Lightweight Verification with Stochastic Abstraction

Axel Legay

INRIA

in collaboration with Verimag, Grenoble

24/10/2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Introduction

• Specification and analysis of large and complex heterogeneous systems

• Specification and analysis of large and complex heterogeneous systems

Verification:

• Specification and analysis of large and complex heterogeneous systems

Verification:

• Verifying applications working within a subset of components of the system

• Specification and analysis of large and complex heterogeneous systems

Verification:

• Verifying applications working within a subset of components of the system

• Specification and analysis of large and complex heterogeneous systems

Verification:

• Verifying applications working within a subset of components of the system

Problem:

• Specification and analysis of large and complex heterogeneous systems

Verification:

• Verifying applications working within a subset of components of the system

Problem:

• A component may use global ressources

• Specification and analysis of large and complex heterogeneous systems

Verification:

• Verifying applications working within a subset of components of the system

Problem:

- A component may use global ressources
- Behaviors of other components have to be considered

Axel Legay (INRIA in collaboration with

(日) (日) (日) (日)

3

 $\operatorname{Solution}$

• Stochastic Abstraction

- Stochastic Abstraction
 - Abstraction of global behaviors with probabilities

- Stochastic Abstraction
 - Abstraction of global behaviors with probabilities
 - Analyse the resulting (smaller) stochastic system

4 / 37

24/10/2010

- Stochastic Abstraction
 - Abstraction of global behaviors with probabilities
 - Analyse the resulting (smaller) stochastic system
 - Use Statistical Model Checking

- Stochastic Abstraction
 - Abstraction of global behaviors with probabilities
 - Analyse the resulting (smaller) stochastic system
 - Use Statistical Model Checking
- Advantages

4 / 37

24/10/2010

- Stochastic Abstraction
 - Abstraction of global behaviors with probabilities
 - Analyse the resulting (smaller) stochastic system
 - Use Statistical Model Checking
- Advantages
 - Stochastic abstraction considerably reduces the size of the heterogeneous system

- Stochastic Abstraction
 - Abstraction of global behaviors with probabilities
 - Analyse the resulting (smaller) stochastic system
 - Use Statistical Model Checking
- Advantages
 - Stochastic abstraction considerably reduces the size of the heterogeneous system
 - Probabilities to quantify the level of failures

4 / 37

24/10/2010

- Stochastic Abstraction
 - Abstraction of global behaviors with probabilities
 - Analyse the resulting (smaller) stochastic system
 - Use Statistical Model Checking
- Advantages
 - Stochastic abstraction considerably reduces the size of the heterogeneous system
 - Probabilities to quantify the level of failures
 - Statistical Model Checking allows to go beyond classical reasonings

- An introduction to statistical model checking;
- An application of stochastic abstraction (EADS, COMBEