer thinking
is valuable in implementing systems in general, it is partic-
ularly essential in embedded systems given their heteroge-
neous nature. For example, a programmer implementing a
control algorithm expressed in terms of real-valued quan-
tities must have a solid understanding of computer arith-
metic (e.g., of fixed-point representations) in order to cre-
ate a reliable implementation. Similarly, an implementor of
automotive software that must satisfy real-time constraints
must be aware of processor features – such as pipelining
and caching – that can affect the execution time of tasks
and hence the real-time behavior of the system. Likewise,
an implementor of interrupt-driven or multi-threaded soft-
ware must understand the level of atomicity provided by the

4 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



underlying software-hardware platform and use appropriate
synchronization constructs to ensure correctness. Rather
than doing an exhaustive survey of different implementa-
tion methods and platforms, this part of the book seeks to
give the reader an appreciation for such cross-layer topics,
and uses homework exercises to facilitate a deeper under-
standing of them.

4.3 Analysis
Every system must be designed to meet certain require-

ments. For embedded systems, which are often intended for
use in safety-critical, everyday applications, it is essential to
certify that the system meets its requirements. Such system
requirements are also called properties or specifications.
The need for specifications is aptly captured by the following
quotation (paraphrased from [24]):

“A design without specifications cannot be right
or wrong, it can only be surprising!”

This part of the book focuses on precise specifications of
properties, on techniques for comparing specifications, and
on techniques for analyzing specifications and the resulting
designs. Reflecting the emphasis on dynamics in the text,
Chapter 11 focuses on temporal logics, which provide pre-
cise descriptions of dynamic properties of systems. These
descriptions are treated as models. Chapter 12 focuses on
the relationships between models. Is one model an abstrac-
tion of another? Is it equivalent in some sense? Specifically,
that chapter introduces type systems, as a way of compar-
ing static properties of models, and language containment
and simulation relations as a way of comparing dynamic
properties of models. Chapter 13 focuses on techniques for
analyzing the large number of possible dynamic behaviors
that a model may exhibit, with emphasis on model check-
ing as a technique for exploring such behaviors. Chapter
14 is about analyzing quantitative properties of embedded
software, such as finding bounds on resources consumed by
programs. It focuses particularly on execution time anal-
ysis, with some introduction to others such as energy and
memory usage.

In present engineering practice, it is common to have sys-
tem requirements stated in a natural language such as En-
glish. It is important to precisely state requirements to avoid
ambiguities inherent in natural languages. The goal of this
part of the book to help replace descriptive techniques with
formal ones, which we believe are less error prone.

Importantly, formal specifications also enable the use of
automatic techniques for formal verification of both models
and implementations. This part of the book introduces read-
ers to the basics of formal verification, including notions of
equivalence and refinement checking, as well as reachability
analysis and model checking. In discussing these verifica-
tion methods, we take a user’s view of them, discussing, for
example, how model checking can be applied to find subtle
errors in concurrent software, or how reachability analysis
can be used in computing a control strategy for a robot to
achieve a particular task.

4.4 Missing Sections
Version 1.0 of the book will not be complete. It is ar-

guable, in fact, that complete coverage of embedded systems
in the context of CPS is impossible. Specific topics that we
cover in the undergraduate Embedded Systems course at

Berkeley1 and hope to include in version 2.0 or later ver-
sions of the book include sensors and actuators, networking,
fault tolerance, simulation techniques, control systems, and
hardware/software codesign. If you are an author interested
in contributing, please contact us at authors@LeeSeshia.org.

4.5 Intended Audience
This book is intended for students at the advanced under-

graduate level or the introductory graduate level, and for
practicing engineers and computer scientists who wish to
understand the engineering principles of embedded systems.
We assume that the reader has some exposure to machine
structures (e.g., should know what an ALU is), computer
programming (we use C throughout the text), basic discrete
mathematics and algorithms (e.g., graph traversal through
depth-first or breadth-first search), and at least an appre-
ciation for signals and systems (what it means to sample a
continuous-time signal, for example).

5. PUBLICATION STRATEGY
Recent advances in technology are fundamentally chang-

ing the technical publishing industry. Almost every aspect
of how academics, teachers, and intellectuals communicate
is in flux, and we believe that the landscape in the 21st
century will be very different from that of the 20th cen-
tury. In response to this, the book we introduce here is
an experiment in publishing. With apologies to the many
hard-working men and women in the traditional publishing
industry, we hope that if this approach is successful, that it
will be followed by other authors.

The book is available free in electronic form from the web-
site http://LeeSeshia.org. In recognition that there is real
value in a tangible manifestation on paper, something you
can thumb through, something that can live on a bookshelf
to remind you of its existence, the book will also be avail-
able in print form. Our plan is to use a print-on-demand
service, which has the advantages of dramatically reduced
cost to the reader and the ability to quickly and frequently
update the version of the book to correct errors and discuss
new technologies.

The reduced revenue stream that results from this publi-
cation strategy, of course, has disadvantages. But prior ex-
perience of these authors indicate that it is rare for authors
of technical books to even earn minimum wage for their ef-
forts. Remuneration is clearly not the main goal. The main
goals seem to be communication, education, and impact. We
believe that our strategy enhances all three goals.

Consider for example the opportunities afforded by a fo-
cus on on-line dissemination. The electronic version is a
PDF file designed specifically for on-line reading. The lay-
out is optimized for medium-sized screens, particularly the
iPad and forthcoming tablets. Extensive use of hyperlinks
and color enhance the online reading experience. Links to
external websites are included directly at the relevant point.

We attempted to adapt the book to e-book formats, which,
in theory, enable reading on various sized screens, attempt-
ing to take best advantage of the available screen. However,
like HTML documents, e-book book formats are a reflow
technology, where page layout is recomputed on the fly. The
results are highly dependent on the screen size and prove lu-
dicrous on many screens and suboptimal on all. As a conse-

1See http://chess.eecs.berkeley.edu/eecs149/

5 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA

mailto:authors@LeeSeshia.org
http://LeeSeshia.org
http://chess.eecs.berkeley.edu/eecs149/


quence, we have opted for controlling the layout, and we do
not recommend attempting to read the book on an iPhone.

As of this writing, a preliminary version of the book is
available at http://LeeSeshia.org. We plan a complete re-
lease of version 1.0 by the end of summer, 2010, with an
associated print-on-demand version available in the Fall.

6. ACKNOWLEDGEMENTS
The authors gratefully acknowledge contributions and help-

ful suggestions on the text from Elaine Cheong, Gage Eads,
Stephen Edwards, Shanna-Shaye Forbes, Jeff Jensen, Wen-
chao Li, Isaac Liu, Slobodan Matic, Steve Neuendorffer,
Minxue Pan, Hiren Patel, Jan Reineke, Chris Shaver, Stavros
Tripakis, Pravin Varaiya, Maarten Wiggers, and the stu-
dents in UC Berkeley’s EECS 149 class, particularly Ned
Bass and Dan Lynch.

7. REFERENCES
[1] H. Abelson and G. J. Sussman. Structure and

Interpretation of Computer Programs. MIT Press,
second edition, 1996.

[2] M. Barr and A. Massa. Programming Embedded
Systems. O’Reilly, 2nd edition, 2006.

[3] A. S. Berger. Embedded Systems Design: An
Introduction to Processes, Tools, & Techniques. CMP
Books, 2002.

[4] A. Burns and A. Wellings. Real-Time Systems and
Programming Languages: Ada 95, Real-Time Java and
Real-Time POSIX. Addison-Wesley, 3d edition, 2001.

[5] G. C. Buttazzo. Hard Real-Time Computing Systems:
Predictable Scheduling Algorithms and Applications.
Springer, second edition, 2005.

[6] S. A. Edwards. Languages for Digital Embedded
Systems. Kluwer Academic Publishers, 2000.

[7] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner.
Embedded System Design - Modeling, Synthesis, and
Verification. Springer, 2009.

[8] A. Jantsch. Modeling Embedded Systems and SoCs -
Concurrency and Time in Models of Computation.
Morgan Kaufmann, 2003.

[9] R. Kamal. Embedded Systems: Architecture,
Programming, and Design. McGraw Hill, 2008.

[10] E. A. Lee. Computing needs time. Technical Report
UCB/EECS-2009-30, EECS Department, University
of California, Berkeley, February 18 2009.

[11] J. W. S. Liu. Real-Time Systems. Prentice-Hall, 2000.

[12] P. Marwedel. Embedded System Design. Kluwer
Academic Publishers, 2003.

[13] P. Mishra and N. D. Dutt. Functional Verification of
Programmable Embedded Processors - A Top-down
Approach. Springer, 2005.

[14] T. Noergaard. Embedded Systems Architecture: A
Comprehensive Guide for Engineers and
Programmers. Elsevier, 2005.

[15] R. Oshana. DSP Software Development Techniques for
Embedded and Real-Time Systems. Embedded
Technology Series. Elsevier, 2006.

[16] J. S. Parab, V. G. Shelake, R. K. Kamat, and G. M.
Naik. Exploring C for Microcontrollers. Springer, 2007.

[17] D. A. Patterson and J. L. Hennessey. Computer
Architecture: A Quantitative Approach. Morgan

Kaufmann, 2nd edition, 1996.

[18] G. Pottie and W. Kaiser. Principles of Embedded
Networked Systems Design. Cambridge University
Press, 2005.

[19] D. E. Simon. An Embedded Software Primer.
Addison-Wesley, 2006.

[20] S. Sriram and S. S. Bhattacharyya. Embedded
Multiprocessors: Scheduling and Synchronization.
CRC press, 2nd edition, 2009.

[21] J. A. Stankovic, I. Lee, A. Mok, and R. Rajkumar.
Opportunities and obligations for physical computing
systems. Computer, pages 23–31, 2005.

[22] J. W. Valvano. Embedded Microcomputer Systems -
Real Time Interfacing. Thomson, 2nd edition, 2007.

[23] W. Wolf. Computers as Components: Principles of
Embedded Computer Systems Design. Morgan
Kaufman, 2000.

[24] W. Young, W. Boebert, and R. Kain. Proving a
computer system secure. Scientific Honeyweller,
6(2):18–27, July 1985.

6 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA

http://LeeSeshia.org


 

 

From Scratch to System: A Hands-on Introductory 
Embedded Systems Course

Sin Ming Loo, Josh Kiepert, Michael Pook, Jim Hall, Derek Klein, Vikram Patel, Carl Lee, Arlen Planting 
Electrical and Computer Engineering Department 

Boise State University 
Boise, Idaho 83725 

208-426-5679 
smloo@boisestate.edu

  
Abstract 
This paper describes a hands-on introductory embedded systems 
course, which continues from the first microprocessor course. 
Instead of using an off-the-shelf microcontroller development 
board, it shows how students can build one from scratch and add 
components when required for assignments or as the need arises. 
The course begins with wiring a microcontroller system from 
scratch, continues through interfacing to various sensors,  and 
culminates in a final project. The course also focuses on 
embedded systems code layering concepts and enforces their 
usage. Lectures on practical analog interfacing circuits, such as 
op-amp circuitry, were presented. There were two written tests 
and seven hands-on laboratory assignments. The course reviews 
indicated students like this approach tremendously. 

Categories and Subject Descriptors 
K.3 [Computers and Education]: Computers and Education - 
General 

General Terms 
Experimentation 

Keywords 
Microcontroller, Curriculum 

1. Introduction 
Microcontroller courses have traditionally been taught using an 
off-the-shelf development board. Currently, there are many 
microcontroller development boards in the marketplace, with 
costs ranging from a few dollars to a few hundred dollars. They 
are built with various functionality and capabilities. Some boards 
have additional areas for prototyping, extra connectors, and 
different means to provide power to the board. Others boards are 
more limited, usually due to a lower cost.  

It is important to note that the development board is not the only 
cost associated with the development platform. The device 
programmer and development toolchain are very important and 
costly parts of the development platform. For some, the 
microprocessor can be programmed through USB because the 
programming circuitry has been built onto the board. For others, 
programmers will be necessary. These vary in price but can be 
quite expensive.  

Because this is an embedded system course, students usually 
prefer to have the option to work whenever they can find the time 
wherever that may be. This makes purchasing hardware the most 
desirable option for the student. Additionally, they would like to 
have the development toolchain installed on their personal 
computer and their own device programmer. These factors need to 

be kept in mind when selecting a development platform. 
Fortunately, the toolchain is usually very cost effective. Typically, 
there is a student version  or an open source version available. For 
some toolchains, the Integrated Development Environment (IDE) 
is proprietary. Interestingly, for many, it is an Eclipse based IDE 
[1]. Once Eclipse is installed, a compiler can be installed as a 
plug-in to the IDE. The Eclipse IDE is used in the junior 
Microprocessor course. The embedded systems course picks up 
from where the junior microprocessor course left off. 

In the previous version of the embedded systems course, class 
time was divided into two sections: lecture and an end-of-
semester project. Typically, the lectures concentrated on the 
features and capabilities of particular microcontrollers, assembly 
only programming (no C instruction), and device-to-device 
communication protocols.  The course had few opportunities for 
hands-on experience. The bulk of the hands-on experience came 
from the end-of-semester project. The scope of the project was 
proposed by each group of students and negotiated to an 
acceptable difficulty level for the allotted time (~4 weeks). It was 
time to update the course to leverage the new technology and 
development tools available.  

The approach to the new embedded systems course is to let the 
students work on various project-based laboratory assignments. 
This new paradigm is a hands-on based approach with lecture as 
backup when a need arises. The new format has been offered three 
times. In the first two offerings, an off-the-shelf microcontroller 
development board was used as the teaching platform for most of 
the laboratory assignments. . For both of these offerings, one of 
the laboratory assignments involved wiring a microcontroller 
system from scratch, using a Microchip 18F4620, wall power 
supply, linear regulator, LEDs, clock oscillator, and 
UART/RS232 level shifter on a breadboard. Students also needed 
to write test code to verify their system was wired correctly. At 
the completion of this assignment, students commented on how 
useful it had been and offered many constructive insights for 
improving their understanding. The comments usually ended with 
“it is very simple to wire up the system, having done it personally 
greatly increased my confidence for later assignments.” With 
these comments in mind, the third offering was re-designed with 
the system building as the starting point. 

The remainder of this paper describes this third offering of the 
embedded system course at Boise State University. Section 2 
outlines BSU’s electrical engineering curriculum and computer 
engineering courses. Sections 3 and 4 discuss the course goals and 
details. Section 5 discusses the course outcome and reviews. A 
summary and conclusion is presented in Sections 6. 

 

7 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



 

 

2. Existing Situation 
Boise State University has an ABET-accredited electrical 
engineering program with computer engineering as an option. One 
of the core courses offered at Boise State University for students 
specializing in computer engineering is a Microprocessors course. 
The students take Microprocessors after they have taken 
Introduction to Computer Science (an introduction to basic 
software skills and object oriented programming with Java) and 
Digital Systems (the sophomore digital logic course). 

The Microprocessors course at Boise State University covers 
microprocessor architectures, software development toolchains, 
and low-level hardware interfaces with emphasis on 16-bit and 
32-bit microprocessor systems. Some of the covered topics 
include [2]: 

• Machine language 
• Assembly 
• C programming and associated techniques 
• Instruction set 
• Addressing modes 
• Memory systems 
• I/O interfacing 
• Handling interrupts 
• PWM/ADC 

The course also covers practical applications in data acquisition, 
control, and interfacing. This course was reported to be a favorite 
of many students, largely because of the interesting devices (such 
as the magnetic card reader) that could be played with by the end 
of the course. The intent was to retain and potentially enhance this 
characteristic of the Microprocessors course with the changes 
implemented in the embedded systems course. 

Since the microprocessors course (lecture and lab) is a requisite 
for both electrical and computer engineering (ECE) and computer 
science students, the course must endeavor to address the 
dissimilar interests and needs of students in both disciplines. In 
addition to those specializing in computer engineering, the ECE 
group includes students interested primarily in other areas such as 
integrated circuits, communication and signal processing, control 
systems, power and energy systems, etc. Most computer science 
students are more interested in hardware with an operating 
system. Therefore it is important to achieve a balance in the 
course that will adequately teach electrical engineering and 
computer science students the needed fundamentals of 
microprocessors, while also providing the computer engineering 
students a solid foundation for later courses. 

A course titled “Embedded and Portable Computing Systems”, 
specifically addressing embedded design with the PIC 
microcontroller, has been offered at BSU. This was primarily a 
hardware-oriented senior/graduate level course utilizing assembly 
language only. Students taking this class received no C 
programming instruction. This paper describes how this course 
has been re-designed with a project-oriented approach. 

3. Goals 
The goals of the updated course were to teach the design of a 
complete system from the ground-up (including coding and 
interfacing techniques). Using this approach students see how a 
microcontroller system comes together. With the basic system 
operational, one can optimize as necessary for different 
applications. The objective is to learn skills that can be applied as 

an embedded systems engineer – designing the optimal hardware 
(for a project.  

The course would include: 
• Introduction of microcontrollers (specifics of memory, 

devices, and how they relate to programming) 
• How coding hierarchy and language can affect the ease 

of transferring code to other platforms (portability) 
• Advanced devices (I2C, SPI, USB, UART) from 

hardware and software perspectives 
• Analog interfacing circuitry to digital systems 
• Advanced time management issues and usage of state 

machine constructs in order to manage time  
• Proper coding techniques including advanced 

hierarchical design 

4. Course Details 
The semester began with an introduction and discussion of the 
motivations of the course. The first challenge was a pre-semester 
quiz.  Students were told what to review for the pre-semester quiz. 
The main objective was to gauge the students’ programming 
skills. This also served to check the email submission process 
(details in a later paragraph). The quiz included two problems on 
determining the outputs of C programs. The first problem (see 
Figure 1) was shifting and masking of bits for a look-up-table. 
The second problem (see Figure 2) was on structures, unions, and 
pointers. It included a struct declaration initialized to some values. 
Students were to determine what the outputs of the functions were 
as produced by printf(). 

There were two other problems in this quiz, both were 
programming problems. They were assigned as take home 
problems due the following day (due within 24 hours). The 
objective of these problems was to determine the students’ coding 
skills and coding styles in a no “pressure” environment (it is 
assumed that a 24 hour time constraint was not a stress factor!). 

 
#include <stdio.h> 
 
char HEXCHAR[] = "0123456789abcdef"; 
 
int main() 
{ 
      unsigned int val = 0xa5b4c3d2; 
    char             ch;       
 
    ch = HEXCHAR[ (val>>17) & 0xf ]; 
      printf ( "==>%c\n", ch ); 
 
      return 0;  
} 
 

Figure 1: Code for pre-semester quiz Problem 1 
 
 
 
 
 
 
 
 
 
 
 
 

8 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



 

 

 
#include <stdio.h> 
 
typedef unsigned int    ui32; 
typedef unsigned short  ui16; 
typedef unsigned char   ui8; 
 
struct abc { 
    union { 
        ui32    word; 
        struct  { 
            ui8 b0; 
            ui8 b1; 
            ui8 b2; 
            ui8 b3; 
        } bytes; 
    }    a; 
    ui8  b; 
    union { 
        ui16    half; 
        struct { 
            ui32 n0 : 4; 
            ui32 n1 : 4; 
            ui32 n2 : 4; 
            ui32 n3 : 4; 
        } nibbles; 
    }    c; 
}; 
 
int main(void) 
{ 
    struct abc x[] = { 
        {{0xa1a2a3a4}, 'a', {0x1234}}, 
        {{0xb1b2b3b4}, 'b', {0x5678}}, 
        {{0xc1c2c3c4}, 'c', {0x90ab}}, 
        {{0xd1d2d3d4}, 'd', {0xcdef}}, 
        {{0xa5b5c5d5}, 'e', {0x1111}}, 
    }; 
     
    struct abc *px = &x[0]; 
 
    printf ( "a. 0x%x\n", (px+2)->a.bytes.b2      ); 
    printf ( "b. 0x%x\n", (*px).a.bytes.b0        ); 
    printf ( "c. 0x%x\n", px->c.nibbles.n3        ); 
 
    px++; 
    printf ( "d. 0x%x\n", x[2].c.nibbles.n0       ); 
    printf ( "e. 0x%x\n", (x[4].a.word >> 12) & 0xff  ); 
    printf ( "f. %c\n",   px->b ); 
 
    return 0; 
}} 

Figure 2: Code for pre-semester quiz Problem 2 
 

The course met twice a week for one hour and fifteen minutes 
each. For most weeks, one meeting was assigned to lecture. The 
other meeting occurred in the lab. It was stressed that lecture did 
not have to take the entire time slot. It was more important to 
deliver the materials efficiently and clearly, rather than filling in 
the time with unimportant materials. For example, there is no 
point in discussing a datasheet in detail during a lecture. It is more 
efficient to spend just a few minutes highlighting the important 
items. Preferably, assign it as reading material and inform the 
students that they will be quizzed. When there was time left over 
in a lecture session, the instructor and students met in the lab to 
discuss their coding/design and to provide help when it was 
necessary. For the lab meeting, there was no step-by-step 
instruction of what one needed to accomplish. Having been told of 
the assignment, it was up to the students to come up with the 
approaches to get it accomplished. The instructor reviewed the 
approaches and made suggestions where necessary to help 
students complete the assignment. 

The course was taught with very little use of paper. An email 
account was set up where the assignments (that involved writing 
or source code submission) were to be emailed. Submissions were 
accepted as PDF or Microsoft Word files. On only two occasions 
was paper used when it was not convenient to go paperless: for 
the pre-semester and mid-semester tests.  

The early assignments were well defined. It was described to the 
students what one needs to achieve (if it is not working, 40% to 
50% of assignment grade will be deducted). As part of the 
assignment, the students were told what they needed to show 
during the assignment demonstration. Each assignment 
submission had two parts. Any missing part resulted in a zero 
grade for that assignment. Part 1 was the assignment 
demonstration. If it was a non-working demonstration, one 
opportunity was given to re-work (usually due by the next day). 
Part 2 was the submission of source code and readme files. Each 
source code file was required to have proper header information 
including the name of the coder, purpose of the file, date, and 
revision information. The readme file was a description of what 
the code was about. The student was given the choice to make the 
readme file a short paragraph or a comprehensive description 
depending on the requirements of the assignment.  

Towards the third quarter of the semester, a test was given. The 
test included questions on pull-up and pull-down resistors, 
technical details of some of the assignments, voltage conversion 
system design, op-amp interface circuit design, and analog to 
digital conversion accuracy and resolution. 

For the instruction of coding styles and source code generation, 
the use of layering, structures, pointers, and header files was 
enforced [3]. The main (main.c) file was to be kept very short 
with the details included in the respective C and H files.  This 
resulted in a clean main C file containing no clutter, with details 
distributed into device or function specific C and H files. In this 
manner the students were instructed on the generation of 
readable/maintainable code.  

The remainder of this section discusses details of the assignments. 
There were a total of two writing assignments and seven 
laboratory assignments. These were individual assignments. 

 

4.1 Writing and Coding Assignments 
 

Writing Assignment 1: Microcontroller Summary 
This was a microcontroller research assignment. The objective 
was for students to realize that there are many microcontrollers in 
the marketplace, each with a different amount of resources and 
capabilities. Basically, this was a microcontroller data sheet 
reading assignment. The students needed to find ten 
microcontrollers (from at least five different vendors) and 
generate a table with device features (i.e. the number of ADC 
channels, the amount of on-chip memory, etc). 
 

Hands-on Assignment 1: Microchip from Scratch 
In this assignment, students wired up a microcontroller system 
with output to a terminal though RS232. The students were also 
required to write code to blink the LEDs and display messages to 
a terminal program (e.g. Hyperterminal or TeraTerm). For this 

9 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



 

 

assignment, the students were instructed to bring an unused wall 
power supply (e.g. old cell phone charger, at least capable of 
supplying 100 mA at 6V out) and were supplied with all other 
components needed to build the system. The Microchip 
PIC18F4620 was used as the microcontroller. Since a breadboard 
was used for wiring, the DIP IC package was used. The surface 
mount version is also available for use if one decided to fabricate 
a printed-circuit board. The breadboard wiring method was 
chosen as a starting point to eliminate additional complications 
(e.g. PCB generation, soldering, etc.) that would impede the 
learning of how a microcontroller system is put together. 
The students were supplied with DC-DC converter, capacitors, 
resistors, LEDs, RS232 level converter, oscillator, RS232 cable, 
PIC18F2620, wires, and breadboard. In the lecture, the students 
were shown how to wire-up the system (no handout was given). A 
C program was also needed as part of this assignment. The C 
program was required to blink the LEDs and send a message to 
the terminal program using the PIC’s integrated UART. This 
program was to run in a continuous loop. The hands-on 
assignments that followed built upon this initial system. 
 

Writing Assignment 2: Microcontroller Write-up 
This was a follow-up assignment to Hands-on Assignment 1. The 
objective of this assignment was to assess what the students 
gained, whether the students understood the role of each 
component in the system in Hands-on Assignment 1. 
 

Hands-on Assignment 2: Analog to Digital Converter 
This was an analog to digital conversion (ADC) assignment. The 
objective was to learn how to use the ADC that is integrated in the 
PIC18F4620. Students used the bench-top power supply to 
generate voltages for the ADC. The converted digital value 
obtained from the ADC was then scaled to the proper voltage as 
supplied by the power supply. The PIC18F4620 UART was used 
to display the value to a terminal program.  
 

Hands-on Assignment 3: Thermistor 
This assignment furthered the use of the ADC. Students were 
given thermistors and op-amps. The assignment objective was to 
add the thermistor to the microcontroller board. One needed to 
design an interface circuit to connect the thermistor to the 
microcontroller, then write code to convert the measured voltage 
to a temperature. The PIC UART was used to display the value to 
a terminal program. 
 

Hands-on Assignment 4: ADC Chip with SPI 
This was an SPI programming assignment. The Microchip C18 
SPI API routines were used to give students the experience of 
integrating their program with another set of code. Students were 
given an ADC chip with an SPI interface, and were instructed to 
interface the ADC chip to the microcontroller. The ADC was to 
convert the voltage to a digital value and send the value to the 
microcontroller through SPI for processing. As before, the PIC 
UART was used to display the value to a terminal program. 
 

Hands-on Assignment 5: Printed-Circuit Board Design 

In this assignment, the students used Eagle PCB software to 
layout a board using the system as built in Hands-on Assignment 
1. Some students decided to have their boards made by board 
house. Some students decided to use the in-house two-lay PCB 
milling machine.  
 

Hands-on Assignment 5: Embedded Menu 
For a system based on an 8-bit microcontroller, a computationally 
intensive menu system is out of the question. This assignment was 
designed to show how a simple and low-overhead menu system 
could be coded to setup and control system options. Skeleton 
source code was provided to the students which provided the basic 
structure that the students needed to use to write their embedded 
menu program. The PIC UART was used to interface with the 
terminal program for both displaying the menu and receiving user 
input. 
 

Hands-on Assignment 7: I2C 
This assignment is similar to Hands-on Assignment 4, but with an 
I2C based digital-to-analog converter. Students coded three 
programs to output a sine waveform, a square waveform, and a 
triangular waveform. A mixed-signal oscilloscope was used to 
view the output waveforms. 
 

Project: Independent Project 
For the Independent Project, each student discussed and proposed 
a project to the instructor for approval. The student then used the 
knowledge and experience gained in the course to implement their 
project. The final project grade consisted of the project 
implementation, presentation, and demonstration. This was 30% 
of the course grade.  

5. Course Outcome 
Final lab projects were undertaken to consolidate and demonstrate 
the knowledge gained in the lecture and lab portions of the course. 
The final projects successfully demonstrated the students’ grasp of 
the knowledge presented in the course. There were ten students 
signed up for the course in the third offering with one dropping by 
the midpoint of the semester. A wide range of projects were 
attempted: 

• Power usage monitor 
• Remote temperature sensing 
• Clapping detector 
• RV battery charger and monitor 
• Wireless Homework Uploader 
• Air Filter Pressure Detector 
• Frequency Detector 
• Remote Control Code Decoder 
• Autonomous Micromouse 

 

All projects were completed within the time frame provided with 
minimal assistance from the instructor. Based on student 
evaluations of the course, the updated format of the course was 
considered successful. In the course review, students were asked 
to answer four questions: 

• What do you like about the structure of this class? 
• Will you recommend this course to a friend? 

10 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



 

 

• What do you NOT like? 
• What other topics we could have added? 

 

For the first question, most students commented positively on the 
ratio of labs to lectures. “The lectures give some preliminary 
information, and then the labs let you get your hands dirty. This 
seems to be very effective for learning, especially when you must 
struggle with a lab.” One major theme from the review has been 
on developing the PIC microcontroller system from scratch. 
“Doing the "PIC from scratch" on a prototype board was much 
better than using a purchased development board. Now, I feel 
confident with acquiring just a microcontroller chip and making 
something useful with it. I also learned how to use clock modules, 
design practical op amp circuits, and some things to avoid when 
using an ADC.” The reviews indicated that as long as someone is 
interested in embedded systems, students recommended taking the 
course.  
Some suggested the addition of sensor calibration, interrupts, and 
more lectures. The sensor calibration and lectures will be 
evaluated in the next offering. As for the interrupt discussion, due 
to time, no formal assignment was given. Instead, the majority of 
the students were provided with materials on how to use the PIC 
interrupt. 

The pre-semester test had an average of 80%, with seven out of 
ten students scoring 80% and above. The third quarter semester 
test had an average of 78%, with six out of nine students scoring 
78% and above. Using the rule 70% of the students scored at least 
70% and above, the grades showed the course achieved the major 
objectives. It should be noted that the assignments and the project 
were 70% of the grade.  

6. Conclusion 
 

To date, this course has been taught three times and refined based 
on experiences in the first and second offerings. The revised 
course placed emphasis on the hands-on skills. It instilled a good 
foundation in embedded systems design, which could be built 
upon by later advanced embedded systems courses.  

This course was taught without a textbook. Reference materials 
were provided in-class or through email. One of the references is 
[4]. Publications and articles from trade magazines were also 
used. This has encouraged students to look for their own 
references. However, in a few cases, providing some basic 
materials in class instead of having students search for it 
themselves proved to be more beneficial. Potentially, some 
students might waste a lot of time looking for useless information. 

The updated embedded systems course has been fruitful for 
students and. Students learned that they are able to research the 
assignment, prototype the hardware, and code the software 
necessary to make the hardware useful.  

9. References 
[1] Eclipse IDE, http://www.eclipse.org/, Visisted: July 19, 2010. 
[2] Sin Ming Loo, Arlen Planting, “Use of Discrete and Soft 
Processors in Introductory Microprocessors and Embedded 
Systems Curriculum,” SIGBED Review, Volume 6, Number 1, 
January 2009, Special Issue from the Workshops on Embedded 
System Education (WESE) in 2007 and 2008. 
[3] Michael Pook, Sin Ming Loo, Arlen Planting, Josh Kiepert, 
Derek Klein, “Coding Practices for Embedded Systems,” 2010 
ASEE Annual Conference, June 20-23, 2010. 
[4] John B. Peatman, Coin-Cell-Powered Embedded Design,” 
Available at http://www.lulu.com, 2008.

 

11 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Teaching Optimization of  
Time and Energy in Embedded Systems 
 

Alexander G. Dean 
Center for Efficient, Secure and Reliable Computing 

Dept. of Electrical and Computer Engineering 
North Carolina State University 

Raleigh, NC, USA 
(919) 513-4021 

Alex_Dean@ncsu.edu 
 
 
 

ABSTRACT 
The graduate Embedded Systems Design class in the ECE 
Department at NCSU has evolved over the past ten years. This 
paper describes how the course prepares students for profiling and 
optimizing run-time and energy performance, porting code across 
architectures, and also provides student feedback. 

Categories and Subject Descriptors 
TBD 

General Terms 
Measurement, Performance, Design, Experimentation. 

Keywords 
Embedded systems class, run-time optimization, energy, M16C. 

1. INTRODUCTION 
The graduate Embedded Systems Design class in the ECE 
Department at NCSU was first offered in fall 2000. It has evolved 
over the past ten years based on instructor experience, especially 
due to perspectives gained from performing design reviews 
deeply-embedded systems in industry. 

The course teaches feedback-driven performance optimization of 
run-time and energy use. The fundamental message is “avoid all 
run-time work possible, and do what remains as efficiently as 
possible.” This is coupled by encouraging “outside the box” 
thinking; the whole system is capable of optimization, not just 
discrete and disparate pieces.  Embedded systems differ from 
general-purpose computers in that the designer has control over 
multiple aspects of the system: This multidimensional design 
space typically offers many opportunities for optimization. 

This whole-system view is coupled with an analytical, 
performance-driven approach. After each optimization we 

evaluate the performance impact, giving the students hands-on 
experience in determining what works well and what does not. 

A common experience in industry is porting existing code to a 
new processor architecture. To give students experience in this 
domain we have a code porting project involving interfacing the 
microcontroller with either a microSD card or a color graphical 
TFT LCD.  

This paper reports on the course as taught in the Spring 2010 
semester at North Carolina State University in Raleigh. 
Enrollment was 82 students. Materials for the course are available 
from the instructor at the email listed above. 

This paper is organized as follows. Section 2 briefly presents an 
overview of the course. Section 3 describes the target embedded 
computing platform. Section 4 describes optimization activities 
with performance analysis support. Section 5 describes code 
porting activities. Section 6 presents student feedback. Section 6 
presents conclusions and reflections. 

2. COURSE OVERVIEW 
 

Table 1. Schedule of Lectures and Course Activities 

Introduction to Embedded Systems and the QSK62P Plus 
Using the LCD 

Analog and General-Purpose Digital Interfacing 

Project #1: Analog and Digital Interfacing 

Using Interrupts in C 

Timers and Event Counters 

Project #2: Using Timers 

Polled and Interrupt-driven Serial Communication 

Project #3: Serial Communications 

Performance Analysis: Time Measurement and Profiling 

Program Optimization 

Fixed Point Math 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
Conference’10, Month 1–2, 2010, City, State, Country. 
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00. 
 

12 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Project #4: Run-Time Performance Optimization 

Low Power and Low Energy Design and Analysis 

Project #5: Energy Optimization 
Understanding Software and System Impacts on Power 

Guest Speaker from Industry 

Sharing the CPU: Scheduler Alternatives 

RTC: Non-preemptive Dynamic Scheduler 
Developing RTOS-Based Applications: Concepts, Task 

Management and Sharing Data Safely 
Real-Time Scheduling Theory and Analysis 

 

 

3. TARGET PLATFORM 

 
Figure 1. M16C/62P Group processor overview (Courtesy 
Renesas). 
We use an embedded processor (M30620FCP) from the Renesas 
M16C architecture’s 62P group[1]. This is a 16-bit CISC 
architecture with a 1 Megabyte address space. As shown in Figure 
1, it features extensive peripherals for embedded interfacing, 
including digital I/O, five USARTs for serial communication, a 
10-bit successive approximation analog to digital converter (with 
extensive input multiplexing support), dual 8-bit digital to analog 
converters (DACs), five 16-bit timers with pulse-width 
modulation (PWM) support, dual direct memory access controller 
(DMACs), multiple clock options, watchdog timer, and other 
useful peripherals. The processor runs at up to 24 MHz, with 
voltages from 2.7 V to over 5 V.  Onboard memory is 10KB 
SRAM and 64KB flash ROM; this can be expanded off-chip to up 
to 1 MB. 

The M16C architecture was chosen in part for the good tool 
support. The Windows-based HEW integrated development 
environment includes a C compiler with no optimizations 
disabled. Instead, application code size is limited to 64KB after a 
30 day evaluation period. This size limit has not posed a problem 
in the over six years we have used M16C architecture processors, 
although we focus on systems without software libraries.  Adding 

a networking stack, full graphic LCD support (e.g. with 
windowing) and FAT file system would likely use close to the 
64KB available in the free tool 

HEW also includes other useful tools, including static stack depth 
analysis support. 

 

 
Figure 2. QSK62P Plus Quick Start Kit (QSK) 

 
Figure 3. Block diagram of QSK62P Plus (Courtesy BNS 
Solutions). 
The MCU is mounted on a Quick-Start Kit (QSK62P Plus from 
BNS Education[1]). Shown in Figure 2 and Figure 3, this board 
provides a 2x8 character LCD, potentiometer for generating an 
analog input voltage, three switches and LEDs for user 
applications, RS232 to logic level shifter, pads for a DB9 
connector, thermistor, 6 MHz crystal, 32 kHz crystal, pads for 
expansion  headers. On the back of the board is a debug controller 
microcontroller which communicates with a PC via USB. The 
board is powered by 5V from the USB connector, but only the 
LCD runs at 5V. The remainder of the board runs at 3.3V supplied 
by an onboard fixed linear regulator. 

13 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



4. OPTIMIZING FOR TIME AND ENERGY 
4.1 Motivation 
Time and energy are limited resources for many embedded 
systems. Time may be limited due to deadline or throughput 
requirements interacting with high processor loads or constrained 
clock speeds. Energy may be limited due to powering by a battery 
or a renewable energy source. 

Embedded systems differ from general-purpose computers in that 
the designer has control over multiple aspects of the system: 
application program, scheduler/operating system, compiler, 
communication behavior, user interface design and hardware 
design. This multidimensional design space typically offers many 
opportunities for optimization. This fosters “outside the box 
thinking” by viewing the whole system as capable of 
optimization, not just discrete and disparate pieces.  
Brainstorming discussions in class further promote this 
perspective. 

The course teaches performance optimization with an example in 
lecture and two projects (one in run-time, one in energy use). 
Several fundamental messages are presented.  

Be a slacker -- avoid all work possible.  

• Avoid unnecessary conversions (type, units, etc.) 
• Reuse results of computations 
• Eliminate extra run-time work by precomputing data at 

compile time when possible 
Do whatever remains as efficiently as possible.  

• Start with an efficient algorithm and problem representation, 
and then work your way down into the details.  

• Avoid double-precision math. Use fixed-point, single-
precision float, or look-up tables. 

• Use low-complexity algorithms. 
Measure the impact of your optimization.  

The whole-system view is coupled with a rigorous, analytical, 
performance-driven approach. After each optimization the 
performance impact is quantified, giving the students hands-on 
experience in determining what works well and what does not. 

4.2 Run-Time Optimization 
4.2.1 Performance Analysis: Profiling 
The first step in optimizing any characteristic of a system is 
determining which part is most to blame. We use statistical 
program counter sampling as a simple mechanism to rapidly 
determine program a program’s execution time profile across 
different functions. A timer peripheral is configured to 
periodically interrupt the processor at a configurable frequency. 
The timer’s interrupt service routine examines the return address 
on the call stack and identifies the corresponding function or other 
code region using a linear search through a look-up table created 
from debug information at compile time. The ISR increments the 
corresponding function’s count variable and then returns. 
The students are provided with a gawk script which processes the 
map file and generates a region table.  
An interesting side-lesson the students learn is that profiling 
incurs overhead. As they optimize the program more, the relative 
profiling overhead increases.  

4.2.2 Project 
In this project students optimize code which calculates the 
distance and bearing from an arbitrary position on the surface of 
the earth to the nearest of 163 weather and sea state monitoring 
station of NOAA’s National Data Buoy Center[1]. The locations 
of these stations are stored in an array in the MCU’s flash ROM. 
Locations are represented as latitude and longitude coordinates. 
Code to perform these calculations (using spherical geometry) is 
provided to the students as a starting point[4].  
The students change and enhance the code in and called by 
Find_Nearest_Waypoint.  Their grade depends in part on speed-
up. The students are encouraged to read the specifications and 
determine which features in the sample code are gratuitous time-
wasters which can be deleted. Several low-hanging fruit are 
provided. 

Table 2. Example of Run-Time Optimizations 

Optimization 
Run-
Time 

(seconds) 

Speed-Up (x) 

Incr. Cumul. 

Base program 19.78 n/a n/a 
Delete debug printf to 

LCD during search 17.17 1.15 1.15 

Eliminate bearing 
computation during search 7.75 2.22 2.55 

Replace PI/180 with 
constant 7.52 1.03 2.63 

Precalculate radians, sine 
and cosine for fixed 

locations 
4.15 1.81 4.77 

Force compiler to treat 
doubles as single floats 0.11 37.73 179.82 

Remove arcos and 
multiplication 0.04 2.75 494.50 

Sort fixed location table 
by latitude, start at approx. 

position in table 
0.061 0.66 324.26 

 

Students achieved a broad range of performance optimizations, as 
shown in Figure 4. Maximum speed-up was 7,204.2x, while the 
geometric mean was 666.5x.  

 
Figure 4. Distribution of Speed-Ups for Class 

0

5

10

15

20

25

6 8 12 17 23 33 47 67 95 13
6

19
2

27
3

38
8

55
1

78
2

1,
11

1
1,

57
8

2,
24

0
3,

18
1

4,
51

8
6,

41
5

9,
11

0

N
um

be
r o

f S
tu

de
nt

 P
ro

je
ct

s

Speed-Up

14 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



4.3 Energy Optimization 
Battery capacity and thermal limits make energy and power 
optimization important for many computing systems, whether 
embedded or general-purpose. Students intuitively understand the 
importance of  this due to their plethora of battery operated 
devices (laptops, phones, media players, etc.). 
A motivational example is presented for the students in the form 
of an embedded industrial sensor with extremely tight power 
consumption constraints. The processor was an 8-bit 
microcontroller. The processor clock had to be scaled down from 
the rated 20 MHz to under 1 MHz. This in turn limited the 
available computation cycles, forcing the code to be optimized as 
much as possible. The design team determined that the 32-bit 
floating point math offered adequate accuracy for sensor data 
linearization but was too slow. So they rewrote the floating point 
math library provided by the compiler vendor to use a 24-bit 
representation. 

Students are given background (in lecture and reading materials) 
on power and energy use of digital CMOS circuits. This focuses 
on the dependence of static and dynamic power on operating 
voltage and switching frequency. Students are then introduced to 
the power and energy saving features for the M16C-series 
processor as designed into the QSK62P+ board. Processor clock 
speed can range from 32 kHz to 24 MHz, using a combination of 
external crystals and a 4x phase-locked loop for frequency 
multiplication. The processor offers different power modes such 
as active, idle and stop. The clocks for different peripherals can be 
disabled (gated) or divided down to lower frequencies. Peripherals 
can be disabled (e.g. resistor chain for ADC). External and 
internal oscillators can be disabled or run in low power modes. 
These features are detailed in an application note on the subject 
for M16C processors. 

4.3.1 Performance Analysis: Energy Use 
We use a simple method to determine actual energy use: we 
measure circuit run-time when powerd by a supercapacitor. This 
eliminates the need to fabricate complex circuits to multiply 
current and voltage to find power, and then integrate power over 
time to determine energy.  

Students use a 1 Farad supercapacitor charged to 4.7 V. The 
energy used during a period of time (e.g. computations, idle time) 
is determined based initial (V0) and final (V1) supercapacitor 
voltages: 

( )2
0

2
12

VVCE −=     (1) 

The students construct the circuit in Figure 5 to power the QSK 
and charge the supercapacitor. The total current drawn from the 
USB port must be limited, but a simple series resistor would lead 
to excessive charging times. The circuit and associated control 
software keep the current to under 120 mA yet reduce charge time 
by reducing the resistance as the capacitor charges (as sensed by 
the microcontroller’s analog to digital converter at node 
VCap_Div_2). Resistor R1 sets initial charging current. The 
current is then increased by asserting signals Stage1 and Stage2 
which switch in R2 and R5 in parallel. Diode D1 allows discharge 
to bypass the resistors and can be a Schottky diode to reduce 
forward voltage drop. 

 
Figure 5. Supercapacitor charger and monitor circuit. 

An interesting complication in this application is that as the 
supply voltage falls, portions of the board will stop working. First, 
the LCD requires 4.3 V to be visible. The 0.6 V drop across D1 
makes the LCD unreadable when running off the supercapacitor, 
so students must use other means to evaluate program operation 
(e.g. LEDs, serial port). Second, the microcontroller and LEDs 
operate at down to 2.7 V. A supply voltage supervisor IC on the 
QSK (MCP120T-2701) holds the processor in reset when the 
supply voltage BOARD_VCC falls below 2.7V. 
4.3.2 Project 
In this project the students write and optimize code which 
periodically measures a thermistor’s temperature and sends the 
formatted data out the serial port. Once a second the thermistor is 
sampled ten times. These samples are averaged and converted to a 
text string (e.g. “77.2 F”) which is sent out the serial port at 57600 
baud. Students optimize the code so that it uses less energy by (1) 
using the MCU’s power- and energy-saving features, and (2) by 
optimizing the code run time by avoiding floating-point math (e.g. 
by using fixed-point math or a look-up table). The grading depend 
in part on how long the system operates and is curved based on 
the results of the entire class.   

The initial non-optimized program runs for roughly 3 seconds 
with the 1 F capacitor. Students applied various optimizations; 
Table 3 presents one student’s experiences.  

Table 3. Example of Energy Optimizations 

Optimization 
Run-
Time 

(seconds) 

Energy Savings  

Incr. Cumul. 

Base program 3 n/a n/a 
Switch CPU to wait mode 

when idle 100 33.3x 33.3x 

Disconnect QSK power 
LED 150 1.5x 50x 

Set all unused I/O ports to 
inputs 180 1.2x 60x 

Convert ADC and UART 
code from polled to 200 1.1x 67x 

15 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



interrupt-driven 

Disable peripheral clocks 
while processor is in wait 

mode after UART 
transmission finishes 

250 1.25x 83x 

Disable PLL when CPU is 
idle 275 1.1x 92x 

Place CPU in wait mode 
during ADC and UART 

operation 
280 1.02x 93x 

Use UART transmission 
completion interrupt  290 1.04x 97x 

Use 32 kHz clock instead 
of 24 MHz main clock 

when idle 
300 1.03x 100x 

 
Students achieved a broad range of performance optimizations, as 
shown in Figure 6.  

 
Figure 6. Maximum energy reduction was 100x, while the 
geometric mean was 14.3x. 
.  

5. PORTING CODE 
A common experience in industry is porting existing code to a 
new processor architecture. This may be due to a processor 
upgrade or reuse of code from a different project within the 
company or open source software. To give students experience in 
this domain we have a code porting project which gives reverse-
engineering experience for both hardware and software. The 
students choose between porting code to interface with either a 
microSD card or a color graphical TFT LCD.  

5.1 MicroSD FAT File System Porting 
The first option involves porting code to support microSD cards 
with the FAT file system. A serial communication interface (SPI) 
is used to interface with the microSD card, though there are faster 
parallel modes available.  

The students must write a program which lists all the files in a 
directory, displays the contents of a selected text file, and creates 

a text file. We use the Embedded File System Library [5] (EFSL), 
which targets the AVR 8-bit architecture and the ARM7 32-bit 
architecture. In order to port EFSL successfully, the students must 
add SPI communication support (by configuring a UART to 
operate in synchronous mode) and change the source code 
slightly, and modify compiler settings.  

The hardware interface between the MicroSD card and the MCU 
is quite simple. There are power (3.3V) and ground and four SPI 
signals (clock, chip select, data in and data out).  

A challenge which students must address is that there is a large 
array (512 bytes) declared as an automatic variable. Its size 
exceeds the 255 byte limit for the default compiler settings. The 
students either declare the variable as static or change a compiler 
option which supports additional addressing modes, removing this 
restriction. 

Students then added C Standard I/O support to the system, using 
the EFSL API. This involved creating fopen and fclose functions 
which return FILE object pointers. The remaining stdio functions 
can then be used without modification. 

Table 4. Example of MicroSD File Read and Write Speeds 

Operation Base time 
(us) Time per Byte (us) 

Read – direct EFSL 8718 4.35 

Read – C Standard I/O 8871 127.9 

Write – direct EFSL 8041 4.01 

Write – C Standard I/O 7975 149.1 
 

Students then evaluated the speed of read and write operations of 
both the raw EFSL and the C Standard I/O interfaces. Reads and 
writes of data blocks of various sizes were timed and analyzed, as 
shown in Table 4.  The C Stdio interface is much slower than 
EFSL because it performs reads and writes individual bytes rather 
than performing block operations.  

5.2 TFT LCD Driver Porting  
The second option involves porting code to support a 320x240 
pixel, 18-bit per pixel color thin-film transistor LCD[6], which is 
controlled by an SD2119 controller IC [7]. The controller supports 
several interface options: 8 bit parallel modes, 18 bit parallel, and 
serial SPI. The display module includes a four-wire resistive touch 
screen. Students must create an application to fill the entire screen 
with a single color, set a pixel to a specified color, and draw a line 
between given endpoints. Students must also solder a two fine 
pitch surface-mount connectors to interface with the LCD and 
touchscreen. The vendor (CrystalFontz) provides C source code 
targeting the AVR architecture. Students port this code to the 
M16C architecture, add graphic rendering code (line drawing and 
screen fill) and then measure the performance of the system.  
Some students optimized the performance of their rendering code 
using the same techniques in the run-time optimization project. 

6. STUDENT FEEDBACK 
Students were encouraged but not required to submit anonymous 
feedback on the course. 15 students responded, with results 
presented below. Some students made multiple suggestions, so 
counts do not total 15. 

0

2

4

6

8

10

12

1.
7

2.
0

2.
4

2.
9

3.
5

4.
1

4.
9

5.
9

7.
0

8.
4

10
.0

12
.0

14
.3

17
.1

20
.4

24
.3

29
.0

34
.7

41
.4

49
.4

59
.0

70
.5

84
.2

10
0.

5

N
um

be
r o

f S
tu

de
nt

 P
ro

je
ct

s

Energy Reduction Factor

16 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Table 5. Student Feedback on Successful Aspects of Course 
Count What worked best in the course? 

8 Projects 

1 Using chalkboard 

1 Simple enough projects, built up to final project 
1 In-class examples 

1 Range of freedom in projects, flexibility in how to 
achieve results 

1 Teaching style 

1 Everything 

1 Enthusiasm of instructor 

 
Table 5 shows what the students liked most about the course -- the 
projects! Another factor was the use of the chalkboard rather than 
powerpoint slides whenever possible.  This kept the students more 
involved in the class. 
Table 6. Student Feedback on Problematic Aspects of Course 

Count What worked worst in the course, and how 
would you fix it? 
 

2 Embedded coding style should be taught 

2 Too much pre-written code 

2 Cover less introductory material, assume students 
will be able to read manual 

2 Should include project based on RTOS 

1 Complex hardware diagrams drawn on chalkboard 
were hard to copy 

1 Introductory projects were too simple 

1 Compare with other MCUs 

1 Should include description of MCU’s memory 
structure 

1 Too much material covered in course 

1 Didn't like complexity of soldering/wiring, wanted 
to emphasize coding instead 

1 Homeworks not needed 

1 More strict project grading (too many A+ grades!) 

1 Don't do in-class programming exercises - just 
explain in class and then make them homework 

1 Improve mechanics of electronic component 
distribution 

1 Less code demonstration 

1 More focus on embedded system design 

1 More hands-on interaction by students. 

1 Use a higher-end processor (Beagleboard with 
Linux) 

1 Talk slower, leave time for students to transcribe 
Responses about how to improve the course are much more 
disparate.  
Some students suggested reducing the amount of time spent on 
introductory microcontroller material, and modifying the overly-
easy introductory projects. These components were built into the 
course because the majority of the students had no experience 
with the M16C architecture and development toolchain. A point to 
take away from this is that it is appropriate to challenge the 
students to come up to a new processor and toolchain without 
excessive handholding. 
Two students requested an RTOS-based project. RTOS coverage 
in the class consisted of lecture and hands-on demonstrations. An 
RTOS-based project was planned but dropped after the schedule 
slipped excessively. 
Another student recommended using a higher performance 
processor running an OS (e.g., Beagleboard running Linux). This 
reflects the extremely broad spectrum of embedded systems in the 
filed.  

7. CONCLUSIONS 
The course was effective in teaching optimization and porting 
techniques. Students gained an in-depth understanding of these 
topics through their hands-on projects. The competitive nature of 
the optimization projects pushed students to excel, leading to 
some truly remarkable improvements. 

8. ACKNOWLEDGMENTS 
The author thanks Renesas and BNS for equipment donations and 
other support. This work was funded in part by NSF CSR-EHS 
award 0720797 and ERC program award number EEC-08212121. 
The instructor is thankful for the contributions of the students in 
ECE 561 and ECE 492-13, as well as teaching assistants Josh 
Fisher and Hayden Stewart. 

9. REFERENCES 
[1] M16C/62P Group (M16C/62P, M16C/62PT) Hardware 

Manual 
[2] www.bnssolutions.com/QSK  
[3] http://www.ndbc.noaa.gov/   and 

http://www.ndbc.noaa.gov/cman.php  
[4] Chris Veness. http://www.movable-

type.co.uk/scripts/latlong.html.   
[5]  Embedded File System Library, http://efsl.be/  
[6] http://www.crystalfontz.com/products/320240f/datasheets/19

36/CFAF320240FTTS.pdf 
[7] http://www.crystalfontz.com/controllers/SSD2119.pdf 
 
 

 

17 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA

http://www.bnssolutions.com/QSK�
http://www.ndbc.noaa.gov/�
http://www.ndbc.noaa.gov/cman.php�
http://www.movable-type.co.uk/scripts/latlong.html�
http://www.movable-type.co.uk/scripts/latlong.html�
http://efsl.be/�
http://www.crystalfontz.com/products/320240f/datasheets/1936/CFAF320240FTTS.pdf�
http://www.crystalfontz.com/products/320240f/datasheets/1936/CFAF320240FTTS.pdf�
http://www.crystalfontz.com/controllers/SSD2119.pdf�


Support of Android Lab Modules for
Embedded System Curriculum∗

Meng-Ting Wang1, Po-Chun Huang2, Jenq-Kuen Lee1, Shang-Hong Lai1,
Roger Jang1, Chun-Fa Chang3, Chih-Wei Liu4, Tei-Wei Kuo2 and Steve Liao5

1 National Tsing-Hua University, Hsin-Chu, Taiwan. 2 National Taiwan University, Taipei, Taiwan.
3 National Taiwan Normal University, Taipei, Taiwan. 4 National Chiao-Tung University, Hsin-Chu, Taiwan. 5 Google Inc.

ABSTRACT
Technologies for handheld devices with open-platforms have
made rapid progresses recently which gives rise to the neces-
sities of bringing embedded system education and training
material up to date. Android system plays a leading role
among all of the open-platforms for embedded systems and
makes impacts on daily usages of mobile devices. In this
paper, we present our experience of incorporating Android-
based lab modules in embedded system courses. Our lab
modules include system software labs and embedded appli-
cation labs. The Android embedded application lab modules
contain computer vision, audio signal processing and speech
recognitions, and 3D graphics materials. Lab modules for
Android systems in embedded system software cover topics
on embedded compiler, HW/SW co-design, and power opti-
mization. We also illustrate how these laboratory modules
can be integrated into embedded system curriculum. Feed-
backs from students show that these laboratory modules are
interesting to students and give them essential training of
adopting Android components for embedded software de-
velopment.

Categories and Subject Descriptors
K.3 [Computing Milieux]: Computers and Education;
D.4 [Operating Systems]: Software;
C.5 [Computer System Implementation]: Computer
Systems Organization

General Terms
Embedded Operating System, Multicore System, Open-platform

1. INTRODUCTION
∗The correspondence author is Jenq-Kuen Lee. Author’s
address: Department of Computer Science, National Ts-
ing Hua University, Hsin-Chu 30013, Taiwan; email: jk-
lee@cs.nthu.edu.tw.

As technologies for handheld devices with open platforms
have made rapid progresses recently, open-platforms such as
Android and MeeGo are getting momentum. Mobile devices
with microphone and speaker, video camera, touch screen,
GPS, etc, are served as sensors for experiencing with aug-
mented reality in human life. The prosperity of embedded
system applications on open-platforms give rise to the neces-
sities of bringing traditional materials of embedded system
education up to date to help the students learn to design mo-
bile applications and gain experience of embedded software
development for handheld devices. This paper presents our
experience of incorporating laboratory modules based on an
open-platform, Android, in devising innovative embedded
system courses.

We coordinate with Embedded Software Consortium (ESW
Consortium) to develop the Android-based embedded sys-
tem curriculum. The ESW Consortium is funded by the
Ministry of Education, Taiwan in 2004 with a mission of
embedded system course development, promotion, and eval-
uation for computer science and electrical engineering pro-
grams in almost all universities in Taiwan. We used a two-
phase scheme for Android-based embedded system curricu-
lum development which is shown in Figure 1. The two-phase
plan including the course development phase and promo-
tion phase. During the development phase, the Android-
based embedded system curriculum is devised by responsible
course development team members and underwent course
trial runs in the developer’s universities respectively. All of
the lab modules are further peer-reviewed to make sure that
they can be conducted successfully. In the promotion phase,
curriculum promotion workshops are held to help spread
the education of embedded system development techniques
for Android platforms. After the curriculum development
reaches a certain level of maturity, the resulting course ma-
terials would be contributed to a web repository and donated
to the Google Code University with Creative Commons Li-
cense.

In this paper, we present our Android-based lab modules
for embedded application and system software development.
Lab modules for Android in embedded applications include
computer vision, audio signal processing and speech recog-
nitions, and 3D graphics materials. These are lab modules
to illustrate the design flow for writing applications such
as augmented reality for embedded devices. The first lab

18 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



C
o
u
rse

d
ev

elo
p
m

en
t

p
h
ase

Advisory board

Embedded Software Consortium

Existing embedded system course

Comments and suggestions from other

program members, professors and

industry executives

Regular course development meeting

Course

development team
Google, Inc.

Student feedbacks

Course trial run

Course development

Innovative embedded

system curriculum

Promotion phase

Regular course promotion

(e.g.,workshop and seminar)

Android-based laboratory modules

Google code university

Figure 1: A two-phase Android-based curriculum
development

module introduced is the embedded computer vision mod-
ule focusing on the development of a face recognition, min-
ing, and synthesis system on Android platform. Second,
the course module related to audio signal processing and
recognition aims to help the students become familiar with
the design flow of implementing speech technologies within
Android application framework. In the 3D graphics mod-
ule, we focus on the rendering of high-quality lighting ef-
fects, which is as known as global illumination, on Android
platforms. Next, lab modules for Android systems in em-
bedded system software cover the topics on embedded com-
piler, HW/SW co-design, and power optimization. Due to
the fact that the progresses of open-source platforms mainly
rely on software communities, our system software lab mod-
ules are designed in a way to explain the design flow of fur-
ther embedded system optimization so that the students can
gain the abilities to make contributions to the open-source
platforms. In the embedded compiler lab modules, the stu-
dents learn how to optimize garbage collection algorithm for
Android Dalvik virtual machine (Dalvik VM). Another lab
module covering code size optimization topics teaches the
students to configure and customize the Android systems
libraries. Next, the HW/SW co-design module employs a
hardware-accelerated multi-tasking coprocessor interface as
a case study for HW/SW co-design flow for the Android sys-
tem. Then, the power optimization lab module, instructs
the students in energy consumption reduction for applica-
tions. In addition, we also illustrate how these laboratory
modules can be integrated into embedded system curricu-
lum. Feedbacks from students show that these laboratory
modules are interesting to students and give them essential
training of adopting Android components for embedded soft-
ware development. Initial tryout of teaching and feedbacks
from students show that these lab modules are interesting to
the students and certainly give essential training to students
of adopting Android components for embedded software de-
velopment.

In Section 2, we give a brief introduction to Android plat-
form framework and the software development flow within
the Android framework. Next, Section 3 presents our An-

droid lab modules. Section 4 discusses the use of these lab
modules for existing embedded system curriculum. Next,
course evaluation and comments from the students after
trial runs of the embedded system courses with our Android-
based lab modules are analyzed in Section 5. Finally, Sec-
tion 6 concludes this work.

2. BACKGROUND WITH ANDROID FRAME-
WORK

Android is an open-source mobile phone platform developed
by Google and Open Handset Alliance. Within the An-
droid framework, software designers can customize the mo-
bile phones with their innovative ideas according to user
experience and preference [15]. Android can be regarded
as a software stack consisting of five layers, the bottom-
most Linux kernel, middleware libraries, Android runtime,
application framework, and the applications. The Linux-
based kernel layer provides system services such as mem-
ory management, process management, and device drivers
which enable the access of the underlying resources for sys-
tem software. This layer serves as the Hardware Abstrac-
tion Layer (HAL) to reduce the complexity of access of the
hardware device resources. Next, the middleware library
layer provides a set of libraries with various functionalities
such as the Open Graphic Library (Open GL) [10], stan-
dard C library(libc), and the media framework. A majority
of the middleware core libraries are written in C/ C++ lan-
guage while Android applications are developed in JAVA.
Therefore, applications access the resource through Java
Native Interface (JNI). The next layer is the application
framework layer which simplifies the reuse of applications
by defining a common Application Programming Interfaces
(APIs) for all kinds of applications, for example, the on-
screen Graphical User Interface (GUI) components and the
application-specific data convention. Finally, the topmost
applications layer contains a set of core application which
are written in JAVA. To make the Android software devel-
opment more convenient, the Android system are equipped
with the Android Software Development toolkit (Android
SDK) [11] which contains tools to help the developer set
up the development environment, profile the program, and
manage the user interface of the software, such as Ant build
tools, Android Virtual Device Manager, and Android em-
ulator. In addition, Android Native Development Toolkit
(Android NDK) is provided for developers so that they can
build native code for performance-critical programs. During
the development, programmer can verify their design using
the Android emulator and the Android Debugger (ADB)
provided in Android development toolkits.

Within the Android application framework, each applica-
tion works on a dedicated Dalvik VM. Thus, the Android
applications are basically developed in Java language within
the Android application framework so that they can be con-
verted in to Dalvik bytecode. In our Android-based applica-
tion lab modules, the students are also guided to access the
related C/C++ libraries through JNI for efficient develop-
ment of the Android application. Android components such
as libc, content providers, view system, package manager,
and resource manager are utilized for software development
in the lab modules; each lab module is related to a cer-
tain number of specific Android system components. This
will help train students to develop their own applications on

19 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Input image

Face detection &

Feature detection

Expression

Recognition

Texture

Enhancement

Determine

Shape coefficients

AN or HA

Score

Figure 2: The RMS system operation flow

Android phones. Computer vision lab module adopts the
display driver, camera driver, and the media framework of
Android system. The audio signal lab module employs both
audio driver and media framework to support the speech
recognition operation and 3D Graphics lab module makes
use of API in OpenGL and SGL. Similarly, system lab mod-
ules are designed to guide students to be able to further opti-
mize system performance and power. The infrastructures of
Android system software are revealed by lab modules includ-
ing garbage collection(GC) optimization for Dalvik VM and
code size optimization for tuning GCC options for Android
applications or systems. The HW/SW co-design lab mod-
ule utilizes the binder driver and the Android runtime mod-
ules to deal with inter process communication (IPC). The
dynamic power management lab module references power
management middleware and the Dalvik VM to carry out
system optimization idea.

3. EMBEDDED ANDROID LAB MODULES
Android encourages application development for customiz-
ing mobile devices by providing practical APIs and middle-
ware libraries. We design a set of lab modules for students
with the aim to give them hands-on experience on Android
platforms. Our lab modules include system software labs
and embedded application labs. We will describe each of
them in this section.

3.1 Embedded Android Application Lab Mod-
ules

Android application lab modules include three major top-
ics, embedded computer vision applications, speech tech-
nologies, and 3D Graphics and Game APIs. These are lab
modules to illustrate the design flow for writing innovative
applications for mobile phones under Android platforms.

A. Embedded Computer Vision Applications on An-
droid Platforms
• Related Android Component
Android SDK, Android NDK, Display Driver, Camera Driver,
Media Framework
• Lab Outline
In embedded computer vision applications lab modules, we
set the goal to develop Android applications using the light-
weight Recognition, Mining, and Synthesis schemes (RMS),
which is developed in C++ language. The face RMS sys-

tem will focus on the eigenface-based face detector, facial
interest point detector, facial expression recognition by us-
ing Support Vector Machine (SVM), and facial expression
exaggeration by image deformation warping from expression
optical flow analysis [5]. Figure 2 depicts the RSM opera-
tions, from input image parsing, face and feature detection
in the input image, and recognition of the facial expression.
The facial expression recognition scores the image to de-
termine the shape coefficients in order to conduct further
texture enhancement [16]. Moreover, face image mining and
imposing map information on street images are also appli-
cations students can experiment with this lab module. In
this lab, the students first learn to develop the RMS sys-
tem on a PC, and then port the system onto the Android
system to increase the portability of the applications. The
RMS system can be applied to both face image mining and
street scene matching. Once the face object and the street
scene is matched with instance within the database, infor-
mations can be imposed to the input photo. For instance,
the 3D viewing direction and the location information can
be added to screen scene pictures.

B. Speech Technologies for Embedded Systems
• Related Android Component
Android SDK, Android NDK, Audio Driver, Media Frame-
work
• Lab Outline
The Speech Technologies for Embedded Systems module
aims to assist the students in getting familiar with the de-
sign manipulation of implement speech technologies under
Android application framework. The students are expected
to work on projects in groups. The projects require the stu-
dents to come up with innovative speech and audio appli-
cations on Android platforms which can be well exemplified
by speech interface for name dialing, query-by-singing inter-
face for song database search, and voice-activated personal
verification systems. The development of these applications
in labs needs the support from the Speech Recognition li-
brary written in C and C++ language which we prepared
before running the class [7]. The library was turned into
shared object files using the Android NDK. Through JNI,
the students can access the shared object files to manage
the operation sequence form reading data from the specified
wave file, conducting speech recognition, and displaying the
result in the labs.

C. 3D Graphics and Game APIs on Android Plat-
forms
• Related Android Component
Android SDK, Android NDK, OpenGL, SGL
• Lab Outline
The photo realistic rendering of 3D scenes is a focus of this
lab module. Issues like various options to display the scenes
and the method to increase the frame rates on thin clients
such as mobile devices are discussed. We introduce the 3D
Graphics and Game APIs lab modules on Android plat-
form to give students tutorial of the technologies mentioned
above. Learning from development of 3D games, the stu-
dents would gain the ability to design the 3D graphics and
gaming APIs for the Android platforms in these lab modules.
In addition, certain lab modules are designed to demonstrate
the workload partition of the traditional 3D rendering for
cloud computing models which include handheld devices as

20 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



clients. A typical example is to employ cloud computing
techniques for pre-computed radiance transfer (PRT) which
is used in 3D graphics for dynamic lighting changing [14]. In
this case, heavy pre-computation could be done in the cloud
while the final rendering is done on the client side. Students
learn to manage the client side final rendering operations on
Android platforms from this lab module.

3.2 Embedded Android System Software Lab
Modules

In addition to the applications, lab modules for Android sys-
tems in embedded system software cover the topics on em-
bedded compiler, HW/SW co-design, and power optimiza-
tion. The software lab modules are designed in a way to
explain the design flow of embedded system optimization so
that the students can gain the abilities to make contribu-
tions to the open-source platforms. These lab modules are
descrbed as follows.

D. Garbage Collection Optimization of Dalvik VM
• Related Android Component
Android SDK, Android Open Source Project (source code),
Core Libraries, Dalvik VM
• Lab Outline
Among various system optimizations methods, garbage col-
lection (GC) is a important part of memory management
deallocating the occupied memory space of objects which
are no longer in use. In this lab module, we illustrate ways
for possible enhancements with GC in Dalvik VM. For ex-
ample, as Dalvik bytecode is with registers of no type infor-
mation, Dalvik VM suffers from the penalty with GC. For
example, when a memory space is not used anymore while
a register contains a non-pointer data whose value happens
to be the address of the memory space, the system can not
conduct GC precisely to reclaim the space because it has
the misunderstanding that the memory space is still in use.
We illustrate how to devise a binary-code analyzer for per-
forming type-precise scan and live reference analysis for GC
in Dalvik VM [8]. With understandings of internal designs
of GC in Dalvik, students will be able to devise further
optimizations schemes with GC under Dalvik framework.
Figure 3 illustrates the flow of our GC optimization scheme
in this example with lab module. The system obtains regis-
ter data types of methods included in the Dalvik executable
files after the executable files undergo static data flow anal-
ysis. With the register data type information, Dalvik VM is
able to run precise GC operation during run time.

E. Embedded Compiler Code Size Optimization for
Android
• Related Android Component
Android SDK, Android emulator, ADB, Android Virtual
Device, ARM EABI
• Lab Outline
Subject to the limited storage of embedded systems, code
size has been a critical issue. Compilers are equipped with
numbers of options that can reduce the resulting binary code
size [3]. Options like“-O2”,“-O3” and“-Os” are actually com-
binations of several options with different influences on the
binary code, such as frame pointer elimination, variable vis-
ibilities, and function section adjustments. However, inter-
actions between different options cause uncertainties code
size. We design this lab module to teach the students these

Dalvik Static time 

data-flow analysis

.dex file

Register type 

data structure

for every method

Dalvik Run Time Execution

.dex file Dalvik Run Time Execution

Dalvik Run Time Precise 

Garbage Collection

Figure 3: Garbage collection optimization for Dalvik
VM

concepts and develop a code size optimization tool for the
lab.

This tool gives suggestions on compiler option combinations
which lead to optimal or suboptimal binary code size with
performance concerns.The optimization flow of the tool is
shown in Figure 4. To compile the input program under con-
sideration of code size and performance, the tool compares
the results of compilations with different option combina-
tions. The genetic algorithm is employed to search within
different option combinations for the best result [4]. The
search begins forming a baseline set which is determined
in experiments during development of the tool. The base-
line set contains the options which makes major impact on
code size for benchmarks such as EEMBC and MiBench. In
Android code size optimization lab modules, the students
can get hands-on experiences of the tool, verify the result
binary using Android emulator, and then discuss on the re-
sults of distinct option combinations. Besides, the students
can learn to tune the parameters in genetic algorithm to
reach a balance between code size reduction ratio and the
searching time.

F. HW/SW Co-Design Flow on Android Multi-core

Genetic Algorithm

Performance

Consideration
Option Baseline

Compilation

Android Kernel/Application

Source Code

Optimized Compile Result

Code Size / Performance Optimization Tool

Compiler option suggestion

Figure 4: Code size optimization for Android system
software and applications

21 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Figure 5: PowerBox, the power management tool

Platforms
• Related Android Component
Android SDK, Android NDK, Linux Device Driver, Binder
(IPC) Driver, ARM Developer Suite v1.2
• Lab Outline
This lab module was designed with the major goal to teach
the students how to follow HW/SW co-design flow in the
presence of the Android platform. Through experiments,
students will learn and develop a low-power design flow in a
HW/SW co-design mechanism. After the training, students
would be familiar with ARM SoC platform [18]; to be more
specific, ARM Versatile board and the Android system as
our target platform [2]. The students would fist requir to
set up the configuration in the Android source code with the
Versatile hardware information and then develop a JPEG
encoding program in the system. There are two ways to
implement the operation, either spread the workload of the
MPU to other DSPs or simply running the operations on
the master processor. Further, the students are guided to
refine the program following the HW/SW co-design flow to
make the operations fast and with low-power consumption.

G. Dynamic Power Management and Voltage Scal-
ing on Android Platforms
• Related Android Component
Android SDK, Power Management, Core Libraries, Dalvik
VM
• Lab Outline
For mobile phones, power management is critical in the light
of battery life of the device. Also, as the emerging of many
applications that rely on heavy data communication, the
knowledge about dynamic power management of the com-
munication modules (such as 3G and WiFi) is required [6].
The goal of this lab module is to maximize the lifespan of the
cell phone under the given periodic task sets [12]. In the lab,
the power management tool, PowerBox shown in Figure 5, is
adopted to monitor the instantaneous current of the device.
Multi-core issues are considered by the students in the lab.
Students are requested to design and implement intelligent
energy-efficient policies, and then demonstrate the effective-
ness of their dynamic voltage scaling (DVS) designs. This
lab module contains two project assignments from which
students learn to turn on and turn off the backlight of mo-
bile phones in an on-demand mechanism with the supports

from Android power management libraries and also try to
design dynamic backlight scaling algorithms with real-time
and energy-efficient considerations.

4. ANDROID-BASED EMBEDDED SYSTEM
CURRICULUM

In this section, we illustrate how these laboratory modules
can be integrated into existing courses in embedded system
curriculum. These courses are courses offered either in Tai-
wan Embedded Software Consortium (ESW Consortium) or
in the department the professor developed this lab module.
Table 1 gives a summary of these courses. We will briefly
describe below each course and their uses of Android lab
modules developed.

4.1 Embedded Computer Vision Course(ES-
Y09-N1)

Major topics of computer vision course are about the theory
supporting image information abstraction in artificial sys-
tems. Contents of computer vision course cover the knowl-
edge ranging over geometric operations and image process-
ing techniques like the eigen-face detection approach, seg-
mentation, object recognition. In addition to conventional
materials for embedded computer vision course, this course
also gives the students computer vision application examples
like biological vision and the image Recognition, Mining, and
Synthesis schemes(RMS).

We use the RMS lab module to introduce practical applica-
tions in computer vision field to the students. The face RMS
system consists of face detection, facial expression recog-
nition, and facial expression exaggeration components; we
explain algorithms corresponding to each of the three oper-
ations to the students and then teach them to implement
the applications in C++ programs on a PC platform first
and port onto the Android platform afterwards. Students
are trained with two face-related RMS implementations on
Android-ready multi-core platforms to gain knowledge about
the optical flow of images. For the facial expression exag-
geration, we focus on the image warping technique to syn-
thesize facial expression for a face image. For the face image
warping, we use the optical flow fields computed from the
training face images as the warping function. The students
will learn how the optical flow is computed from images and
how it can be used to warp images. “Facial expression ex-
aggeration” experiments also emphasize the details of input
face images or the synthesis of cartoonized face images. The
other application is “automatic background substitution”,
which is to segment the face and upper body region from
the background region and then replace the background im-
age. The implementation in the labs is corresponding to the
course topics about face detection, facial expression recog-
nition, and exaggerated facial expression synthesis.

4.2 Audio Signal Processing Course(ES-Y09-
N2)

This course covers basic methodologies in audio signal pro-
cessing and recognition, including fast Fourier transform
(FFT), Mel-frequency cepstral coefficients (MFCC), Gaus-
sian mixture model (GMM), dynamic time warping (DTW),
and hidden Markov model (HMM) [17]. Specific applica-
tions based on these methodologies are also introduced, such

22 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Table 1: Embedded system curriculum with corresponding Android lab modules
Course
Category

Course Num-
ber

Course Name Incorporated Android Lab Module

Application ES-Y09-N1 Embedded Computer Vision • Embedded Computer Vision Applications on Android Platforms
courses ES-Y09-N2 Audio Signal Processing • Speech Technologies for Embedded Systems

ES-Y09-N3 3D Graphics • 3D Graphics and Game APIs on Android Platforms
System ES-Y05-2 Embedded Compiler • Garbage Collection Optimization for Dalvik VM
software • Embedded Compiler Code Size Optimization for Android
courses ES-Y08-3 HW/SW co-design • HW/SW Co-Design Flow on Android Multi-core Platforms

ES-Y03-1 Real-Time Systems • Dynamic Power Management and Voltage Scaling on Android
Platforms

as endpoint detection, pitch tracking, speaker recognition,
query by singing or humming, query by tapping, speech
recognition, speech assessment, text-to-speech synthesis. We
also prepare elaborating course website with abounding on-
line resource [1].
In the incorporated lab module, the students are guided to
develop speech application program interface for name dial-
ing, query-by-singing for song database search, and voice-
activated personal verification systems. The laboratories
can help the students map abstract course topics about au-
dio signal processing to practical implementation and evolve
the abilities to build up useful audio signal processing soft-
ware using the Android components.

4.3 3D Graphics Course(ES-Y09-N3)
In 3D Graphics course, there are three major topics cov-
ered: general 3D techniques, state-of-the-art of GPU-based
lighting effects and 3D graphics on Android. At the begin-
ning of this course, Open GL is introduced to the students
since the OpenGL API plays a key role in many 3D graph-
ics implementation. Next, this course discusses common 3D
graphic issues like global illumination, texture mapping, pro-
grammable shaders, 3D graphics pipeline, and rasterization.
Examples of OpenGL program illustrate these concepts to
the students.

The cooperating lab module of this course, 3D graphics and
game APIs on Android platforms, help the students fully
understand the GPU-based lighting effects includes environ-
ment lighting, indirect lighting, refraction and caustics, and
volumetric effects. The rendering of high-quality lighting ef-
fects on mobile platforms (as known as global illumination)
is one of the key points throughout the 3D Graphics course
and our 3D graphics lab is dedicated to this theme. With
concept of global illumination and the current GPU-based
implementation of various 3D effects, students are trained to
develop an OpenGL program to keep trace of the execution
path all the way from the Java code, JNI, native C code to
the low-level source code of Android OpenGL.

4.4 Embedded Compiler Course(ES-Y05-2)
Embedded compiler course introduces the system optimiza-
tion schemes of embedded compilers. It includes data de-
pendence analysis, data flow equation, classical loop opti-
mizations, compilers for embedded DSP processors, com-
piler for low-power, VM, GC, and JIT, compiler for code
size reduction, and performance analysis. GC lab module
can be used when GC and VM section are discussed. In
addition, Lab module for code size reduction can be used
when one discusses the section related to compiler for code

size. For the GC lab module, GC is introduced as a form of
automatic memory management which makes the memory
utilization more efficient. Algorithms to solve GC problems
like memory leakage, dangling pointer, and double free bugs
are discussed. As an example, the GC algorithm of Dalvik,
“mark and sweep”, is introduced to the students. Students
are expected to understand how GC works and then devise
schemes to further optimize the GC in Dalvik environments.

For the yopics on code size reduction, we include classic
code compression and compaction methods study and in-
troduction of existing code size optimization schemes like
procedure abstraction, variable visibility handling, and dual-
width instruction set architecture. To establish background
knowledge for students, a certain number of examples of
code size reduction scheme are employed to illustrate prin-
ciples for code size optimization. As one of the most common
used code size reduction scheme, the mechanism of optimiza-
tion options for code size reduction provided by GCC is an
emphasized topic in this embedded compiler course. In the
code size optimization lab module, students can observe the
code size reduction resulted from GCC code size optimiza-
tion options. Further discussion about experiment result in
the lab can inspire the students the operations and effects
of compiler options. Moreover, the code size reduction tool
used in the lab adopts genetic algorithm to search for the
best optimization option combination, so the students can
also learn to design an instance of genetic algorithm to help
embedded system optimization.

4.5 HW/SW Co-design Course(ES-Y08-3)
This course mainly focus on the framework of HW/SW co-
design of embedded systems. Process management and in-
teraction between procedures are introduced to the students
first. Students learn about how tasks divergence impact the
operations in embedded systems and the controller utiliza-
tion of the reactive procedures. Heterogeneous multi-core
system on chip issues are our major concern in this course.
With the basic knowledge of the interaction between hard-
ware and software in embedded systems, the students can
gain insights into how software provides features and flexi-
bility to an application, how the hardware is designed under
consideration of performance, and most important of all,
how to join the design flow of hardware and software for a
better application design.

In this course, we introduce how HW/SW co-design helps
with the enhancement of task management of a RISC ar-
chitecture combined with a DSP processor since that tasks
divergence in most embedded systems, especially for het-
erogeneous multi-core system, sometimes causes inefficient

23 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



task management and inter-processor communication (IPC)
overhead [9]. To help the students learn from practical in-
stance, we introduce the framework of Android to the stu-
dents first. Then in the incorporating lab module, HW/SW
co-design Flow on Android Multi-core Platforms, the stu-
dents are guided to program with performance concerns for
heterogeneous dual-core platforms using the hardware ac-
celerated streaming remote procedure calls, which can be
seen as a multi-tasking coprocessor interface. The students
can gain the ability to handle the whole HW/SW co-design
flow and the stream controller programming for multi-DSP
environment from the course and the lab module.

4.6 Real-Time System Course(ES-Y03-1)
The limited resource of mobile devices poses the necessity of
system and application programs to reduce the energy con-
sumption of applications [13]. In real-time system course,
we first give a brief introduction of embedded system archi-
tecture and the underlying hardware. The students can gain
basic knowledge of peripherals, memory, interfacing, hard-
ware architecture thorough the lectures. In addition, topics
about essential components and features of embedded real-
time operating system are covered by this real-time systems
course.

The students learn the scheduling policies, hardware re-
source control and inter procedure communication concepts
from existing embedded real-time system examples.In par-
ticular, we managed to let the students learn how to design
and implement real-time energy-efficient policies adapting
to different behavior type of applications. DPM and DVS
techniques are the major topic in this course. We use the dy-
namic power management(DPM) and voltage scaling (DVS)
on Android platforms lab module to help the students fully
understand the concepts of real-time system DVS. Through
the lab, Android power management libraries and associated
Android device drivers assist the students in implementation
of subjects in this course.

5. EDUCATIONAL EFFECTS AND ACHIEVE-
MENTS

5.1 Statistical Data Analysis of Course Evalu-
ation

After the course development reached a certain level of ma-
turity, trial runs of the newly-devised courses were held re-
spectively in National Taiwan University, National Chiao-
Tung University, National Tsing-Hua University, and Na-
tional Taiwan Normal University. In order to evaluate the
educational results of the Android-based embedded system
curriculum, when the course trials were completed, we con-
ducted an appraisal survey about the educational results and
achievements through questionnaires for students.

According to the feedbacks received form the 3D graphic
course, embedded compiler course, and real-time system
course, 82% of the students stated that after taking the
courses, they understood the framework of mobile platform
systems. 60% of the total strongly agreed on that the An-
droid SDK and the NDK certainly offered a user-friendly
Android application development environment by providing
most of the necessary Android components for the labora-
tories, whereas 18% of the students thought handling the

operations through the SDK and NDK are not conveient
enough. Overall, 75% of the total said that they made a
great effort to implement the lab requirement and learned
from the well-prepared course materials. All of the stu-
dents are willing to do further studies about the Android
SDK/NDK. More than 65% of them showed great enthu-
siasm for more researches about software development for
mobile devices, which is exactly one major objective of incor-
porating Android-based laboratories into embedded system
curriculum. In other words, according to the careful analy-
sis of obtainable resulting data shows that the lab modules
we designed for embedded system courses enhancement cer-
tainly offer competent support for devising innovative em-
bedded system curriculum to help students to get hands-on
experience of Android.

5.2 Feedbacks from Students
After the course trial run, we receive comments from the
students taking the 3D Graphics and the real-time system
course which shows that the Android-based lab modules sub-
stantially aid embedded systems education by connecting
the theoretical knowledge and the practical implementation.
The goals of the lab modules is achieved; the lab modules
certainly help the students evolve the ability to indepen-
dently develop applications and system software with the
supports form related Android components. Some instances
of the feedback comments are list bellow.

Comments For 3D Graphics Course

• The most different part of develop gaming application for
mobile phone is that the operation were designed on the
account of IO interfaces provided by the device, e.g., touch
screen and vibration , rather than the standard IO. I think
this is the main factor in making the course an outstanding
one.

• In this course, my group came up with a pinball game.
The 3D pinball game application can be partitioned into 4
modules, UI, dynamic object module, data center and ren-
der engine. The UI implementation was relatively simple
due to supports form Android SDK while it took our great
efforts to design the render engine part which needed 3D
graphics techniques like the texture mapping and illumina-
tion estimation.

• To develop the 3D game for the term project, we adopted
Eclipse IDE because it can cooperate with Android SDK
seamlessly. Eclipse not only simplified the access of re-
sources in the SDK (such as UI layout and the application
service management), but also provided a handy interface
for the Android Virtual Device management. The develop-
ment was quite straight forward once the Eclipse and the
Android SDK were settled down.

Comments For Real-Time System Course

• The Android architecture made me wonder if the software
stack complexity affects the performance of the Android sys-
tem and in the lab, I realized that optimizations are neces-
sary indeed. In the term project of this course, we tried to
change the processor clock rates by using clock-rate-tuning
functionality provided by the Kernel layer of Android in or-

24 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



der to lower the power consumption. The Android-based
labs bridged my knowledge about the real-time system and
the practical implementations.

• At the very first beginning, we tried to derive performance
optimization by decreasing the delay of file system access
caused by Android software stack overhead but it turned
out to be in vain. We found out that directly access of
the file system in Linux environment only contributed 10%
performance improvement in this case. Although our first
method is not successful, we learned that workload distribu-
tion to other processor would be a better way to optimize
the system. Spreading massive and repetitive computation
from the application on the MPU to the DSP led to a large
improvement in out experiments. To carry out the imple-
mentation on Versatile platform, the streaming IPC inter-
face which we learned to use from the classes is very helpful.

• Honestly, we struggled to build the Android SDK envi-
ronment when working on the term project at once. Our
suggestion for this course is to simplify this process by pro-
viding a VM settled with the environment so that we can
get to the core implementation of HW/SW co-design easier.

• I learned to use ARM tools which are provided in the ARM
Developer Suite to build the Linux kernel for Android and
implemented the DPM to carry out an energy-efficient plan
of tuning power levels of the peripheral devices on a smart
phone. After the training, I know how to employ Android
components for application development to customize the
mobile devices with new ideas.

• The experiments in classes certainly made me learn to
speed up operations by spreading workload to other DSP
form the lab on heterogeneous platform consisting of a MPU
and DSP units. And the implementation in the lab also
made me understand how the MPU prompt the DSP op-
erations by invoking device driver. We managed to deal
with inter-processor communication and DSP task schedul-
ing. My greatest gain from the course is the ability to use
system call to access functionalities of the hardware.

6. CONCLUSION
We developed a series of Android-based lab modules involv-
ing various topics from Android applications to Android sys-
tem software. All of these Android-based lab modules were
also integrated into the related embedded system courses
in order to bring up the embedded system education. A
careful analysis of the evaluation of trial-run course and
comments from the students leads to the conclusion that
Android-based lab modules substantially aid embedded sys-
tems education by connecting the theoretical knowledge and
the practical implementation. The overall result shows that
Android-based lab modules offer competent support for de-
vising innovative embedded system curriculum.

7. REFERENCES
[1] Audio signal processing and recognition.

http://mirlab.org/jang/books/audioSignalProcessing.

[2] K. Barr. Summarizing multiprocessor program execution
with versatile, microarchitecture-independent snapshots.
PhD thesis, Citeseer, 2006.

[3] J. Cavazos, G. Fursin, F. Agakov, E. Bonilla, M. O’Boyle,
and O. Temam. Rapidly selecting good compiler

optimizations using performance counters. In Proceedings
of the International Symposium on Code Generation and
Optimization, pages 185–197. IEEE Computer Society,
2007.

[4] K. Cooper, P. Schielke, and D. Subramanian. Optimizing
for reduced code space using genetic algorithms. ACM
SIGPLAN Notices, 34(7):1–9, 1999.

[5] C. Hsieh, S. Lai, and Y. Chen. Expression-invariant face
recognition with constrained optical flow warping. Institute
of Electrical and Electronics Engineers, 2009.

[6] C. Hung, J. Chen, and T. Kuo. Energy-efficient real-time
task scheduling for a DVS system with a non-DVS
processing element. In 27th IEEE International Real-Time
Systems Symposium, 2006. RTSS’06, pages 303–312, 2006.

[7] J.-S. R. J. Jiang-Chun Chen. Trues: Tone recognition using
extended segments. In ACM Transactions on Asian
Language Information Processing, 2008.

[8] D. Jung, S. Bae, J. Lee, S. Moon, and J. Park. Supporting
precise garbage collection in Java Bytecode-to-C
ahead-of-time compiler for embedded systems. In
Proceedings of the 2006 international conference on
Compilers, architecture and synthesis for embedded
systems, page 42. ACM, 2006.

[9] Y. Li, T. Callahan, E. Darnell, R. Harr, U. Kurkure, and
J. Stockwood. Hardware-software co-design of embedded
reconfigurable architectures. In Proceedings of the 37th
Annual Design Automation Conference, page 512. ACM,
2000.

[10] K. A. Mark Segal. The OpenGL Graphics System: A
Specification.

[11] R. Meier. Professional Android Application Development.

[12] T. Pering, T. Burd, and R. Brodersen. The simulation and
evaluation of dynamic voltage scaling algorithms. In
Proceedings of the 1998 international symposium on Low
power electronics and design, pages 76–81. ACM, 1998.

[13] P. Pillai and K. Shin. Real-time dynamic voltage scaling for
low-power embedded operating systems. In Proceedings of
the eighteenth ACM symposium on Operating systems
principles, page 102. ACM, 2001.

[14] P. Sloan, J. Kautz, and J. Snyder. Precomputed radiance
transfer for real-time rendering in dynamic, low-frequency
lighting environments. In Proceedings of the 29th annual
conference on Computer graphics and interactive
techniques, pages 527–536. ACM, 2002.

[15] B. Speckmann. The Android mobile platform. PhD thesis,
Eastern Michigan University, 2008.

[16] M. Turk and A. Pentland. Face recognition using
eigenfaces. In Proc. IEEE Conf. on Computer Vision and
Pattern Recognition, volume 591, pages 586–591, 1991.

[17] H. Wang, Y. Qian, F. Soong, J. Zhou, and J. Han. A
multi-space distribution (MSD) approach to speech
recognition of tonal languages. In Ninth International
Conference on Spoken Language Processing. ISCA, 2006.

[18] H.-C. C. Y.-C. Liao, C.-C. Lin and C.-W. Liu.
Self-compensation technique for simplified
belief-propagation algorithm. In IEEE Trans. Signal
Process, volume 55, pages 3061–3072, June 2007.

[19] Y. You, C. Huang, and J. Lee. Compilation for compact
power-gating controls. ACM Transactions on Design
Automation of Electronic Systems (TODAES), 12(4):51,
2007.

25 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Risk Areas In Embedded Software Industry Projects
Philip Koopman 

Carnegie Mellon University 
ECE Dept., HH A-308 

Pittsburgh, PA 15213  USA 
+1 (412) 268-5225 

Koopman@cmu.edu

ABSTRACT
A powerful way to understand where gaps are in the expertise of 
embedded system designers is to look at what goes wrong in real 
industry projects. In this paper we summarize the “red flag” 
issues found in approximately 90 design reviews of embedded 
system products conducted over a ten year period across a variety 
of embedded system industries. The problems found can be 
roughly categorized into the areas of process, requirements, 
architecture, design, implementation, verification/validation, 
dependability, project management, and people. A few problem 
areas, such as watchdog timers and real time scheduling, are 
standard embedded education topics. But many areas, such as 
peer reviews, requirements, SQA, and user interface design might 
be worthy of increased attention in texts and education programs. 

Categories and Subject Descriptors
J.7 [Computer Applications]: Computers in other systems – 
industrial control, process control, real time.

General Terms
Management, Documentation, Performance, Design, Economics, 
Reliability, Security, Human Factors, Verification. 

Keywords
Embedded system education, software engineering, industry 
experience, design reviews, real time systems, software process. 

1. INTRODUCTION
Most embedded education approaches stem from some attempt to 
create an overarching set of principles, list key topics, and adopt a 
particular teaching philosophy. That’s a great basis from which to 
start. But, an interesting question is, what might that approach be 
missing? 

In this paper we look at the problems and risks encountered by 
practicing embedded system designers. If they are making 
omissions or mistakes that materially affect the quality of their 
product or introduce undue risks to product success, then those 
areas seem reasonable to consider as potentially in-scope for 

embedded system education. 

In this paper we identify 43 areas that were significant risk items 
for real products in a variety of embedded system applications. 
The items were identified over the course of more than 90 design 
reviews conducted by the author, spanning approximately the past 
10 years. While the data points are self-selected and are 
vulnerable to reviewer bias, they nonetheless provide insight into 
what sorts of skill gaps and problem areas are present in 
embedded software projects. 

2. BACKGROUND
The basis of this paper is a retrospective study of design reviews 
conducted by the author for a variety of embedded system 
companies. The companies are not identified to protect all parties 
involved, but most are divisions of large corporations or similar 
business entities which specialize in embedded systems. Such 
development groups would be expected to have mature and well 
organized procedures for designing and supporting moderate to 
large scale product deployments. A few reviews were of 
prototypes, but in all cases the developers were skilled, 
experienced, and tasked with designing real commercial products. 

2.1 Product Types Included 
The product types that were the subject of reviews generally 
include the following areas. This list is intended to give an idea of 
scope of the findings and does not necessarily include every 
single product: 

� Transportation
o Automotive control  
o Train control 
o Navigation

� Chemical processing 
o Metering and flow control 
o Chemical analysis 
o Process automation 

� Buildings
o Heating, Ventilation, and Cooling (HVAC) 
o Lighting and building security 
o Elevator and related transportation systems 
o Utility services 

� Telecommunication systems and data centers 
o Power regulation, switching, and backup 
o HVAC

� Manufacturing
o Motion control 
o Inspection
o Robotics
o Monitoring and equipment maintenance 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. 
WESE’10, October 24, 2010, Scottsdale, AZ, USA. 
Copyright 2010 ACM 1-58113-000-0/00/0010…$10.00. 

26 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



� Underlying technology 
o Embedded real time control networks 
o Safety critical system design 
o Security 

Some embedded application areas are absent from this data, such 
as consumer electronics and large military combat systems 
(although the author has had product experience with these areas 
in the past). There is no reason to believe our results are solely 
limited to the listed domains, but it seems plausible that concerns 
would vary depending upon which market segment a product is 
in.

Code size ranged from a few hundred bytes to about a million 
lines of code. Development team sizes ranged from one part-time 
developer to teams of up to 25 developers.  (In many cases an 
overall system had many more developers, but only a specific 
subsystem was the topic of a review.) Most projects were in 
assembly language, C, or C++, but other languages were 
occasionally used. Developers most often followed Waterfall or 
Vee development approaches, but some products used Spiral, 
Incremental, or Agile approaches. Most reviews were of US-
based teams, with a handful of reviews in Europe and Asia. 
Perhaps one fifth of development teams used development 
partners or remote team members in India or China. In most cases 
remote developers participated in reviews either in person or via 
conference call. 

Systems were about evenly divided between small 
microcontrollers and bigger CPUs that ran some sort of RTOS. A 
very few systems used DSPs or FPGAs, and none used custom or 
domain-specific silicon. Product volume ranged from prototypes 
to hundreds of thousands of units per year, although most reviews 
were for products in the 1,000 to 10,000 units per year range.  

The results of some design reviews beyond those in the data set 
were excluded due to contractual obligations or because they did 
not result in formal review reports. But the missing data would 
have been unlikely to materially change the outcome of this 
study. 

2.2 Design Review Process 
A typical design review involves the steps of setting up the 
review engagement, learning some domain background, obtaining 
as many project documents as possible, selectively reviewing 
documents, setting a meeting agenda, traveling to hold an on-site 
review visit, and generating a written report. A minority of 
reviews to examine very specific areas or answer narrow 
questions were done electronically, with no visit. 

On-site visits typically lasted one day or, in some cases, two days. 
The amount of information available before the visit ranged from 
essentially nothing to thousands of pages of design information 
(often including complete source code listings). The degree to 
which developers self-identified problems before a visit varied, 
but most problems were identified by the reviewer without hints 
from the review team. More importantly, in almost all cases the 
review team accepted the problems identified as valid feedback. 
(This is not to say that every recommendation was necessarily 
carried out. But, for the most part, teams agreed that the areas 
identified as critical risks were in fact significant issues that 
materially affected the likelihood of project or product success.)  

A reasonable fraction of the design reviews, especially initially, 
were carried out by two independent reviewers in parallel, with a 
shared visit and jointly issued report. More recent reviews were 
largely single-reviewer events in large part due to economic 
constraints.

Most reviews were performed at about the time the product was 
ready to start acceptance testing or be released. In cases where a 
problem was identified, an attempt was made to trace back to a 
reasonable root cause. For example, a bug-prone module might be 
identified as having implementation problems, design problems, 
architecture problems, or requirement problems depending on 
which stage in the design process was the most effective place to 
have avoided the bug (and other similar bugs). 

The primary output of each review engagement is list of 
recommendations, including “red flag” issues that present 
significant and immediate risks to the success of the project or 
product. Other, less pressing, “yellow flag” risks and reviewer 
observations are also listed in review reports. Values were not 
assigned to all topics in every review due to lack of time. Rather, 
emphasis was placed on areas that seemed to the reviewer and the 
developers to be the most likely place to be sources of major risk. 
The study we present here is solely concerned with the red flag 
issues. 

Over time, reviews became more formal and repeatable as a list of 
typical problem areas and review questions was developed using 
the input of a number of experts over the first few years of 
conducting reviews. This list was formally used for perhaps a 
third of the reviews, and the general knowledge of what was in 
this list informed most of the other reviews. The list presented in 
this paper does not strictly conform to the items in that 
proprietary checklist, but is similar in nature. The checklist has 
approximately three times as many topics as the red flag list 
below. In other words, two thirds of the entries on the checklist 
are worth asking about, but have failed to generate any red flag in 
a decade of performing reviews. 

There is no way to know how many significant risks were missed 
because reviewers didn’t think to ask the right questions. 
However, the chance of this happening was reduced by initially 
by the use of multiple reviewers, and in later years by the use of a 
comprehensive checklist-based triage process as just described. 

2.3 Background of designers 
The design teams reviewed varied in technical background 
significantly. Many team members had degrees and experience in 
mechanical or electrical (non-electronic) engineering. A number 
had electronic and computer engineering degrees. A few had 
computer science or (rarely) software engineering degrees. For 
the most part, senior developers started as domain specialists and 
picked up embedded computing on the job. Junior developers 
were more likely to have had software training of some sort, but 
in most cases had more of an electrical or computer engineering 
background.

Over the years, there has been a trend for many design teams to 
advance to a higher level of software process sophistication (for 
example, many teams progressed to SEI Capability Maturity 
Model [6] Level 2 or above). This is in large part due to a 
concerted effort by some corporations to improve software 
quality. It is also in part due to hiring of developers with formal 

27 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



software training into embedded system product teams. But, high 
process maturity is not universal across embedded projects. In 
particular, each company seems to find its own way up the 
software learning curve as it introduces the first non-trivial 
computing capability into its products and attempts to write 
software using domain experts who have little or no formal 
software training. 

3. RISK AREAS IDENTIFIED 
The following risk areas are identified as red flag (significant) 
risks in one or more reviews in this study. They are grouped and 
organized to provide some structure in terms of typical 
development process stages and activities. However, the ordering 
does not connote any severity, priority, or frequency. A typical 
item in this list was a red flag in a few reviews and a yellow flag 
in several more. 

The examples and likely consequences of risk areas given are 
generally representative of the risks actually seen without 
revealing company- or product-specific information. (To the 
degree that examples or statements are true about any particular 
product, they are typically true of many different products that 
were reviewed.) 

3.1  Development Process 
#1. Informal development process 
The process used to create embedded software is ad hoc, and not 
written down. The steps vary from project to project and 
developer to developer. This can result in uneven overall software 
quality. 

#2. Not enough paper 
Too few steps of development result in a paper trail. For example, 
test results may not be written down. Among other things, this 
can require re-doing tasks such as testing to make sure they were 
fully and correctly performed. 

#3. No written requirements 
Software requirements are not written down or are too informal. 
They may only address changes for a new product version 
without any written document stating old version requirements. 
This can lead to misunderstandings about intended product 
functions and difficulty in designing adequate tests. 

#4. Requirements with poor measurability 
Software requirements can’t be tested due to missing or 
subjective measurement criteria. As a result, it is difficult to know 
whether a requirement such as “product shall be user friendly” 
has been met. 

#5. Requirements omit extra-functional aspects 
Product requirements may state hardware processing speed and 
hardware reliability, but omit software response times, software 
reliability, and other non-functional requirements. Implementing 
and testing these undefined aspects is left at the discretion of 
developers and might not meet market needs. 

#6. High requirements churn 
Functionality required of the product changes so fast the software 
developers can’t keep up. This is likely to lead to missed 
deadlines and can result in developer burnout. 

#7. No SQA function 
Nobody is formally assigned to perform an SQA function, so 
there is a risk that processes (however light or heavy they might 
be) aren’t being followed effectively regardless of the good 
intentions of the development team. Software Quality Assurance 
(SQA) is, in essence, ensuring that the developers are following 
the development process they are supposed to be following. If 
SQA is ineffective, it is possible (and in our experience likely) 
that some time spent on testing, design reviews, and other 
techniques to improve quality is also ineffective. 

#8. No mechanism to capture technical and non-technical 
project lessons learned 

There is no methodical effort to identify technical, process, and 
management problems encountered during the course of the 
project so that the causes of these problems can be corrected. As a 
result, mistakes made on one project are repeated in future 
projects.

3.2 Architecture
#9. No defined software architecture 
There is no picture showing the system’s software architecture. 
(Many such pictures might be useful depending upon the context 
– but often there is no picture at all.) Ill defined architectures 
often lead to poor designs and poor quality code. 

#10. No message dictionary for embedded network 
There is no listing of the messages, payloads, timing, and other 
information for messages being sent on an embedded real time 
network such as CAN. As a result, there is no basis for analysis of 
real time network performance and optimization of message 
traffic.

#11. Poor modularity of code 
The design has poorly chosen interfaces and poorly decomposed 
functionality, resulting in high coupling, poor cohesion, and 
overly long modules. In particular, interrupt service routines are 
often too big and mask interrupts for too long. The result is often 
increased risk of software defects due to increased complexity. 

3.3 Design
#12. Design is skipped or is created after code is written 
Developers create the design (usually in their heads) as they are 
writing the code instead of designing each module before that 
module is implemented. The design might be written down after 
code is written, but usually there is no written design. As a result, 
the structure of the implementation is messier than it ought to be. 

#13. Flowcharts are used when statecharts would be more 
appropriate

Flowcharts are used to represent designs for functions that are 
inherently state-based or modal and would be better represented 
using a state machine design abstraction. Associated code usually 
has deeply nested, repetitive “if” condition clauses to determine 
what state the system is in rather than having an explicit state 

28 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



variable used to control a case statement structure in the 
implementation. The result is code that is significantly more bug 
prone and more difficult to understand than a state-machine based 
design.

#14. No real time schedule analysis 
There is no methodical approach to real time scheduling. 
Typically an ad hoc approach to real time scheduling is used, 
frequently featuring conditional execution of some tasks 
depending upon system load. Testing rather than an analytic 
approach is used to ensure real time deadlines will be met. Often 
there is no sure way to know if worst case timing has been 
experienced during such testing, and there is risk that deadlines 
will be missed during system operation. 

#15. No methodical approach to user interface design 
The user interface does not follow established principles (e.g., 
[5]), and is likely to make using the product difficult or error-
prone. The interface might not take into account the needs of 
users in different demographic groups (e.g., users who are 
colorblind, hearing impaired, wearing gloves, or who have trouble 
grasping small objects due to arthritis). 

3.4 Implementation
#16. Inconsistent coding style 
Coding style varies dramatically across the code base, usually in 
part due to lack of a written coding style guideline. Code 
comments vary significantly in frequency, level of detail, and 
type of content. This makes it more difficult to understand and 
maintain the code. 

#17. Resources too full 
Memory or CPU resources are overly full, leading to risk of 
missing real time deadlines and significantly increased 
development costs. An extreme (but not infrequent) example is to 
have zero bytes of program and data memory left over on a small 
processor. Significant developer time and energy can be spent 
squeezing software and data to fit rather than developing new 
functionality. 

#18. Too much assembly language 
Assembly language is used for most or all of the code when an 
adequate high level language compiler is available. Sometimes 
this is due to lack of big enough hardware resources to execute 
compiled code.  But more often it is due to developer preference, 
reuse of previous project code, or a need to economize on 
purchasing development tools. Assembly language software is 
usually more expensive to develop and more bug-prone than high 
level language code. 

#19. Too many global variables 
Global variables are used instead of parameters for passing 
information among software modules. The result is often code 
that has poor modularity and is brittle to changes. 

#20. Ignoring compiler warnings 
Programs compile with ignored warnings and/or the compilers 
used do not have robust warning capability. A static analysis tool 
is not used to make up for poor compiler warning capabilities. 
The result can be that software defects which could have been 
caught by the compiler must be found via testing, or miss 

detection entirely. If assembly language is used extensively, it 
may contain the types of bugs that a good static analysis tool 
would have caught in a high level language. 

#21. Inadequate concurrency management 
Mutexes or other appropriate concurrent data access approaches 
aren’t being used. This leads to potential race conditions and can 
result in tricky timing bugs. 

#22. Use of home-made RTOS 
An in-house developed and maintained RTOS is being used 
instead of a commercial (or free third party) operating system. 
While the result is sometimes technically excellent, it also 
commits the company to maintaining RTOS development skills as 
a core competency, which may not be the best strategic use of 
limited resources. 

3.5 Verification & Validation 
#23. No peer reviews 
Code and other documents are not subject to a methodical peer 
review, or undergo ineffective peer reviews. As a result, most 
bugs are found late in the development cycle when it is more 
expensive to fix them. 

#24. No test plan 
Testing is ad hoc, and not according to a defined plan. Typically 
there is no defined criterion for how much testing is enough. This 
can result in poor test coverage or an inconsistent depth of testing. 

#25. No defect tracking 
Defects and other issues are not being put into a bug tracking 
system. This can result in losing track of outstanding bugs and 
poor prioritization of bug-fixing activities. 

#26. No stress testing 
There is no specific stress testing to ensure that real time 
scheduling and other aspects of the design can handle worst case 
expected operating conditions. As a result, products may fail 
when used for demanding applications. 

3.6 Dependability
#27. Insufficient consideration of reliability/availability 
There is no defined dependability goal or approach for the 
system, especially with respect to software. In most cases there is 
no requirement that specifies what dependability means in the 
context of the application (e.g., is a crash and fast reboot OK, or 
is it a catastrophic event for typical customer?). As a result, the 
degree of dependability is not being actively managed. 

#28. Insufficient consideration of security 
There is no statement of requirements and intentional design 
approach for ensuring adequate security, especially for network-
connected devices. The resulting system may be compromised, 
with unforeseen consequences. 

#29. Insufficient consideration of safety 
In some systems that have modest safety considerations no safety 
analysis has been done. In systems that are more overtly safety 
critical (but for which there is no mandated safety certification), 

29 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



the safety approach falls short of recommended practices. The 
result is exposure to unforeseen legal liability and reputation loss. 

#30. No or incorrect use of watchdog timers 
Watch dog timers are turned off or are serviced in a way that 
defeats their intended role in the system. For example, a 
watchdog might be kicked by an interrupt subroutine that is 
triggered by a timer regardless of the status of the rest of the 
software system. Systems with ineffective watchdog timers may 
not reset themselves after a software timing fault. 

#31. Insufficient consideration of system reset approach 
System resets might not ensure a safe state during reboots that 
occur when the system is already in operation, resulting in unsafe 
transient actuator commands. 

#32. Neither instrumentation nor error logs 
There is no run-time instrumentation to record anomalous 
operating conditions, nor are there error logs to record events 
such as software crashes. This makes it difficult to diagnose 
problems in units returned for service. 

#33. No software update plan 
There is no plan for distributing patches or software updates, 
especially for systems which do not have continuous Internet 
access. This can be an especially significant problem if the 
security strategy ends up requiring regular patch deployment. 
Updating software may require technician visits, equipment 
replacement, or other expensive and inconvenient measures. 

#34. No IP protection plan 
There is no plan to protect intellectual property of the product 
from code extraction, reverse engineering, or hardware/software 
cloning. (Protection strategies can be legal as well as technical.) 
As a result, competitors may find it excessively easy to 
successfully extract and sell products with exact software images 
or extracted proprietary software technology. 

3.7 Project Management 
#35. No version control 
Sometimes source code is not under version control. More 
commonly, the source code is under version control but 
associated tools, libraries, and other support software components 
are not. As a result, it may be difficult or impossible to recreate 
and modify old software versions to fix bugs. 

#36. No backward compatibility and version management 
plan

There is no plan for dealing with backward compatibility with old 
products, product migration, or installations with mixed old and 
new product versions. The result may be incompatibilities with 
fielded equipment or a combinatorial explosion of multi-
component compatibility testing scenarios necessary for system 
validation.

#37. Use of cheap tools (software components, etc.) instead of 
good ones 

Developers have inadequate or substandard tools (for example, 
free demo compilers instead of paid-for full-featured compilers) 
because tool costs are can’t be reckoned against savings in 
developer time in the cost accounting system being used. As a 

result, developers spend significant time creating or modifying 
tools to avoid spending money. 

#38. Schedule not taken seriously 
The software development schedule is externally imposed on an 
arbitrary basis or otherwise not grounded in reality, and so is not 
taken seriously by anyone. As a result, developers may burn out 
or simply feel they have no stake in schedules. 

#39. Presumption in project management that software is free 
Project managers and/or customers (and sometimes developers) 
make decisions that presume software costs virtually nothing to 
develop or change. This is one contributing cause of requirements 
churn.

#40. No risk mitigation for problems with external tools and 
components 

External tools, software components, and vendors are a critical 
part of the system development plan, and no strategy is in place to 
deal with unexpected bugs, personnel turnover, or business failure 
of partners. 

#41. Disaster recovery not tested 
Backups and disaster recovery plans may be in place but untested. 
As a result, it may be that data won’t be recoverable when a real 
problem occurs. 

3.8 People
#42. High turnover and developer overload 
Developers have a high turnover rate. This is especially prevalent 
with work outsourced to India and China. As a result, code 
quality and style varies. Lack of a robust paper trail makes it 
difficult to continue development. Often more important is that 
replacement developers may lack the domain experience 
necessary for understanding the details of system requirements. 

#43. No training for managing outsource relationships 
Engineers who are responsible for interacting with outsource 
partners do not have adequate time and skills to do so, especially 
for multi-cultural partnering. This can lead to significant 
ineffectiveness or even failure of such relationships. 

4. ANALYSIS
4.1 Projects Don’t Need To Be Perfect 
It is important to point out that not every project needs to get 
everything on the preceding list perfect. Indeed, many projects 
had only one or two red flags out of that list, and most had fewer 
than five red flags. (Some – a very few – had zero red flags.) By 
the same token, most projects had many yellow flags, indicating 
there were areas that could be improved over time. 
It is also important to note that the red flag areas were based on 
risk specific to a particular domain and product. A development 
team could totally ignore many or most items on the above list 
and, so long as that approach didn’t create a significant risk of 
product or project failure, that wasn’t a red flag. For example, 
having the watchdog timer turned off is likely to be a red flag on 
unattended equipment with 24x7 operational requirements, but 
might not be an issue on a non-critical hand-operated device that 
is power cycled before each use. 

30 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



In other words, items were red flags because they were a big deal 
in the context of that particular product, not because they were on 
a list of best practices that had to be done regardless of project 
tradeoffs. 
That having been said, identification of red flag issues was at the 
discretion of the reviewer with feedback from the developers 
being reviewed, and therefore somewhat subjective. 

4.2 Back to Basics – But Less Than Expected 
Perhaps surprisingly, there are only a very few risk areas that are 
almost universally accepted as embedded system core topics. Real 
time scheduling, watchdog timers, and concurrency management 
are likely to be on a typical embedded system educator’s list of 
desirable technical topics for either a first or second course in the 
area. But most of the problem areas aren’t like that. Many of the 
items are things omitted by typical embedded system texts and 
courses. 

That doesn’t mean core technical areas don’t matter. We believe 
it is important to give embedded system designers a principled 
understanding of core engineering principles and underlying 
technology. But these results suggest that informally trained 
embedded designers (who have nonetheless been formally 
schooled in a certain way of thinking about technical problems in 
general) tend to find ways to fill in basic technical areas on their 
own, even if they didn’t have technology-specific training. So, 
apparently, self-teaching with a book in one hand and a 
development board in the other works to an extent. But it doesn’t 
seem to work when you get beyond the technical basics. 

Most risk areas seemed uncorrelated with developer backgrounds, 
but there were a few areas in which team members’ formal 
educational background affected likely risk areas. For example, 
developers with formal software training were more likely to use 
a version control system. However, differences were not as 
widespread as might be expected. In part, this is because non-
software engineers are trained to follow a methodical 
development approach (such as creating written requirements and 
formal test plans) for non-software aspects of the system, and that 
approach carried over to software. But, developers without formal 
embedded training are more likely to have gaps in the more 
advanced embedded-specific areas such as concurrency control 
and real time scheduling since they are beyond the scope of most 
introductory programming texts (and even many introductory 
embedded system texts). 

4.3 Knowing You Have A Problem 
Most of the problem areas might be characterized as having the 
property that they are the result of a gap in the developer’s 
understanding or the software process being used. In other words, 
developers didn’t realize (or didn’t have time) to look for some 
types of problems. Basic functionality for a desired system was 
usually there at the time of the design review. For example, 
everyone had figured out by the design review how to use an A/D 
converter well enough to get acceptable sample quality. And they 
had found and fixed whatever bugs they were likely to find with 
their testing approach. The risks tended to come more from 
having a high risk of undetected bugs, missing chances to have 
avoided big problems that surfaced late in the project, and 
missing chances to avoid project schedule or cost problems. 

On the whole, smart motivated developers can figure out most of 
the technology and fix most problems if they have a way to know 
what’s broken. The biggest risks come when they don’t realize 
something in their technology or development process is broken, 
or when they attempt ad hoc solutions to difficult problems 
because they don’t know more robust solution approaches are 
available.

4.4 Weak Process Hurts 
A surprise is that a significant fraction of the problem areas ended 
up being software process problems instead of technology 
problems. While many educators are technologists at heart, the 
fact of the matter is that poor software process is a huge problem 
impeding the success of embedded system development efforts. 
(It’s hard to have a good product with bad technology. But it’s 
also hard to succeed with an ineffective development process.) 
The lack of process content in most developer degree programs is 
deeply ingrained, and has various sources. But it is really hurting 
embedded developers, and is a critical skill they must currently 
pick up once in industry. 

4.5 Embedded Software Problems Are Only 
A Little Special 
Most of the red flag areas would not be out of place in a list of IT 
project risks. We are, after all, talking about software and some 
practices are good ideas regardless of the domain. However, the 
ways to mitigate risks are often different for embedded 
applications than for desktop applications. 

4.6 Five Forebodes Failure 
One of the informal observations made across the course of these 
reviews was that developer teams with exactly 5 primary 
contributors usually fail. Invariably these teams had previously 
completed a project with 3 or 4 members, and increased the team 
size to tackle a more complex project without making any 
changes in their software process. 

While this is an anecdotal result, projects that grow past 4 
developers in size should seriously consider switching to a 
heavier weight software process (more paper, more formality, 
more methodical rigor). Smaller teams still seem to benefit from 
good process, but basically can get away with informality with 
less risk than larger teams working on more complex projects. 

5. EDUCATIONAL IMPLICATIONS 
5.1 Formal Education Doesn’t Affect Risk 
Areas Much 
Embedded system software development is often performed by 
engineers with no formal training in that area. As mentioned 
previously, the surprising part is not that such developers have 
gaps, but rather that they seem to do a pretty good job of filling in 
the gaps in basic technology areas all on their own. In other 
words, there isn’t much difference in the risks areas identified in 
projects being performed by computer-trained embedded system 
engineers vs. non-computer trained domain experts. 
The gaps that were identified are largely either in a few system 
integration areas or in the broader area of software development 
process. Most computer engineers (and even many computer 
scientists) receive little software process training. Thus, most 

31 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



embedded system engineers don’t see formal educational material 
that would fill these gaps. 
We believe that plugging the gaps in embedded system projects 
isn’t likely to be solved by having more engineers take existing 
embedded system college courses. The problem is really that 
these topics aren’t being taught to (nor packaged for learning by) 
embedded designers. Rather, this data suggests that it might be 
useful to rethink the core skills that should be taught in embedded 
system courses and included in texts. 

5.2 Our Course Approach 
Informal awareness of the types of topics that cause problems in 
industry embedded projects has been guiding our graduate and 
undergraduate course content choice for a number of years. But, 
until we performed this study, we were operating on gut feel 
instead of data. As a result of this analysis we have updated a 
two-course embedded systems sequence to address most of the 
risk areas. 
18-348 Embedded System Engineering is mostly taught to third- 
and fourth-year Electrical and Computer Engineering (ECE) 
undergraduate students. The syllabus might superficially appear 
to be an introduction to microcontrollers course using 16-bit 
CPUs. But, portions of lectures, homework assignments, and lab 
assignments have been crafted to instill an understanding of the 
basics of methodical software process. For example, every 
assignment has formally written requirements, and many 
assignments require documented peer reviews, designs, test plans, 
defined acceptance tests, and so on. These are lightweight 
approaches to instill awareness rather than rigorous treatment of 
process topics, largely because undergraduates lack the world-
view and experience to appreciate and learn about process topics. 
Technology topics from this list taught at this level are concrete, 
technical, or linked directly to implementation: #11 modularity, 
#12 design before implement, #13 statecharts, #14 real time 
scheduling, #16 coding style, #19 globals, #20 compiler warnings, 
#21 concurrency, and #30 watchdog timers from the list 
previously given. 
18-649 Distributed Embedded Systems is taught to ECE Masters 
Degree students, usually in their first year of graduate school, and 
to fourth-year undergraduates as a follow-on to 18-348. Course 
lectures are divided into three parts: one third cover software 
process, one third cover embedded networking and distributed 
systems, and one third cover dependable and critical system 
design. Most of the remaining risk areas not covered by 18-348 
are covered in this course, with the coverage increasing over time 
as lectures are modified to correspond to the risk area list. A 
semester-long course project is used to demonstrate the execution 
of process methods and (for students who are at a point that they 
are ready to learn the lesson) instill the value of having a 
lightweight but complete process for software development. 

5.3 Industry Training 
Outreach to industry is problematic since embedded developers 
are geographically scattered and often not local to the usual high 
technology cities. (Most of the design reviews were in the US 
Midwest, where companies build more embedded systems than 
computer systems. Only a few were near high-tech cities.) 
Despite advances in distance education, traditional university-run 
courses aren’t doing a good job of reaching most of them. 

To address this audience I have written a book that covers most of 
the topics in this list [4]. Each chapter gives a summary of issues 
and concrete solution approaches for risk areas. The hope is that 
having a book available will help solve some problems, and at the 
very least make it possible for developers to know where their 
gaps are so they can address them before they suffer a dramatic 
project failure. This book was adopted as the text for 18-649 
starting in 2010. 

5.4 Related Work 
There has been little formalized work on attempting to analyze 
the needs of industry with regard to embedded systems. [2] is 
based in part on an analysis that takes into account industry 
surveys, and suggests that embedded system education should be 
more cross-disciplinary and more representative of embedded 
industry experiences. These are important observations and 
worthy goals. Our results extend these observations by reporting 
problems that even experienced industry designers aren’t able to 
resolve on a consistent basis. 

A number of embedded system educators emphasize some of the 
areas on our risk list, most typically the areas we identify for 
inclusion in 18-348 as well as distributed system and 
dependability topics. Examples include [1], [7], and previous 
courses at our institution [3]. Other curriculum proposals include 
an explicit software engineering courses (e.g., [8]). No doubt 
there are some other degree programs that address most or all of 
these areas in one way or another (for example, our institution has 
an interdisciplinary Master of Science in Information Technology 
– Embedded Software Engineering degree [9] that requires both 
graduate embedded system technical courses and graduate 
software engineering courses). But such programs are not the 
norm. Our belief is that software process concepts should be 
central and integrated throughout the embedded curriculum rather 
than an optional or distinct course module. 

Embedded system courses almost universally use hands-on 
project content as a way for students to get a feel for system 
integration issues. This certainly gives students experience in how 
difficult complex projects can be and gives them a chance to test 
their fundamental technical skills. However, we have found that 
even engineers who have been through a large number of industry 
design projects have gaps. Thus, we believe that merely 
experiencing a design project without guidance and reflection 
upon solid principles and these specific risk areas is not enough to 
fill these gaps. It is difficult to self-teach ways to fix problems 
when you don’t ever realize you got things wrong. 

6. CONCLUSIONS
This paper identifies 43 areas that were identified as red flag risk 
areas across reviews of 90 industry embedded system projects in 
the past decade. The most striking aspect of the list is that, by and 
large, even self-trained developers are not at huge risk of missing 
the basics of embedded systems. Rather, most risks are either 
complex system integration skills (e.g., concurrency 
management) or software development process issues (e.g., 
requirements problems or inadequate test plans).
While many of the areas identified might not seem specific to 
embedded systems, they are the risk areas that are actually 
affecting real embedded projects. Embedded educators should 
take notice and take steps to ensure that our future courses and 

32 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



degree programs address most of these areas, preferably in a way 
that teaches the skills most useful in an embedded system context. 

7. ACKNOWLEDGMENTS
The author wishes to thank all the design teams that have been 
through the design review process with him. It’s never fun having 
an outsider come in to tell you all the mistakes you made, and I 
appreciate the openness and willingness to discuss things shown 
by so many developers over the years. 

8. REFERENCES
[1] Capsi, P., et al., 2005, “Guidelines for a graduate curriculum 

on embedded software and systems,” ACM TECS, vol. 4, no. 
3, pp. 587-611, August 2005. 

[2] Grimheden, G.; Torngren, M., 2005, “What is embedded 
systems and how should it be taught?---results from a 
didactic analysis,” ACM TECS, vol. 4, no. 3, pp. 633-651, 
August 2005. 

[3] Koopman, P., et al., 2005, “Undergraduate embedded system 
education at Carnegie Mellon,” ACM TECS, vol. 4, no. 3, pp. 
500-528, August 2005. 

[4] Koopman, P., 2010. Better Embedded System Software,
Drumnadrochit Press, Wilmington.

[5] Nielsen, J., 1993. Usability Engineering, AP Professional, 
Boston.

[6] Paulk, Mark C., et al., 1995. The Capability Maturity Model: 
Guidelines for Improving the Software Process. Addison 
Wesley, Boston. 

[7] Sangiovanni-Vincentelli, A.; Pinto, A., 2005, “An overview 
of embedded system design education at Berkeley,” ACM
TECS, vol. 4, no. 3, pp. 472-499, August 2005. 

[8] Seviora, R., 2005, “A curriculum for embedded system 
engineering,” ACM TECS, vol. 4, no. 3, pp. 569-586, August 
2005.

[9] MSIT-ESE program web page, Carnegie Mellon University, 
accessed July 30, 2010.  http://mse.isri.cmu.edu/software-
engineering/web1-Programs/MSIT-ESE/index.html

33 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Discussion: How to teach cyber-physical 
systems? 

 
 

Abstract: 
Cyber-physical systems refer to those computing systems that are tightly coupled with 
some physical process.  These systems provide engineering challenges due to their 
limited resources and this close interaction with physical processes.  Such systems 
often require low-level design techniques as well as a complete understanding of 
timeliness and concurrency.  Educating students about cyber-physical systems is itself 
a challenge due to the broad array of topics required.  During this discussion, WESE 
2010 participants are encouraged to consider ways to integrate the study of cyber-
physical systems into the classroom.   
 
 
 
 
 
 

34 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



The Embedded and Mobile Systems Master  
at the CNAM of Paris 

Samia Bouzefrane 
Associate-Professor 

Computer Science Department 

Conservatoire National des Arts et 
Métiers, 292 rue Saint Martin 

75141, Paris Cédex 03, FRANCE  

samia.bouzefrane@cnam.fr 
 

 
 
 
 
 

ABSTRACT 
In this paper, we present the “Emebdded and Mobile Systems” 
Master provided by the CNAM teachers since September 2005. 
We describe the courses given and the evolution of the Master in 
adequacy with the industry and the research worlds. This paper 
reports our experience in teaching embedded and mobile systems. 

Keywords 
Embedded systems, mobile systems, education, Masters. 

1. INTRODUCTION 
The Computer Science department of the Conservatoire national 
des Arts et Métiers (CNAM) [1] decided to develop new axes of 
teaching and research by creating the Master of Embedded and 
Mobile Systems (EMS) that started on September 2005. The aim 
of this training is to provide high-quality courses in modern and 
well-demanded technologic themes related to embedded and 
mobile systems.  

The embedded and mobile data processing is taking more and 
more place in our daily life, such as: the car, the mobile 
telephony, the electronic money, etc. The concept of system is 
taken in a large sense since it gathers traditional aspects of 
operating systems and all the elements involved in application 
development, such as for example of the dedicated executives, the 
services, the distributed or centralized applications, the 
communication networks. The design of such systems must thus 
take into account different and multiple problems: footprint 
memory, energy consumption, safety constraints, geo-localization, 
deployment, maintenance, verification, etc. These very diverse 
characteristics have an impact on the design and the development 
of solutions for embedded and mobile systems.  

The objective of this master is to train students to master various 
dimensions that involve in the design and the development of 
embedded and mobile systems.  

Section 2 gives an overview of the missions of the CNAM and 
describes briefly the research activities of the CEDRIC 
Laboratory. Section 3 details the functioning and the specificity of 
the Master EMS before describing in Section 4 the different 
courses that are taught, as well as the internship that is mandatory 
to obtain the Master degree. Section 5 presents some results 
through curves that show the success rate and the number of 
EMS’degree students that find a job in embedded and mobile 
systems per year. Section 6 concludes the paper by decribing 

briefly the new master SEMS that will start on September 2011 
and that is the evolution of the master SEM.. 

2. THE CNAM AND THE CEDRIC LAB 
The CNAM (see Figure 1) is a scientific, cultural and professional 
corporation. Since its foundation by Henri Grégoire in 1794, it is 
dedicated to the training of adults along their life. Placed under 
the supervision of the high education ministry, it fulfils three 
missions: the professional training for adults, the technological 
research and the innovation, the diffusion of the scientific and 
technical culture. The CNAM is based for its development on its 
network made up of 29 regional centers and several teaching 
centers around the world (e.g. Lebanon, Germany, Benin, Spain, 
Greece, Hungary, Romania, Morocco, etc). It is organized around 
two schools: Industrial Sciences and Information Technlogies 
School (SITI) and Management and Society School. SITI includes 
7 departments and 10 research laboratories.  The CNAM research 
is based on a multi-field activity and on the engagement of the 
companies: with researchers including 128 professors and 239 
associate-professors; and approximately 2000 external 
contributors, where 330 are Ph-D students. The CNAM, with its 
Musée des Arts et Métiers [2], is a major actor of diffusion of the 
scientific and technique culture: 350 events and conferences are 
open to all; 50 000 participants in all France; 200 000 visitors of 
the Musée. 

 

Figure 1: The CNAM 

The CEDRIC (Centre d'Etudes et De Recherche en Informatique 
du CNAM) Lab [3] gathers the research activities in computer 
science at CNAM. CEDRIC members belong to the Computer 
Science department, and are researchers and teachers in computer 
science or mathematics.  

The CEDRIC research activities are organised along five areas:  

• Reliable systems: Certified Design and Programming  

• Information systems and Databases  

35 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



• Interactive media and Mobility  

• Combinatorial Optimization  

• Statistical methods for data-mining and learning  

The CEDRIC performs fundamental and applied research, is 
linked to the main french industrial and public institutions around 
new information technologies, and cooperates with many labs in 
France, or abroad. The lab is funded by fundamental French 
research contracts (ANR, IST, ...). The lab contributed to the 
creation of the "pôle de compétitivité Cap Digital" and is a 
member of this "pôle". It is represented in the steering committee 
of the Video games theme of this "pôle". It is a member of the 
"pôle Systém@tic" as well and is active within the Security-
Defence and open source groups of this "pôle".  

The CEDRIC lab is deeply concerned with teaching 
activities. CEDRIC’s members were active is the achievement of 
the European LMD (Licence-Master-Doctorate) reform: the 
CNAM now offers high-level masters in all of the lab's research 
areas, in collaboration with other universities (Paris VI, Paris I, La 
Rochelle, Poitiers). Some of our best students continue with 
doctoral studies at CEDRIC or in industrial companies (Cifre, 
Fongecif fellowhips). Finally, the CEDRIC Lab plays an 
important role in the ENJMIN (Ecole Nationale Supérieure du Jeu 
et des Médias Interactifs) [4] a national school on interactive 
medias and games which opened at Angouleme in 2004.  

On June 30th, 2009, the lab includes hundred people among 
of them 47 permanent researchers, around 50 Ph.D.students and 2 
administrative staff. The Cedric lab is labeled by the French 
minister of research, technology and education as an "Equipe 
d'Accueil" (EA 1395) since its creation. The CEDRIC lab is the 
largest CNAM laboratory and one of the wellknown computer 
science laboratories in the region of Paris and around. 

3. THE EMS MASTER 
Among the Computer Science Masters proposed by the CNAM, 
the Master EMS (Embedded and Mobile Systems) has been 
created on 2005 by Pierre Paradinas that has been appointed as 
the head of the chair of Embedded Systems when this chair was 
created on 2003. When Pierre Paradinas became on January 2007 
the technological development director at the INRIA [5], the 
professor Eric Gressier directed the Master EMS and created a 
research team called Embedded and Mobile Systems for ambient 
intelligence [6]. The major researchers of this team are teachers in 
the EMS’ Master. From September 2008 to August 2010, I have 
been the responsible of this Master.   

3.1 The Master objective 
The application domains dealt with within our training cover a 
large spectrum of data processing from classic embedded data 
processing (industrial data processing, avionics, process control, 
electronic money, mobile telephony) to ambiant data processing 
(the Internet of things, ubiquitous games, intelligent house, energy 
management).  Embedded and mobile systems are omnipresent 
nowadays: mobile telephony 3G+, smart cards, RFID tags, 
contactless communication, sensor networks, geo-localization, 
etc.  The topics approached by the Master training address a 
promising industrial perimeter from the point of view of job 
creation. The objective of this master is to train the students with 

the various dimensions involved in the design and the 
development of embedded and mobile systems.   

3.2 The lecturers 
The pedagogical team consists of members belonging to CEDRIC 
laboratory and more particularly to the “Interactive media and 
Mobility” team, and members from industry. 

In fact, this team is reinforced by outside contributors coming 
from professional environments in relation with the Master. Here 
is a list of some companies with which we work: Gemalto, 
Oberthur Tecknologies, Esterel Technologies, Dassault Systems 
Communication, Trialog, EDF R&D, Renault, Peugeot, 
Hippocad, RATP, etc. This list is not exhaustive and through our 
trainees, we tie each year of new labour relations which enable us 
to enrich our research activities and or teaching by concrete 
applications.  

3.3 The students 
The students are titular of a diploma of engineer or a Master 
degree level 1 in Computer Science or Electronics. We 
accommodate students coming from various French universities, 
schools of engineers (ECE [9], ENSIIE [10], ISEP[11]) or foreign 
universities.  

Table 1. The list of courses of EMS Master 

Course Title Code Responsible Credits 

Networks for 
embedded and 
mobile systems 

RSEM* S . Boumerdassi 6 

Platform for  
embedded and 
mobile systems  

PFSEM* S. Bouzefrane 6 

Programming   
embedded and 
mobile systems 

PSEM* E. Gressier 6 

Advanced 
Architecture  

AA* F. Anceau 3 

Data 
management 

for  embedded 
and mobile 

systems 

GDEM* S. Bouzefrane 3 

Programming 
real-time 
systems 

TRA S. Bouzefrane 3 

Security SEC N. Pioch 3 

Synchronous 
Languages 

LS J.F. Susini 3 

Program 
verification 

VERI J.F. Susini 3 

Safte 
functioning 

SdF D. Delahaye 3 

Architecture of 
on-line games 

AJL E. Gressier 3 

Networks and 
Quality of 
Service 

RQoS F. Sailhan 3 

Internship * 
EMS’Master 
responsible 

18 

36 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



4. COURSES DESCRIPTION 
The Master EMS level 2 represents a set of 60 credits, where 5 
courses are mandatory and some others are optional, as described 
on the web site of the master [7]. The internship represents 18 
credits. The students have one day free per week assigned to 
homework. Students have to pass exams, to prepare exposés and 
projects. The following sub-sections detail all the courses given 
Table 1. Each course code followed with a star is mandatory 
course. 

4.1 RSEM course 
The objective of this course is to present in-depth principal 

wireless and mobile networks. It also approaches the future 
orientations of this kind of technology.  

After a presentation of the principal problems and the challenges 
in relation with mobility, the course deals with various 
architectures and standards of wireless and mobile networks. In 
the mobile networks part, architectures of GSM until the 4G are 
presented. The wireless part develops all 802 standards. 

4.2 PFSEM course 
The PFSEM course objective [8] is to specify, design, carry out 
and deploy applications dedicated to smart cards. This course 
makes it possible to understand the general functioning of 
contact/contactless smart cards, depending on the application 
domains (banking cards, health cards, SIM cards, etc.). It allows 
to explain all the development process of an application that has 
to be carried out on a smart card, but also to understand the 
protocols involved in the communication between a smart card 
and a reader such standard protocols (ISO/IEC 7816, ISO/IEC 
14443) of the smart cards, or many others related to banking such 
as EMV standard, or SIM Toolkit standards (see Figure 2). The 
course investigates also NFC and RFID technologies. It lets the 
students to program applications for smart cards by using Java 
Card technology (Java Card 2.2, Java Card 3.0, SIM Toolkit 
Application), Java Card RMI, .NET for smart cards. Lessons on 
contactless cards through RFID and NFC technologies are 
presented together with the development and the deployment of 
the applications with those standards. Professionals known in this 
field are invited to enrich the course by a series of conferences to 
address the relevant aspects in the field. 

 

Figure 2: Protocol exchange between a cell phone and a SIM card 

4.3 PSEM course 
This course aims at offering an exhaustive panorama as regards 
design, development and test of embedded systems for mobile 
telephony. One of the posted objectives is that to master the 
programming of portable applications for cell phones. It is also a 

question of understanding how are designed the platforms and 
their impact on the design of the operating systems, the 
applications and the user interface. 

To the students is proposed a deep analysis on the concrete and 
the theoretical aspects having milked with the material and 
software platforms for mobile telephony. This teaching is 
organized around the following axes: 

- Definition of the material structure of the mobile phones, 

- Functionalities and implementation of the embedded operating 
systems on wireless phones (embedded Linux, Symbian, 
Windows Mobile, etc.), 

- Radio Communication, implementation of the communication 
protocols for mobile telephony and presentation of their APIs, 

- Design of multimedia applications within programming 
environments such as Java ME or Objective C for the iphone, 

- Basic Concepts as regards user interface. 

4.4 AA course 
The objective of this course is to train students with the 
comprehension of the subjacent constraints of hardware devices 
(size, energy, physical security, etc.), and with the novel methods 
in the design of hardware components.  

The AA course consists of several parts: 

- Micro-electronics (evolution of the integrated circuits, test 
methods), 

- Elements of VHDL, 

- Structure of the embedded processors (processors CISC, RISC, 
languages and systems, the example of processor ARM7, VLIW), 

- The Systems One Circuit (SoC): the SoC industry, the integrated 
buses, design methods, economic and commercial constraints, 
electronic and dimensional constraints, 

- Techniques of reduction of consumption: the race with the 
power and its recent stop, clock industry at variable frequency, 
phases shift,etc. 

 

4.5 GDEM course 
The acquired knowledge concerns the mechanisms used for an 
efficient data management in embedded and/or mobile systems. 
The content of this course is related to the principal concepts of 
data management in different environments such as in: 

- A classical DBMS (Data Base Management System), 

- The real-time context, 

- The sensor networks: the example of TinyDB, 

- Mobile databases, 

- The smart cards: the example of PicoDB,  

- The mobile phones. 

4.6 TRA course 
The aim of the TRA course is to understand the architecture and 
the characteristics of a real-time system in order to develop 

37 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



applications in this type of environments. The course is composed 
of different parts: 

- Introduction to the real-time issues, 

- The architecture of a real-time system, 

- Synchronization mechanisms (using C and Java programming 
languages), 

- The scheduling problems and the resources management in real-
time systems, 

- RTSJ: the specification for real-time Java (jRate is used as an 
implementation of real-time Java to develop some basic 
applications), 

- BOSSA a platform that integrates real-time schedulers under 
Linux. 

4.7 SEC course 
This course deals with a large spectrum of the security issues 
regarding the embedded systems and aims to familiarize with the 
security management policies. This course approaches the security 
policies and the standards often met and/or imposed in various 
application domains.  The course is supplemented by specific 
conferences around: 

- Hidden channels and countermeasures in the field of smart cards 

- Intrusion detection in the embedded domains with a particular 
attention to the intrusion detection in the sensor networks, 

- Security issues in the RFID domain, etc. 

4.8 LS course 
The LS course introduces the reactive systems and the 
synchronous languages in the context of embedded systems.  

The content includes the following aspects : introduction to the 
synchronous languages, reactive systems and embedded systems, 
principal synchronous formalisms, automat-based representation 
(the machines of Moore/Mealy), representation in sequential 
circuits, the principle of the synchronous observers and Model 
Checking, the Esterel language, checking in Esterel (Xeve), the 
Lustre language and the networks of Kahn, other synchronous 
formalisms such as: Signal, Polychrony, Synchronous Lucid, 
SynDEx, ForSyDe, synchronous distribution of code, GALS 
systems.  

4.9 VERI course 
 

This course provides a good acknowledgement of analysis and 
verification of concurrent programs, network protocols and/or 
distributed algorithms. It details the methods of checking by 
“model checking” applied to states/transitions systems, automats 
and Petri nets; the problem of the state space explosion and the 
solutions used to avoid this problem (partial order, compression 
of states, abstraction, etc.) 

Presentation of formalisms and tools: from UML to SDL, Promela 
and coloured Petri nets: modelling, analyses and checking with 
Design CPN or Helena, Spin, Tau (Telelogic) or ObjectGeode 
(Verilog). 

4.10 SdF course 
The objective of this course is to focus on the needs and 
techniques of the reliability. The following aspects are 
emphasized: concepts and means of the reliability like diagnosis, 
redundancy, codes’ errors and correctors, reconfiguration. Other 
notions concern architectures’ validation: specification of 
properties, modelling of architectures, properties checking, 
assessment, avoidance of execution errors, development process 
of sure systems, as well as tools for reliability. 

4.11 AJL course 
The aim of AJL course is to understand the concepts and the 
solutions of the technical architectures dedicated to multi-players 
and ubiquitous video games. After a short presentation of the 
principles of the video games, and the massively multi-player 
games, the course focuses on a description of the architectural 
elements of the on-line multi-players games: algorithmic, services, 
problem of the cheating, etc. 

In a second part, students work on scientific papers related  to 
ubiquitous games.  Lastly, the course ends with a practical work 
which allows to work with a multi-player game on mobile phones 
using a GASP platform with Java language. 

4.12 RQoS course 
The goal is to know the various aspects of Quality of Service 
(QoS) in the networks and applications which can influence the 
design of a network game. After a short recall of QoS concepts, at 
the network’s level as well as at the application’s level, 
mechanisms of QoS management are seen by the students in 
various technologies: WIFI, Internet, mobile telephony. The 
impact on the applications of the QoS provided or required will be 
used as a main idea within the course. Certain specific protocols 
of the multimedia applications are studied, in particular 
RTP/RTCP, the multicast-IP with PIM, (its various alternatives). 
Architectures of video streaming (numerical TV on Internet) or 
audio (radio broadcast), the co-operative applications are 
presented. The course ends with the presentation of the recent 
research works on QoS in the network and multimedia contexts. 
For example, new versions of TCP, the TCP-friendly approaches, 
multimedia applications in peer to peer (P2P).  

4.13 The internship 
At the end of the Master’s degree, the training is supplemented by 
6 months internship. This internship could be carried out in a 
laboratory or in a company. In case the internship is done within a 
laboratory, the delivered diploma leads the student to pursue a 
thesis in a laboratory. Otherwise, if the internship is done within a 
company (in general within a service of R&D of a wide company 
or a specialized enterprise in embedded and/or critical systems), 
the delivered diploma is professional-oriented. The trainee is 
followed up during his internship by a member of the pedagogical 
team. At the end of the internship, the student must submit a 
report describing his/her work and builds up a defence. The mark 
obtained counts for 18 credits in the final mark obtained for the 
Master. The internship may let the student to prepare a thesis in 
the company (CIFRE) or to lead to recruitment. 

The student obtains his Master degree if he/she only obtains a 
global mark higher or equal to 10/20. A minimal mark of 10/20 is 

38 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



required for mandatory courses, while a minimal mark of 8/20 is 
required for optional courses. Exceptionally, and based on the 
decision of the pedagogical team, the Master level 2 may be 
prepared over 2 years. 

5. MASTER RESULTS 
The internships we propose for students are completely coherent 
with the research topics of the SEMpIA research team, since these 
internships belong to research projects of the team. In addition, 
experimentation works carried out within the courses allow a 
better understanding of the embedded and mobile themes. These 
courses are also taught during the evening to lifelong learners. 

In this section, we present some results that may be used to 
evaluate the EMS Master quality. Thus, curves C1 and C2 of 
figure 3 show the Master evolution in terms of the number of 
admitted students and the number of success. Curve C2 does not 
show the number of students that succeed on September 2010, 
because when this paper was written, this information was not 
available. The evolution of curve C1 can be interpreted as the 
growing interest of the students and their motivation to embedded 
and mobile systems, a domain where hiring is relatively 
important. Indeed, we note the case of students that take the EMS 
courses but that are recruited before starting their internship. For 
example, among 34 students of this year, 5 students had job 
opportunities as developer engineers instead of internships.  
Moreover, 80% of the students that obtain the Master degree work 
in the embedded and mobile systems (avionics, house automation, 
smart cards, mobile telephony, military transport, etc). Each year, 
one or two students start a PhD thesis as shown in curve C3. 

EMS Master results

0

5

10

15

20

25

30

35

40

2006/2007 2007/2008 2008/2009 2009/2010

Academic year

N
um

be
r 

of
 s

tu
de

nt
s

C1: Admitted Students

C2: Sucess

C3: Phd students

 

Figure 3: Statistics concerning EMS students 

6. CONCLUSION: TOWARDS SEMS 
MASTER 
The success of the EMS’ Master encouraged the pedagogical team 
to propose an enhanced Master for September 2011 that will 
replace EMS and that is called SEMS (Secure Embedded and 
Mobile Systems). This is motivated by the following observation: 

The request of experts, developers, architect designers but also 
scientists in the field of secured embedded and mobile systems is 
in full expansion. The training is proposed to better apprehend the 
various aspects of the design of architectures which are viewed 
under two complementary angles: 

- Execution environments constrained in terms of resources (CPU, 
memory, energy, connectivity, etc.) 

- Security and reliability (rigorous design, test, checking, proof of 
programs, etc). 

The Master SEMS keeps some courses of the EMS’ Master that 
are considered as the heart of the Master EMS like PFSEM, 
RSEM or SEC, enriches some other courses like VERI and 
creates new courses such as a course on Network Senses for 
example. 

7. ACKNOWLEDGMENTS 
Thanks to Pierre Paradinas which was the creator of the Master 
EMS when he was the professor of the embedded systems chair at 
the CNAM. Thanks also to the current pedagogical team (Eric 
Gressier-Soudan, François Anceau, Samia Bouzefrane, Jean-
Ferdinand Susini, Selma Boumerdassi, Françoise Sailhan, Pierre 
Courtieu, Nicolas Pioch and David Delahaye) that takes care of 
the good progress of the Master and worked hard to elaborate the 
Master SEMS. Special thanks to Pamela Ingrassia, our Master 
secretary. 

8. REFERENCES 
[1] CNAM: http://www.cnam.fr  

[2] Musée des Arts et Métiers : http://www.arts-et-metiers.net/ 

[3] CEDRIC Lab: http://cedric.cnam.fr  

[4] ENJMIN : http://www.enjmin.fr 

[5] Institut National de la Recherche en Informatique et en 
Automatique, http://www.inria.fr 

[6] SEMpIA research team, 
http://cedric.cnam.fr/AfficheEquipe.php?id=14&lang=fr  

[7] EMS Master description, 
http://deptinfo.cnam.fr/master/spip.php?rubrique16 

[8] PFSEM course, 
http://cedric.cnam.fr/~bouzefra/cours_pfsem09-10.html 

[9] ECE, école centrale d’électronique, http://www.ece.fr 

[10] ENSIIE, école nationale supérieure pour l’industrie et 
l’entreprise, http://www.ensiie.fr/ 

[11] ISEP, http://www.isep.fr/ 
 

 

39 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Xest: An Automated Framework for
Regression Testing of Embedded Software

Matthew H. Netkow
Solution Architecture Team

The SAVO Group
Chicago, Illinois, USA

matt@dotnetkow.com

Dennis Brylow
MSCS Department

Marquette University
1313 W. Wisconsin Ave.,

Milwaukee, WI 53226
brylow@mscs.mu.edu

ABSTRACT
As embedded systems permeate an ever-widening circle of
safety- and mission-critical applications, robust testing of
embedded software remains of paramount importance. Yet
narrow I/O channels, scarce memory and processor resources,
real-time and interrupt-driven behavior, and low-level source
languages make state-of-the-art validation techniques much
more difficult in an embedded context. For students, for
whom testing is often already a secondary concern, the chal-
lenges in methodical testing of embedded systems can ap-
pear insurmountable. We present the Xinu External Suite
Tester (XEST) framework, a tool for automated, parallelized
regression testing of embedded software kernels running di-
rectly on real embedded hardware. We discuss the require-
ments for such a system, and evaluate its power as both a
quality control mechanism in an actively developing system
and as an assessment tool for students in conjunction with
the Embedded Xinu experimental laboratory.

Keywords
Embedded systems; Testing; Xinu; Nexos

1. INTRODUCTION
Testing of embedded system software remains challenging

for several key reasons. Embedded systems typically have
narrower communication channels and tighter resource re-
strictions for testing overhead than comparable non-embedded
systems. Embedded software is by and large still written in
C and assembly, languages that resist modern static analysis
and model checking approaches. Reactive and real-time em-
bedded systems have dense, interrupt-driven control flows
that baffle analysis tools and cause explosively large state
spaces. Simulations are common, but few modern embed-
ded processors have industrial-strength, cycle-accurate sim-
ulators available, and simulation of the entire system addi-
tionally requires accurate models of peripheral components
and ambient environments.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$10.00.

As embedded systems permeate an ever-widening circle
of safety- and mission-critical applications, robust testing
of embedded software remains of paramount importance.
In this paper we present the Xinu External Suite Tester
(XEST) framework, a tool for automated, parallelized re-
gression testing of embedded software kernels running di-
rectly on real embedded hardware. Our implementation
works with the Embedded Xinu experimental embedded sys-
tems laboratory, but exists as a separate tool that can be
applied in many contexts.

The contributions of this paper are twofold:

1. We present Xest, a testing framework designed to pro-
vide a simple, intuitive mechanism to emphasize test-
driven development in embedded system courses, and

2. We evaluate the effectiveness of Xest in the context of
an existing embedded operating system course.

In the next sections of the paper, we provide a review of
prior and related work in the area of embedded software vali-
dation, concluding that there is a clear need for a new tool of
this type. Next, we provide background on the Embedded
Xinu laboratory infrastructure and the applicable prereq-
uisites for Xest to be useful. We discuss capabilities and
design decisions inherent in our prototype implementation,
and give examples of its usefulness. Finally, we evaluate
Xest in the context of both an active kernel development
project and as a driver for teaching test-driven development
in our embedded operating systems course.

1.1 Prior and Related Work
Software validation in general, and analysis and testing

of embedded systems in particular, have been rich areas of
research in recent years.

Specific properties of embedded systems have proven to
be amenable to static analysis techniques that model and
check system source code. Subproblems like worst-case exe-
cution time (WCET) analysis have been addressed through
automatic derivation of loop bounds and detection of infea-
sible paths by abstract execution [13]. Similarly, worst-case
stack size can be estimated [19]. Many additional proper-
ties can be validated through the extensive research of the
model checking community; embedded systems remain a dif-
ficult target because reactive and real-time embedded sys-
tems have dense, interrupt-driven control flows that baffle
analysis tools and cause explosively large state spaces [6].

Embedded software is by and large still written in C and
assembly, languages that resist modern static analysis and

40 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



model checking approaches. Many alternatives have been
proposed that limit the expressiveness of the language in
return for enhanced checking and domain-specific features,
like the nesC language [12]. Such programming language
innovations present an important path forward, but face an
uphill battle in gaining wide acceptance in the industrial
world. For the foreseeable future, testing of embedded sys-
tems remains an important part of mainstream practice.

Simulations of embedded systems can be an important
cost-effective and time-saving alternative to testing alone.
However, few modern embedded processors have industrial-
strength, cycle-accurate simulators available. High quality
research simulators exist for platforms ranging from the Mo-
torola Coldfire [10] to the Atmel AVR [23], but major embed-
ded architectures like the MIPS and ARM processor families
remain poorly represented. Berg et al. [1] have presented
guidelines for processors to be more readily analysis and
simulation-friendly, but it remains to be seen how this ad-
vice will be taken to heart by the industry.

Proper simulation is much more than a matter of modeling
processor behavior, however. Embedded simulation often re-
lies on careful modeling of peripherals, environment, or par-
allel subsystems. Some narrow domains have seen progress
in this area, such as sensor networks, which have both fine-
grained network simulators [18] and simulators that scale
to thousands of nodes [15]. General-purpose tools that are
widely-applicable beyond a narrow domain remain elusive.
In short, cycle-accurate simulators can be extremely helpful,
but often aren’t scalable, don’t model peripherals, or most
frequently do not exist.

Generation of proper testcases has been another rich area
of research for decades. The WISE tool [8] delivers auto-
mated test generation for worst-case complexity. Complex-
ity has an important correlation with timing requirements
in embedded systems, but like many good test generators,
WISE works with Java, a language that has seen only lim-
ited deployment in the embedded community.

The Save-IDE [20] is an integrated development environ-
ment for component-based embedded systems. It supports
component-based design, provides generated C language skele-
tons, and works directly with an integrated model checker.
The Save-IDE presumes the presence of an operating system
layer that supports the component-based design paradigm;
in contrast, our work targets a lower level of the system,
allowing for direct testing of operating system layers.

The importance of automated testing tools has been high-
lighted in [2], which admonishes practitioners not to intro-
duce coverage analysis and visualization tools in projects
without a reasonably usable automated test suite.

Finally, pedagogical research continues to reinforce the
importance of test-driven design and test-first strategies in
and out of the classroom:

“We found that test-first students on average wrote
more tests and, in turn, students who wrote more
tests tended to be more productive. We also ob-
served that the minimum quality increased lin-
early with the number of programmer tests, inde-
pendent of the development strategy employed.”[9]

2. THE LABORATORY ENVIRONMENT
We have based Xest on the Project Nexos [25] suite of

tools, a cooperative, multi-school effort to bring hands-on

embedded systems laboratory exercises into core undergrad-
uate computer science and engineering courses. Extensive
details on the software, hardware, and curricula are avail-
able in the existing literature [3, 4, 7], and half a dozen
more schools have constructed or begun to construct Nexos-
enabled laboratories in the past two years.

The embedded operating systems course described in this
paper focuses on the Linksys wireless router as the embed-
ded target platform. The Embedded Xinu kernel [5], a core
component of Project Nexos curricula, runs on six distinct
models of 32-bit MIPS-based router platforms produced by
Atheros, Broadcom and their competitors, in addition to the
Qemu virtual machine. While the examples in this paper
are tied primarily to the MIPS router platform, the flexibil-
ity of this infrastructure has been amply demonstrated with
other hardware ranging from 8-bit ATmega1280 Arduino
boards, to 16-bit Motorola 68HC11 and 68HC12 develop-
ment boards [11], to 64-bit dual-core Pentium workstations
with PXE boot capabilities.

These systems all have two key features that we rely on:

• At least one serial port that can act as a console device
for the O/S and any firmware bootloader, and

• Firmware that can upload a fresh O/S kernel over an
I/O device at boot time.

These two features are available for many embedded sys-
tems, reflecting the more mature design practices visible in
many segments of the embedded market. Debugging se-
rial consoles are the norm in the consumer embedded mar-
ket, and also many popular research platforms, like Berkeley
Motes running TinyOS [22]. While some primitive 4- and 8-
bit embedded microcontrollers are still in use, many device
manufacturers have moved to inexpensive 8-, 16- and 32-
bit cores with high-level firmware controlling the boot pro-
cess. One-Time-Programmables and dedicated ROM pro-
gram stores are no longer very common, replaced instead by
flash ROM. With the prevalence of mutable forms of per-
manent program storage, it is now common to see embed-
ded systems with provisions for uploading/updating system
images. In this realm, rapid prototyping of embedded oper-
ating systems software is the new norm.

We organize our target platforms into a remotely-accessible
pool, as detailed in [7]. Users on a “front-end” workstation
compile their code with a MIPS platform cross-compiler.
Specialized tools upload the compiled system image to the
central server, select an available target hardware “back-
end”, and power it on. Control sequences sent to the em-
bedded firmware over the serial console during power up
interrupt the boot sequence, and redirect the system to up-
load a fresh system image over the network from the central
server. The new operating system is loaded over the network
into RAM on the target device, and begins execution. The
serial console connection is referred back to the console of
the front-end user, who can then interact with their kernel
as though connected directly to the embedded device.

The advantages of this infrastructure are many in both
the classroom setting and in the production environment.
Specialized hardware is required both for aggregating the
embedded console devices and remotely power-cycling the
hardware. Commercial solutions exist for both and we pro-
vide greater detail in previous papers and at [5].

2.1 Xest Prerequisites

41 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



The Xinu External Suite Tester (XEST) framework was
developed in the context of the experimental embedded sys-
tems infrastructure described above. The key prerequisites
for our testing tool are thus:

• Embedded platforms that can be remotely power-cycled
into a “known good” state,

• Provisions for unattended upload of software image to
embedded device, and

• At least one stable I/O communication channel with a
“fail safe” device driver.

If parallelized testing is to be supported, there is a further
requirement of a test pool of:

• Multiple, concurrently accessible target platforms.

Testing infrastructures of this scope are not unusual in
the context of desktop and server systems. Our work es-
tablishes that these prerequisites can be both beneficial and
inexpensively achievable in the embedded system context.

3. XEST
Next we present the details of the Xinu External Suite

Tester (XEST) system.
As established in previous sections, testing is important

for checking that software meets the requirements set forth
by its specifications. Test automation aims to reduce test-
ing effort by allowing software to repeat testing tasks quickly
and precisely in place of a manual tester. Automation can
be applied to many types of software testing and results in
cost effective and time saving benefits. Specifically, regres-
sion testing is useful for uncovering software regressions – a
problem that occurs where previously working functionality
stops working as intended as a result of the addition of new
changes.

Regression testing of embedded systems remains difficult.
The system needs to be robust, easily maintainable, and eas-
ily able to interact internally and externally with our em-
bedded target hardware.

One significant challenge is to interact with the embedded
operating system kernel with minimal code overhead. An
age-old problem with systems testing, the insertion of test
code changes system properties ranging from code size to
deadline constraints and cache misses. Our solution is to
make use of the existing “test hook” already present in the
Xinu shell interface, xsh_test.c. By using a dedicated test
hook already present in the embedded kernel, we disturb as
little as possible in the rest of the system.

3.1 Implementation
While the Embedded Xinu system itself is primarily imple-

mented in ANSI-standard C and MIPS assembly, we chose
to implement Xest in two standard scripting languages, bash
and expect, due to their portability, wide availability, and
powerful flexibility.

An overview of the full version of Xest is given below; this
instance of the tool is designed to run unattended, paral-
lelized nightly regression tests of an embedded kernel pro-
duction system. In Section 5, we present a simpler, pre-
configured instance of the tool used for teaching purposes.

System Initialization

Before running Xest, various attributes are set in the sys-
tem configuration file related to two main areas: version
control and automatic notifications. By default, the system
expects to retrieve a current copy of the target source code
from a version control system, such as Subversion. Alterna-
tively, a local directory tree can be specified. Notification
options allow custom e-mail subject headers, specific targets
for testing results, and modes that control output verbosity.

Test Creation
Given our serial link with the embedded hardware, test-

cases are comprised of three components: a test hook that
runs on the embedded platform, an input to the serial con-
sole, and an expected output. The data file format is plain
human-readable text, which not only allows easy debug-
ging of the test harness, but can combine well with exist-
ing tools for automatically generating testcases for coverage
or other criteria. Test hooks consist of xsh_test.c files to
be dropped into place during kernel compilation. The test
hooks follow a straightforward sentinel marker system:

printf("===TEST BEGIN===");

[ code to test ]

printf("===TEST END===");

Once the controlling expect script sees the TEST BEGIN

line, it starts capturing data as the output to the testcase.
Once it sees the TEST END line, it stops and compares the
collected output with the expect output. Shorter sentinel
values could be used for more time-sensitive contexts, (at
115K baud, the start sentinel will take more than 2 millisec-
onds of asynchronous serial processing,) but this has not
proven to be a problem with the prototype system.

Solution Initialization
In an educational setting, it is often the case that simple

typos in the expected output will cause a testcase to fail,
even when the system is correct. One natural solution for
this is to add capability for correct outputs to be generated
by a “known good” reference implementation of the assign-
ment. When such a reference implementation is available,
the Xest initialize.sh script correctly generates expected
outputs for each test input.

Within this expect script, a connection to a Xinu backend
is made and a command to ‘test’ is sent. The embedded
kernel runs the specified test hook, and output is collected.
As mentioned above, the expect script waits until it sees
the TEST BEGIN sentinel before saving results into the out-
put buffer. This discards unnecessary output generated by
target platforms booting remote kernel images, which can
be substantial. Once the TEST END sentinel is seen, the con-
nection to the backend is closed and the log is returned.

Optional parameters provide additional functionality. When
run with no parameters, all testcases are initialized. By us-
ing a -tc parameter, the user can specify certain testcases
to initialize. This is useful for initializing a new testcase
or a testcase that failed to initialize properly the first time.
Lastly, a help option exists that gives an explanation of the
three ways to initialize Xest. All existing testcases can be
listed for easy reference.

External Testing
Once solutions have been initialized, testing is begun by

executing the xest.sh script. Xest determines which test-
cases to run – either all of them or those specified as parame-
ters. Next, the appropriate source revision to use for testing

42 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Figure 1: Xest Flow Chart

is selected based on the system configuration file. Each test
case is compiled and run against a previously “known good”
output.

Once all tests have completed, the xinu-interact.exp

script returns control to the main Xest script. The log file
contains the results of each testcase and is compared to each
previously known solution; if the test does not pass, the
result is placed into a problem output file (badoutfile).

Similar to solution initialization, Xest can be run with
parameter specifications. If the user runs

./xest.sh

with no parameters, all tests are run. Similarly, using the -tc
parameter, the user can specify individual tests to run. This
is useful for checking a new testcase or rerunning previously
failed cases.

./xest.sh -tc 01-testOne 02-testTwo

Lastly, a help option exists:

./xest -help

that behaves similarly to Xest initialization help and gives
an explanation of the three ways to run Xest.

4. XEST AS GRADING ASSISTANT
While Xest was initially developed as a regression tool for

the Embedded Xinu development effort, its usefulness as an
assessment tool for the Nexos curriculum quickly became
apparent. In this section, an overview of the components
in Xest that contribute to automated evaluation of student
kernels is given in Figure 3. The next section will discuss
Xest components used as a tool for students to test their
own work prior to submission.

Support for Multiple Courses
The Embedded Xinu operating system is used for teach-

ing hardware systems (assembler programming), operating

systems, embedded / real-time systems, embedded network-
ing, and even compilers courses. The testing requirements of
these various courses are disparate enough to warrant addi-
tional abstractions in the Xest design to support this. Com-
ponents of Xest have even been employed to evaluate Java
programs in an introductory programming course, demon-
strating its flexibility and breadth.

Xest supports template directories which contain skeleton
configurations and testing scripts for each course to be sup-
ported. These templates include tests, grading scripts and
solution files, as well as assisting utilities specific to individ-
ual courses. The presence of this template system allows
for faster specializations based upon project testing require-
ments.

Error Checking To account for errors of both the student
and system varieties, various new methods of checking for
errors were necessary:

1. Checking for existence of files, directories, etc.,
2. Logging errors into a separate file for later review, and
3. Attempting to recover from student homework submis-

sion errors.

4.1 Implementation
The standard cycle for student code assessment with Xest

is given in Figure 3, and explained in the following sections.

System Initialization
Before using the Grading Component of Xest, the user sets

various attributes in the system configuration file. Items
such as the course and semester are set so that the cor-
rect course reference materials are used. Next, the user exe-
cutes the courseInit.sh bash script. This script copies over
course-specific files and directories from the courseTemplates.

Project Creation
Before a new directory for a homework assignment can

be created, the user must specify various variables in the
project configuration file (much like the system configura-
tion file). These variables include the path containing stu-
dents’ submitted assignment, the particular scripts needed
for grading the assignment, the number of points for the
assignment, and a list of the assigned code files that the stu-
dents worked on. Upon executing the createNewProject.sh
script, a new directory for the project is created and tem-
plate scripts and test cases are copied into it.

Grading
Upon executing the rungrades.sh script, the automated

evaluation process begins.
If an optional parameter is given (the number of backends

to grade on), the system can grade in parallel. To do so, the
program looks up available backends using the pool man-
agement utilities and calls the batchgrade.sh script with
names of the students to be graded. The total number of
student tarballs is distributed across the pool of available
backend targets and evaluated by the grade.sh script. If no
parameter has been given (non-parallel mode), the grade.sh
script is called on each student submission in serial fashion.
The grade.sh script does most of the work; first, a tempo-
rary directory is created for the student’s tarball. Next,
the student’s tarball is located from the input directory
and untarred into the new temp directory. Any files that
are necessary for grading, including special grading logic
(initialize.c) are copied in as well. After compilation,
each testcase is copied into the temp directory.

43 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Figure 2: Xest Grading Component Overview

Each of the testcases is used by an expect script to connect
to a Xinu backend, run the test, and return with resultant
output. If there are no discrepancies with the expected out-
put, the testcase passes. Otherwise, the non-matching out-
put is stored into a file for later review. Through the entire
grading process, any errors that are encountered are logged
into the output file. Special errors, such as those that involve
compilation or files/directories are logged in problems.txt

for later review.

Reporting
Reports are automatically generated for each student sub-

mission, containing header information such as names, as-
signment number, points, and other details about the sub-
mission. Files of interest (identified by the per-project con-
figuration file) are included in the report, and then the re-
sults of each test case are given.

5. NIGHTLY REGRESSION TESTING
We have evaluated Xest in the context of two completely

different settings. The first of these is as the nightly regres-
sion test manager for our local development branch of the
Embedded Xinu operating system. The second, described
in the next section, is as a teaching tool to help habituate
a test-first implementation strategy for students developing
their own kernel components in an embedded operating sys-
tems course for undergraduates.

Automated regression testing has long been a best prac-
tice for loosely organized development teams collaborating
on complex software implementation. What is novel about
our use of Xest for nightly regression tests is that it involves

taking control of a pool of dedicated target hardware to run
the complete testsuite on the embedded platforms.

An entirely unattended cron job checks out the latest re-
vision of the code base each night. Each test item in the
suite is recompiled into a separate test kernel; this is expen-
sive in overall cross-compilation time, but assures minimal
overhead in the resource-sensitive embedded memory foot-
print. Results are compiled automatically, and are waiting
in the e-mail inboxes of the developers when they awake in
the morning.

By compiling each test segment directly into the kernel,
Xest is able to provide in-depth unit and integration testing
of the system. This includes stress testing of subunits not
accessible from the user-level API, independent validation
of kernel data structures, independent validation of timing
properties, and loopback testing of device drivers and their
hardware. Injecting test network packets destined for the
remote target is also supported, but is rarely a good idea
when parallel testing on a private network or when the se-
rial console is monitored using a RS232-over-Ethernet serial
aggregator on the same subnet. Instead, internal compila-
tion of the test packet data increases memory overhead on
the target machine, but eliminates a major source of nonde-
terminism that can cause false positive test failures.

The results of a typical Xest run of the kernel internal tests
is shown in Figure 4. The tests include validation of the C
language execution environment on the embedded target,
preemptive multitasking, interprocess communication prim-
itives, hardware device drivers, the micro C libraries, the
memory and buffer pool allocators, and the various layers of

44 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Figure 3: Xest Grading Component Flow Chart

the TCP/IP networking stack.
Xest has been deployed as a nightly regression tester for

more than eight months, and has thus far detected six dis-
tinct regressions that had slipped past developers. The sys-
tem has been particularly valuable in that it can be config-
ured to perform the testing on each of the embedded plat-
forms supported by the unified Embedded Xinu kernel, rang-
ing from little-endian MIPS processors with a Broadcom
“Silicon Backplane” architecture to big-endian MIPS cores
with Atheros peripherals and a cascaded programmable in-
terrupt controller. This allows us to catch errors caused by
changes that work on one platform, but break on another;
relying on developers to manually run regressions on each
of the supported platforms each time they commit a code
change was simply not practical.

6. XEST AS TEACHING TOOL
It comes as no surprise to experienced software engineers

that test-driven development tends to produce higher qual-
ity code than a “write first, test later” approach. Faculty
have published much work on their struggles and successes
with entry-level testing frameworks like JUnit [14] for Java
programmers [17, 24]. Unfortunately, equivalent tools have
not been freely available for embedded systems.

Proprietary testing tools exist that provide unit, integra-
tion and system testing for typical embedded languages like

C and Ada [21], or focus on safety-critical areas like medical
device validation [16]. Such tools are generally not freely
available to educators or students, and cater to professional
developers with many years of experience. Thus, we do not
consider these solutions to be good choices for college-age
students new to embedded development. In this respect,
we believe that Xest provides a one-of-a-kind, easy-to-use,
entry into the world of embedded regression testing.

In Spring of 2010, we deployed a simplified version of Xest
into our undergraduate embedded operating systems course;
the structure of the course, syllabus, and assignments are
detailed in [4]. Earlier versions of the tool had been used by
the instructors for several years to assist in grading student
work. Spring 2010 marked our first effort to put this tool
into the hands of our students.

The simplified tool comes in two forms. The first is pre-
configured to run simple input/output comparison tests be-
tween a reference implementation and a student implemen-
tation. A simple directory of testcase inputs and outputs is
created, and the tool is run with the paths to the two ver-
sions to be compared. A test report presents the differences
between the outputs for tests that do not match.

The second form of the tool was added in the third assign-
ment, and includes the“test-hook” introduced in Section 3.1.

6.1 Inculcating Test-Driven Development
The fundamentals of testcase creation and the Xest inter-

45 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Test Suite 1: Argument Passing [PASS]

Test Suite 2: Priority Scheduling [PASS]

Test Suite 3: Thread Preemption [PASS]

Test Suite 4: Recursion [PASS]

Test Suite 5: Single Semaphore [PASS]

Test Suite 6: Multiple Semaphores [PASS]

Test Suite 7: Counting Semaphores [PASS]

Test Suite 8: Killing Semaphores [PASS]

Test Suite 9: Process Queues [PASS]

Test Suite 10: Delta Queues [PASS]

Test Suite 11: Standard I/O [PASS]

Test Suite 12: TTY Driver [PASS]

Test Suite 13: Character Types [PASS]

Test Suite 14: String Library [PASS]

Test Suite 15: Standard Library [PASS]

Test Suite 16: Type Limits [PASS]

Test Suite 17: Memory [PASS]

Test Suite 18: Buffer Pool [PASS]

Test Suite 19: NVRAM [PASS]

Test Suite 20: System [PASS]

Test Suite 21: Message Passing [PASS]

Test Suite 22: Mailbox [PASS]

Test Suite 23: Ethernet Driver [PASS]

Test Suite 24: Eth Loopback Driver [PASS]

Test Suite 25: Network Addresses [PASS]

Test Suite 26: Network Interface [PASS]

Test Suite 27: ARP [PASS]

Test Suite 28: Snoop [PASS]

Test Suite 29: UDP Sockets [PASS]

Test Suite 30: Raw Sockets [PASS]

Test Suite 31: IP [PASS]

Test Suite 32: User Memory [PASS]

Figure 4: Xest Testsuite for stock Xinu kernel

face were presented as part of the first laboratory demon-
stration at the start of the term. The advantages of test-
driven development were discussed, but students were given
a choice how to proceed. We asked students to submit their
testcase suites if they developed any, but made it clear that
points would still be assigned, as always, based upon the cor-
rectness of their submission. Critically, no additional points
were offered for students to develop or submit testcases; we
presented the testing tool, and allowed students to draw
their own conclusions on how useful the tool would be.

When the first laboratory assignment was submitted a
week later, 35% of the students chose to submit testsuites in
addition to their implementation source code. Anecodotally,
students who chose to build an extensive testsuite demon-
strated a deeper understanding of the assignment struc-
ture. Quantitatively, students who employed this test-first
methodology scored an average of 150% more points than
their non-testing peers in a class of 38 students. Again, to
emphasize, no additional points were assigned because of
student testing – but the students who choose to build a
testsuite significantly outperformed their peers on the fac-
ulty grading test set. In laboratory observations, we noted
only a couple of cases where students first completed the
assignment, then went back to build a test suite. Students
generally either committed to testcase creation from the out-
set, or reverted to their usual ad-hoc testing methodologies.

For the second assignment, voluntary testsuite submission

increased to 40% of the group. Word had spread once graded
work from the first project was returned – testing really
pays off. It was highly instructive for us to see students
moving to a test-first approach because they perceive it to
be a best practice. They perceive this not because we’ve
told them it is a best practice – even though our students,
like those in many other programs, are told this from early
in their careers – but because they can see their colleagues
developing markedly better software as a result.

6.2 Results

Figure 5: Testing Students vs. Non-Testing Stu-
dents

Figure 5 shows relative student performance across six
project assignments. The first group elected to build a test-
suite and use the Xest tool for regression testing during de-
velopment; the second group used only ad-hoc testing meth-
ods, and was generally observed to use a “test last” strategy
for assignments. The groups are not fixed – members of the
testing group were detected in each project by the presence
of a Xest testsuite in their submitted directory structure.
Students who did not have such a directory present were
assumed to not be using Xest for test-driven development.

Project 4 is salient in the results because that was the
only assignment in which students were required to submit
a Xest testsuite with their work.

As the data in Figure 5 shows, students who elected to
build a Xest testsuite outperformed their counterparts by
between 22 to 153%, for an average of 84% overall. By the
time we reached Project 7 in the course, more than 80% of
the students were electing to build their own testsuites as
part of their development cycle. Data for Projects 7 through
10 are not presented because the non-testing cadre of stu-
dents had become too small of a remnant for fair comparison.

In summary, the intervention was quite successful. Over
the course of the term, nearly all of the students chose to at
least partially embrace test-driven development tools, and
for each assignment, those who did outperformed those who
did not. Moreover, even though only a third of the students
initially were interested in this approach, the vast majority
came to adopt early testing when they perceived that their
peers were having greater success using this methodology.

46 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



7. CONCLUSION
Regression testing continues to be an important factor in

the creation of robust software. To incorporate this type of
testing into the Embedded Xinu project, we created a flexi-
ble framework of components for both internal (code in the
kernel) and external (code on the test hosting computer)
testing of an embedded operating system. Our system runs
on real embedded hardware and has been configured for re-
gression testing of an active kernel development project, for
assessing student assignments, and for students themselves
to use as a test-driven development tool in their coursework.

Students who adopted the Xest testing tool in our course
consistently produced better results than those who relied
on ad-hoc testing methods. By the end of one semester,
the vast majority of students involved in the course were
choosing to use our embedded regression testing tool on their
assignments as a natural part of their development cycle.

While static analysis techniques, model checking, simu-
lators, and domain-specific programming languages all have
an important role to play in making embedded systems safer
and more robust, automated testing remains an important
piece of the puzzle. Our work demonstrates that automatic
testing of embedded O/S kernels can be both beneficial and
inexpensively achievable. Our software is used by both stu-
dents and developers working with the Embedded Xinu ex-
perimental system infrastructure, and is available from the
Embedded Xinu software repository [25].

7.1 Future Work
Our next round of improvements for the Xest system will

include expanded support for time-sensitive testing, using
high-granularity timers on the target to annotate output
stages during testing for comparison against timers on the
host. We are also interested to see if continued tracking
shows that students who turned toward test-driven develop-
ment in this course will continue in subsequent courses.

8. REFERENCES
[1] C. Berg, J. Engblom, and R. Wilhelm. Requirements

for and design of a processor with predictable timing.
In Perspectives Workshop: Design of Systems with
Predictable Behaviour, Dagstuhl, Germany, 2004.

[2] S. Berner, R. Weber, and R. K. Keller. Enhancing
software testing by judicious use of code coverage
information. In ICSE ’07, pages 612–620, 2007.

[3] D. Brylow. An experimental laboratory environment
for teaching embedded hardware systems. In WCAE
2007: Workshop on Computer Architecture Education,
pages 44–51. ACM Press, June 2007.

[4] D. Brylow. An experimental laboratory environment
for teaching embedded operating systems. In SIGCSE
’08, volume 40, pages 192–196, March 2008.

[5] D. Brylow. Embedded XINU project, 2010.
http://www.mscs.mu.edu/~brylow/xinu/.

[6] D. Brylow and J. Palsberg. Deadline analysis of
interrupt driven software. IEEE Transactions on
Software Engineering, 30(10):634–655, October 2004.

[7] D. Brylow and B. Ramamurthy. Nexos: A next
generation embedded systems laboratory. SIGBED
Review, 6(1), January 2009. URL
http://sigbed.seas.upenn.edu/.

[8] J. Burnim, S. Juvekar, and K. Sen. Wise: Automated
test generation for worst-case complexity. In
Proceedings of ICSE ’09, pages 463–473, 2009.

[9] H. Erdogmus, M. Morisio, and M. Torchiano. On the
effectiveness of the test-first approach to
programming. IEEE Transactions on Software
Engineering, 31(3):226–237, 2005.

[10] C. Ferdinand, R. Heckmann, M. Langenbach, et al.
Reliable and precise WCET determination for a
real-life processor. In EMSOFT 01: First
International Workshop on Embedded Software, LNCS
volume 2211, pages 469–485, October 2001.

[11] Freescale Semiconductor, Inc. CPU12 Reference
Manual: M68HC12 and HCS12 Microcontrollers,
2006. URL http://freescale.com.

[12] D. Gay, P. Levis, J. R. von Behren, et al. The NesC
language: A holistic approach to networked embedded
systems. In Proceedings of PLDI 03: ACM SIGPLAN
Conference on Programming Language Design and
Implementation, pages 1–11. ACM Press, 2003.

[13] J. Gustafsson, A. Ermedahl, C. Sandberg, et al.
Automatic derivation of loop bounds and infeasible
paths for WCET analysis using abstract execution. In
Proceedings of RTSS ’06, pages 57–66, 2006.

[14] Junit.org. URL http://www.junit.org/, 2010.

[15] P. Levis, N. Lee, M. Welsh, et al. TOSSIM: accurate
and scalable simulation of entire TinyOS applications.
In SenSys ’03: Proceedings of the 1st International
Conference on Embedded Networked Sensor Systems,
pages 126–137, 2003.

[16] Indesign LLC. URL http://www.indesign-llc.com/

medical_device_validation.asp, 2010.

[17] M. Olan. Unit testing: test early, test often. Journal of
Computing Sciences in Colleges, 19(2):319–328, 2003.

[18] J. Polley, D. Blazakis, J. Mcgee, et al. ATEMU: A
fine-grained sensor network simulator. In Proceedings
of SECON ’04: IEEE Communications Society
Conference on Sensor and Ad Hoc Communications
and Networks, 2004.

[19] J. Regehr, A. Reid, and K. Webb. Eliminating stack
overflow by abstract interpretation. ACM
Transactions on Embedded Computing Systems,
4(4):751–778, November 2005.

[20] S. Sentilles, A. Pettersson, D. Nystrom, et al.
Save-IDE - a tool for design, analysis and
implementation of component-based embedded
systems. In ICSE ’09, pages 607–610, 2009.

[21] V. Software. Url http://www.vectorcast.com/, 2010.

[22] TinyOS.net. The TinyOS printf library, 2010. URL
http://docs.tinyos.net/index.php/The_TinyOS_

printf_Library.

[23] B. L. Titzer, D. K. Lee, and J. Palsberg. Avrora:
Scalable sensor network simulation with exact timing.
In Proceedings of IPSN’05: Fourth International
Conference on Information Processing in Sensor
Networks, pages 477–482, April 2005.

[24] M. Wick, D. Stevenson, and P. Wagner. Using testing
and JUnit across the curriculum. In SIGCSE ’05,
pages 236–240, March 2005.

[25] Project Nexos / Embedded Xinu wiki, 2007.
http://xinu.mscs.mu.edu/.

47 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



A Modular, Robust and Open Source Microcontroller
Platform for Broad Educational Usage

André Stollenwerk Andreas Derks Stefan Kowalewski

Embedded Software Laboratory
RWTH Aachen University

{stollenwerk,derks,kowalewski}@embedded.rwth-aachen.de
Falk Salewaski

Lacroix Electronics
f.salewski@lacroix-electronics.com

ABSTRACT
In current curricula, more and more courses endeavor to
give practical examples on the usage of embedded hardware.
Either by demonstrations in e. g. lectures or as hands-on
practice in lab courses. In order to motivate the students
a reference to current technological developments is desired.
All these requirements lead to a point where a reliable and
fast modifiable hardware platform is needed.

This paper describes a microcontroller-based platform,
which was developed in 2004 and refined over the years at
RWTH Aachen University. In addition to this platform, we
also developed several extension modules in order to em-
bed current technologies like RFID or a digital photo frame.
Besides all the technological issues, we also had to pay at-
tention to non-functional requirements like expense for the
whole platform or the robustness needed for educational us-
age of the components.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: Computer and In-
formation Science Education; B.3 [Hardware]: Memory
Structures; B.4.3 [Input/Output and Data Communi-
cations]: Interconnections (subsystems); B.m [Hardware]:
MISCELLANEOUSt’; C.3 [Computer Systems Organi-
zation]: Special-Purpose and Application-Based Systems—
Microprocessor

General Terms
Design, Experimentation, Documentation

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
WESE ’10 Scottsdale, Arizona, USA
Copyright 2010 ACM ISBN ??? ...$10.00.

Figure 1: The basic microcontroller platform [8]

Keywords
Computer Science Education, Lab Course, Microcontroller,
Evaluationboard

1. INTRODUCTION
In recent embedded systems related curricula one can note

a change. Formerly the students were often taught about
technologies or methodologies, on how to program embed-
ded systems. In these cases they did not necessarily under-
stand the interaction between the embedded system and its
environment (so called cyber physical systems) [10]. One
attempt solving this problem is teaching embedded systems
with a direct link to an application unsing these cyber phys-
ical systems. This results in the need of more applicable
examples within the courses. Either in lectures to show the
students not only the theory but also how these systems
act, not least with the attempt to motivate them to con-
tinue working on these examples at home, or in lab courses
where they can directly work hands-on with the hardware
and interact with their environment.

Both scenarios arise certain requirements to the used hard-
ware. On the one hand, the used hardware must be reliable
in terms of usability and robustness, it should be modular,
to be able to augment the applications and last but not least

48 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



both, students as universities have an interest in inexpensive
hardware.

We faced this challanges in 2004 when we started to cre-
ate a hardware platform for our courses. After some dis-
cussions we decided to primary work with microcontrollers,
due to the fact that these devices should be more intuitive to
computer science students than programmable logic devices
(e. g. FPGA or CPLD); especially towards freshmans. The
resulting platform is shown in Figure 1.

In this article, we describe the experience we gained over
the years while developing and working with our micro-
controller platform and designing extension modules for it.
Since we publish most of our designs including part lists on
our websites [8] we invite interested others to participate in
these experiences. Therefore, we give explanations on why
we designed certain circuits and what the pitfalls are.

Concerning the microcontroller platform, we had several
requirements. First of all the platform should be inexpensive
in order to buy a sufficient number for our courses. This
includes the platform itself, but also the required cables and
not to forget: programming and debugging devices as well
as the required tool chain. Moreover, we had in mind that it
could be interested for some students to rebuild this platform
for own experiments at home. Therefore we built up this
platform in ”old fashioned” through-hole technology (THT)
and did not use any SMD components. In addition, we used
sockets for most of our ICs. This enables us to exchange
a broken IC without any soldering. A second educational
requirement was to come up with a very simple platform to
demonstrate the low number of components you need to run
a complete embedded computer.

In order to allow also more sophisticated functions, we
came up with a modular approach consisting of a rudimen-
tary main unit in combination with a LCD and a collection
of extension modules as described in the following chapters.
Finally, an important requirement is the robustness of the
platform as in our case up to 350 students work with it each
semester. This requirement for robustness is including the
electrical but as well the mechanical parts of the platform.

1.1 Curricular usage
We use this microcontroller platform in several courses

targeting mostly CS students. Starting with some demon-
strations in a first semester undergraduate lecture on com-
puter engineering followed up by a lab course in the sec-
ond and third semester each. During the first lab the stu-
dents renew their electrophysical basics and in the second
lab (hardware programming) the students get in touch with
embedded software by programming an operating system on
the microcontroller [16].

In addition to these mandatory courses where all com-
puter science students of RWTH Aachen University face our
microcontroller platform there are elective courses in under-
graduate and graduate studies where they get in contact
with the platform again. We offer some embedded system
specialized lectures where the microcontroller is used for ex-
amples and demonstrations. In addition, there are optional
lab courses where the students continue working with the
microcontroller platform [15]. Here they e.g. implement an
elevator control to gain practical knowledge about safety and
reliability of embedded systems.

2. HARDWARE
As introduced in Chapter 1, many practical courses need

an easy to handle, robust and inexpensive hardware plat-
form, if they want to give the students practical experiences,
which exceed just working with a software-based simulator.
Simulators often have problems to show real time behaviour
in an intuitive way and hide several problems of the real
hardware. Moreover whatching simulations is typically less
interesting. Therefore, we started to design a printed cir-
cuit board (PCB) whose elements are based on low cost and
widly available components and nevertheless still is modular,
so that each special application has the possibility to access
the whole microcontroller. Since many of our students get
very enthusiastic during working with this platform we put
most of the PCB layouts and the according part lists on our
website [8] to give them a possibility to rebuild the platform
for their private use. The overall expense for all components
is about 35 Euro and the PCB is another 30 Euro (this value
scales with quantitiy).

During the first courses, we recognized the patch cords to
be a regular source of errors. In addition there were many
cases in which a wrong wiring caused a short-circuit. In
order to make our hardware more robust towards these er-
rors we designed many on-board configuration options as
jumpers and integrate most of the single pins to either pin
headers or connector plugs. With these measures, we mostly
avoided loose contacts and short-circuits. In addition, wrong
wirings are prevented due to the orientation and fixed pin
positions within the plugs. Figure 2 shows the different
components of the microcontroller platform and the possible
wirings between them.

2.1 The Microcontroller
The main component of our evaluation platform is the mi-

crocontroller. There are many requirements and restrictions
to this device. On the one hand, it should support many in-
terfaces and debugging technologies like USART, TWI, SPI,
ISP or JTAG as a debugging interface on the other hand it
should also be cheap in acquisition. In addition, there should
be existing knowledge about the microcontroller and it has
to have a development environment, which is easy to use,
free and has a good support for debugging purposes. It is
important that the students can access the development en-
vironment without any problems; either as free software or
due to any available academic licenses.

All these points lead our decision to the Atmel AVR AT-
mega family. We picked the ATmega32 [4] and ATmega644
[5], which are pin compatible and thus can be freely ex-
changed on our platform. In comparison the ATmega644 has
double the capacity in all memories (64 kB Flash, 2 kB EEP-
ROM and 4 kB SRAM).From the functional point-of-view
these two microcontrollers differ just in marginal points.

There are different programming interfaces for the Atmel
AVRs. First to mention is the AVRISP mkII [2]. This device
can program the microcontroller but is not able to do on-
chip debugging; it is available for about 35 Euro. The next
step is the AVR JTAGICE 1, which is no longer produced by
Atmel. Nevertheless there are different reproductions avail-
able as starting of 20 Euro [12]. Unfortunately this device is
just able to program up to the ATmegs32. In order to pro-
gram the ATmega644 a more comprehensive programmer is
needed. At this point the AVR JTAG ICE mk II [1] (approx.
300 Euro) is needed. Thus, we try to stick for most courses

49 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



di
re

ct
 

co
nn

ec
tio

n

MCU

P
O

R
T 

B

P
O

R
T 

A

P
O

R
T 

D

P
O

R
T 

C

8x
 L

E
D

8x
 L

E
D

4x push button

LC
D

R
S

23
2

power supply

optional 
jumper 

connection

optional 
jumper 

connection

optional 
cable 

connection 

P
IN

 H
E

A
D

E
R

PI
N

 H
E

AD
ER

direct 
connection

direct 
connection

optional 
jumper 

connection

PIN HEADER

direct 
connection

direct 
connection

P
IN

 H
E

A
D

E
R

PI
N

 H
E

AD
ER

ISP JTAG

crystal 
oscillator

Figure 2: Block diagram of the basic microcontroller platform

to the ATmegs32, which makes the acquirement cheaper for
students, who want to use this platform in private context.
For some tasks, we came to the experience that a microcon-
troller with 2 kB of SRAM is very tight calculated. This
is why we have both microcontrollers supported as freely
exchangeable on our platform.

In general, there are many different ways to download the
designated program onto the microcontroller. Usually in our
courses the JTAG interface is used. Using this interface the
students do not only have the possibility to transfer the ma-
chine code but also to debug the running device like setting
breakpoints, dumping the memory or systematically manip-
ulate the memory or registers in order to test the micro-
controllers’ behavior. Therefore, the microcontroller needs
a connection to the development environment – the personal
computer. This means some (in this case: four) of the I/O
pins are permanently used by the JTAG interface. Since
there are some applications that need these pins and the
user does not need to be able to do in-system debugging we
also placed an ISP interface on our platform. This interface
enables the user to download machine code to the device but
also to use all the microcontrollers’ pins during runtime.

There are different development environments with en-
closed tool chains to transfer assembler or high-level-lan-
guage code (like e.g. C or C++) to the microcontroller (like
AVR Studio or Eclipse with an according plugin). Right
now Windows and Linux as operating systems are widely
supported and there are even some implementations able to
run directly on MacOS. In our approach, we use AVR Stu-
dio [6], which comes directly from Atmel. This software has
the big advantage that the students do not need to know at
which address the according registers are stored at or which
configuration results out of the pattern stored in an accord-

ing register. All these information is placed within AVR
Studio. AVR Studio is only available for Windows.

In addition to AVR Studio, we use WinAVR [18] to be able
to program in C instead of assembler. In one of our courses
the students have to implement a whole operating system
from scratch, which usually end up in 15−40 kB of machine
code. Implementing this in assembler would end up in a
very complex program where it would be nearly impossible
to support the students if they run in any problems.

Due to the fact that the ATmega microcontroller fam-
ily is developed since 1996, there are many different active
communities all over the world working with these micro-
controllers. There are many hobbyists working with the
ATmega organized in communities like EmbDev.net, AVR-
freaks.net or Arduino.cc, whose freely available knowledge
one can benefit from. However, there are also many projects
run in academia based on ATmega microcontrollers, like [17,
14] as an educational example but also in research projects.

2.2 Interfaces
In the previous section, we presented and motivated the

decision to the type of microcontroller we have chosen for
our platform. This makes up the heart of our platform but
at this point, the user is not able to interact directly with the
hardware. To do so we also placed some additional devices
directly on the PCB. The focus with these devices is on the
one hand to keep it inexpensive but on the other hand to
offer many possibilities.

In general, the microcontroller offers several interfaces.
For most of them, it is necessary to supply a certain wiring
between the pin of the microcontroller and the according
plug on the PCB. Since all the ports of the microcontroller
are available to the user, there is still the chance to connect

50 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



some more complex or extensive special purpose extensions
to our platform.

2.2.1 User Interfaces
The first class of user interface (UI) embedded to our plat-

form are buttons. Four of them were placed on the PCB.
This either offers the user the chance to interact via inter-
rupts or polling directly with the hardware. These Buttons
are debounced by a 100 nF capacitor each. For one of the
buttons, the students can disable this debouncing by remov-
ing a jumper in order to understand the problem of bouncing
buttons better and how to solve this problem in software.

As a second class of UIs there are light emitting diodes
(LEDs) placed within the PCB design. There are 16 LEDs
on the platform, which can be connected freely. They en-
able the students to get a very simple feedback from the
microcontroller.

The LEDs are connected to ground, which results in a
logical 0 illuminating the LED. This configuration goes back
to the time of microcontroller with only open collector or
open drain outputs. Since the students shall work also with
existing hardware in their later life we decided to show them
also the small pitfalls that may occur in real life.

The big disadvantage of LEDs is that you need one output
pin per LED, which ends up in half of the microcontrollers’
pins being blocked if you want to use all 16 LEDs.

Because of the mentioned ratio between entropy and pin
usage which is poor for LEDs, we added a liquid crystal dis-
play (LCD), mounted on top of the PCB. We have chosen
a 2 × 16 characters LCD, which is already the most expen-
sive part out of the partlist (approx. 15 Euro). This display
is connected through four data and three control pins. We
supply the necessary drivers for this display to the students.
Because the display has other features like background illu-
mination and adjustable contrast there are some additional
circuits for wiring of the LCD on the PCB.

These devices already enable the user to implement simple
interaction between the microcontroller and the user without
any additional hardware.

2.2.2 Ports
In addition to the above-mentioned primitive interfaces,

we also added some standardized interfaces respectively the
possibility to connect with these interfaces to the microcon-
troller. On the one hand there are interfaces like SPI or I2C
(two wire interface) direct accessible through the microcon-
trollers’ pins. On the other hand, there is a RS-232 interface
(female 9-pin D-sub connector DE9) accessible.

The RS232 interface needs in addition to the physical port
a level shifter and a crystal oscillator. The level shifter is
needed because this interface needs negative voltages be-
tween −3 Volt and −15 Volt and positive voltages of up to
15 Volt. All other parts on the PCB just need up to +5 Volt,
so this is the supply voltage. There are special purpose level
shifters exactly for this application (e.g. MAX232).

The microcontroller in general does not need an external
oscillator. It is able to generate the needed clock by an inter-
nal semiconductor based oscillation circuit. Unfortunately,
these internal oscillating circuits are very inexact. This ends
up in the fact that for proper communication through RS232
an external clock is needed. Therefore, we placed a crystal
oscillator in the PCB layout.

Figure 3: ADC extension module

2.2.3 Supplying
Besides all described parts on the PCB, the microcon-

troller of course needs a supply voltage, as also some of the
other devices do. In order to be more robust towards mal-
operation we placed a fixed voltage regulator and a rectifier
on the PCB. This leads to an acceptable input voltage of
7 Volt to 25 Volt. Thus, the students cannot destroy the
microcontroller or other parts of the platform by accident.
In addition, for better diagnosis we placed a LED that in-
dicates the correct connection of the supply voltage to the
platform.

The microcontroller platform has a chockstone in addi-
tion to the regular connector jack. This enables the user
to connect e. g. a 9 Volt battery-block via a connector clip.
During some of the courses it is helpful to have a kind of
master platform that is portable and independed of any ex-
ternal voltage supply.

2.3 Extension Modules
Over the time, a growing need to implement functional-

ity exceeding the above-mentioned ones arose. There were
other fields of applications and in addition, we wanted to
offer the students tasks, which are related to current techni-
cal developments. Last but not least, this adaption, to use
modern techniques, like RFID or a chip-card reader, has a
very positive impact on the students’ motivation.

Most of our extension modules can be directly stacked
onto the external pon headers of the microcontroller plat-
form. This enables fast changes in configuration and pre-
vents voltage reversals or erroneous wirings. All the PCBs
used for the presented extension modules were designed at
out chair suiting to the presented microcontroller platform.

Table 1 shows a listing of all existing extension modules.
In the following some of the modules are presented in detail.

2.3.1 ADC
One of our first extension modules is a 8 bit analog-to-

digital converter (ADC). Though the microcontroller has an
internal ADC we decided, for didactical reasons, to design
an external module to offer the students the chance to un-
derstand a conversion step-by-step. The students implement
a up-/down counter and a successive approximation register

51 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Table 1: Existing extension modules
name of
module

application used in course

ADC ADC with integrated DAC to do voltage conversions lab course electrophysical basics
2nd semester CS Bachelor

DCF receiver for german radio clock signal DCF77 lab course electrophysical basics
2nd semester CS Bachelor

DPF digital photo frame consisting of a color LCD and a MMC/SD
card reader

lab course hardware programming
3rd semester CS Bachelor

LED primitive optical coupler to realize serial data transmission lab course hardware programming
3rd semester CS Bachelor

memory 8 kB SRAM memory extension in combination with 8 bit latch lab course hardware programming
3rd semester CS Bachelor

motor step motor driver and power supply lab course hardware programming
CS Master

PS/2 PS/2 keyboard adapter lab course hardware programming
3rd semester CS Bachelor

RFID RFID antenna and RF signal decoder chip lab course hardware programming
3rd semester CS Bachelor

(SAR) on this module.
The module internally needs a digital-to-analog converter

(DAC) which is realized by a resistor ladder. In addition
there is a DIP-switch which enables the students to use this
input UI to manually perform an analog-to-digital conver-
sion and hence better understand the action of converting
analog to digital values and vice versa. As additional device
there is an operational amplifier on this module in order to
do the comparisons between any input voltage and the volt-
age created by the internal DAC. This step is needed by
the AD conversion. Finally, there are eight LEDs in order
to visualize the status of the ADC. Our surveillance showed
these hands on experience to be very comprehensible to the
students.

Because the ADC should be able to convert in the range
from 0 Volt to 5 Volt this module needs a higher supply
voltage than 5 Volt. Our platform is only able to provide
5 Volt. Therefrom an own (higher supply voltage) is needed
for this extension module. Nevertheless, the main platform
can be cascaded behind the ADC module, why in sum one
voltage source is sufficient. The ADC extension module is
shown in Figure 3.

2.3.2 RFID
With the radio-frequency identification (RFID) extension

module (shown in Figure 4) the user has the chance to com-
municate with 125 kHz RFID-Tags. The module comprises
the antenna needed for wireless communication as printed
coil on the PCB. In addition, the module has an EM 4095
chip, which takes care of modulating and demodulating the
radio-frequency signal. Thus, the user can directly commu-
nicate in digital signals with the RFID module. The signals
read from the according RFID tag is manchester coded.

Because the resulting communication protocol is simple,
we do not offer our students any templates or drivers for this
module. As resulting application the students implement a
access control with based on RFID tags.

2.3.3 Digital Photo Frame
The digital photo frame is based on a LCD originally used

in a mobile phone and a MMC/SD card reader. In addition,

Figure 4: RFID extension module

there are some circuits to supply these devices. Like the
ADC module, some of the devices (e.g. the background
illumination of the LCD) need a supply voltage higher than
5 Volt. Thus this module needs to have a supply voltage of
12 Volt which can be cascaded with the main platform. The
display we use is a Siemens S65 compatible (LS020), 132 ×
176 pixel and 16 bit color-depth LCD. Both devices (the
LCD and the MMC/SD card reader) communicate through
SPI with the microcontroller.

Figure 5 shows the digital photo frame extension module.
On top the LCD is fixed with a pane of acrylic glass. To
the right of this LCD the power connector is placed and a
cable for cascading this module with the basic platform .
On the left side of the module parts of the SD/MMC card
can be seen. The reader is mounten on the bottom side of
the modules PCB.

As file system we use file allocation table (FAT)[11] with
already existing drivers from Elm Chan [7]. This leads to the
point that the students can directly access the content of the
chip card and do not need to take care of any low-level file
system problems. There are also some libraries available for
the LCD [9] which already allow several image manipulating
operations. The pictures can be stored as either bitmap or
any compressed pixel-based file format. If the picture-data
is saved in uncompressed bitmap format it can be directly
sent to the display. In case of any compressed file format, the

52 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Figure 5: digital photo frame extension module

Figure 6: keyboard extension module

student will have to implement image-processing functions
in order to get data the LCD will be able to work with.

During our work with the memory cards, we made the ex-
perience that there are huge differences in quality between
the different available brands. One will have to test them
before using them in a lab course where a robust and reliable
behavior is needed. On the one hand, some of the memory
cards were very slow in transfer rates which ended up in
picture changes which took several minutes. In addition to
this, some of the cards got flawed after short usage. There-
fore, we had to replace them. Unfortunately, there are no
general criteria to determine which card is well suiting for
this purpose.

Because the MMC/SD card has to be read block wise
this operation needs 512 bytes of memory (which equates to
the size of a block). Therefore, it is challenging to suit all
the data in the memory of an ATmega32. This is why we
generally use an ATmega644 for this application.

2.3.4 PS/2 Keyboard Extension
Another extension is the PS/2 keyboard module (shown in

Figure 6). This enables the microcontroller to be connected
to a PS/2 keyboard. PS/2 in general is a synchronous se-
rial protocol, which the ATmega’s USART can handle. The
electrical characteristics are designed for 5 Volt operation,
that is why no additional voltage converter or the like is
needed.

A keyboard encodes the communication in so-called scan
codes. Each possible keystroke (or release) is encoded in a
string consisting of a single or several bytes. Since we do not
want, the students to copy over all these data into an array

Figure 7: memory extension module

instead of spend their time in working with the keyboard we
offer them prepared arrays with the according scan codes.
In general, for this application one has to be careful with
cheap keyboards, since they usually do not support all the
scan code sets or even sometimes do not work completely
according to the specification.

2.3.5 Memory Extension Module
The last presented extension is the external memory mod-

ule. This is a 8 kbyte SRAM chip (HY6264A) in connection
to a 8 bit data-latch (74HC573). The latch was needed be-
cause not sufficient connection pins to the microcontroller
would be available otherwise. The SRAM has a data and a
separate address bus. Each line on this module is equipped
with a LED to visualize the processes of reading and writ-
ing to the SRAM. Most of our students stated that this is
a descriptive exercise in order to understand the dialogue
of embedded hardware. The memory extension module is
shown in Figure 7.

3. EDUCATIONAL USAGE
The above-mentioned platform with all its extension mod-

ules is used widely in education and also in some research
projects at our chair. There are several lab courses, which
use this platform [15, 16]. These courses vary from imple-
menting a motor control to the realization of a whole em-
bedded operating system including scheduler, memory man-
agement and boot loader. Due to the fact that this platform
is robust and inexpensive we were able not only to use it in
graduate courses but also in undergraduate courses where
we have to handle up to 350 students. In these cases, it
is very important to have reliable hardware. It is impossi-
ble to run a course with small groups and resulting many
appointments a week if the used hardware regularly fails.

In addition to the lab courses, we use the platform in
different lectures for specific presentations. The experience
shows that this more vivid way of presenting embedded
hardware behavior (in comparison to presenting simulations)
result in a better educational result with our students.

Beside the usage in our courses, the platform was also
used in several students’ thesis. Either for the evaluation of
e.g. a single sensors’ behavior but also to develop the whole
project.

4. COMPARISON TO OTHER PLATFORMS
When we started designing this platform, in 2004 just a

very small range of starter-kits or evaluation platforms for
the ATmega was available and none of them was meeting
our requirements. Thus, we came up with the idea to design
a new PCB for our needs. In this section, we nevertheless

53 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



want to show the similarities and differences to other existing
designs.

First to mention would be the Atmel STK 500 starter
kit [3]. This development platform comes directly from the
manufacturer of the microcontroller (Atmel) and is designed
to program a variety of microcontrollers not only limited to
the ATmega. The user has the choice between many differ-
ent programming interfaces e.g. JTAG, ISP or high-voltage-
programming. The variety of possible microcontrollers as
converse argument causes a high complexity in configura-
tion of this platform. There are 8 LEDs but no LCD on this
platform. This causes a smaller possibility to debug since
all output must be either encoded to the LEDs or sent out
through RS232 interface. This platform costs about 80 Euro.

There are other platforms similar to the STK500 mostly
sold by electronic distributors (e.g. [13]). These platforms
in general have the problem that most of the ports have a
fixed wiring to several devices and the user cannot change
this wiring.

Not only the industry built evaluation platforms so far,
also academia did. Some of these platforms like [17] gave us
inspirations for our platform. The microcontroller hardware
in [17] already showed the principle of modular extensions
and pointed out that it is important to give students the
chance to link the different devices by themselves in order
to better understand these links.

5. CONCLUSIONS
In this paper, we presented a microcontroller platform for

educational use developed over the years since 2004 at our
chair. We combined advantages of different existing plat-
forms to a robust and modular evaluation platform for edu-
cation.

The presented platform allows us to run undergraduate
lab courses with up to 350 students since 2007 but never-
theless gives us the freedom to upgrade these courses with
ongoing technical developments. Due to the conservative
designed electric supply circuits, it is resistant against op-
erating errors. The positive aspects for a usage for educa-
tional purposes are completed by an inexpensive acquisition
of these microcontroller platforms and extensions modules.

Besides the pure attributes, we give many backgrounds for
the design of our platform in this contribution. This should,
together with the freely available PCB designs and part lists
on our website [8], enable others to create a platform best
suiting their needs or just reusing ours without spending
unnecessary time in debugging hardware.

6. REFERENCES
[1] Atmel Corporation. AVR JTAGICE mkII.

http://www.atmel.com/dyn/products/product card.asp?
part id=3353.

[2] Atmel Corporation. AVRISP mkII In-System
Programmer.
http://www.atmel.com/dyn/products/product card.asp?
part id=3808.

[3] Atmel Corporation. STK 500.
http://www.atmel.com/dyn/products/product card.asp?
part id=2735.

[4] Atmel Corporation. Atmel AVR ATmega32, July 2009.
http://www.atmel.com/dyn/products/product card.asp?
part id=2014.

[5] Atmel Corporation. Atmel AVR ATmega644, Jan 2010.
http://www.atmel.com/dyn/products/product card.asp?
part id=3694.

[6] Atmel Corporation. AVR Studio 4.18 SP2, February
2010.
http://www.atmel.com/dyn/Products/tools card.asp?
tool id=2725.

[7] E. Chan. FatFS Module, May 2010.
http://elm-chan.org/fsw/ff/00index e.html.

[8] Embedded Softeare Laboratory, RWTH Aachen
University. An atmega evaluation board – design and
components list, 2008.
http://evaboard.embedded.rwth-aachen.de/.

[9] C. Kranz. Using the siemens s65-display, Oct 2005.
http://www.superkranz.de/christian/S65 Display/
DisplayIndex.html.

[10] E. A. Lee. Introducing embedded systems: a
cyber-physical approach: extended abstract. In WESE
’09, pages 1–2, Grenoble, France, 2009. ACM.

[11] Microsoft Corporation. Fat32 file system specification.
Hardware white paper, Redmond, WA, USA,
December 6 2000.

[12] OLIMEX Ltd. AVR-JTAG-L JTAG dongle for
programming and emulation.
http://www.olimex.com/dev/avr-jtag.html.

[13] Pollin Electronic GmbH. Atmel evaluations-board
v2.0.1, Nov 2007. http://www.pollin.de/shop/dt/
NTI5OTgxOTk-/Bausaetze/Diverse/
ATMEL Evaluations Board V2 0 1 Fertigmodul.html.

[14] J. J. Richardson. C programming and the atmega16
microcontroller, Aug 2005.
http://www2.tech.purdue.edu/ecet/courses/
referencematerial/atmel/.

[15] F. Salewski, D. Wilking, and S. Kowalewski. Diverse
hardware platforms in embedded systems lab courses:
a way to teach the differences. SIGBED Rev.,
2(4):70–74, 2005. WESE05.

[16] A. Stollenwerk, C. Jongdee, and S. Kowalewski. An
undergraduate embedded software laboratory for the
masses. In WESE ’09, pages 34–41, Grenoble, France,
2009. ACM.

[17] B. Weiss, G. Gridling, and M. Proske. A case study in
efficient microcontroller education. WESE 05,
2(4):40–47, 2005.

[18] J. Wunsch. Winavr, Jan 2010.
http://winavr.sourceforge.net/.

54 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA



Discussion: What have we learned today? 
 
 

Abstract: 
Workshops like WESE are designed to stimulate the exchange of ideas within the 
discipline.  For WESE 2010, there have been presentations concentrating on textbooks, 
individual courses, course sequences, hardware platforms, industrial perspectives, 
optimization techniques, and various software concepts.  During this discussion, WESE 
2010 participants are encouraged to reflect on the ideas and topics presented 
throughout the workshop and to consider how these ideas can be disseminated and 
advanced within the community.   
 
 
 
 
 
 
 
 

55 Workshop on Embedded System Education within ESWeek 2010, Scotsdale, Arizona, USA


	Proceedings_ES_Week_2010
	Binder1
	001_Lee_WESE_2010
	Introduction
	Related Books
	Theme of the Book
	Organization of the Book
	Modeling
	Design
	Analysis
	Missing Sections
	Intended Audience

	Publication Strategy
	Acknowledgements
	References

	002_Loo_ WESE_2010
	003_Dean_WESE_ 2010
	1. INTRODUCTION
	2. COURSE OVERVIEW
	3. TARGET PLATFORM
	4. OPTIMIZING FOR TIME AND ENERGY
	4.1 Motivation
	4.2 Run-Time Optimization
	4.2.1 Performance Analysis: Profiling
	4.2.2 Project

	4.3 Energy Optimization
	4.3.1 Performance Analysis: Energy Use
	An interesting complication in this application is that as the supply voltage falls, portions of the board will stop working. First, the LCD requires 4.3 V to be visible. The 0.6 V drop across D1 makes the LCD unreadable when running off the supercapacitor, so students must use other means to evaluate program operation (e.g. LEDs, serial port). Second, the microcontroller and LEDs operate at down to 2.7 V. A supply voltage supervisor IC on the QSK (MCP120T-2701) holds the processor in reset when the supply voltage BOARD_VCC falls below 2.7V.
	4.3.2 Project


	5. PORTING CODE
	5.1 MicroSD FAT File System Porting
	5.2 TFT LCD Driver Porting 

	6. STUDENT FEEDBACK
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES

	005_LEE_Jenq_WESE_2010
	006_koopman_WESE_2010
	007_Discussion_1_WESE_2010x
	08_bouzefrane_WESE_2010
	09_Brylow_WESE_2010
	10_Stollenwerk_WESE_2010
	11_Discussion_2_WESE_2010x




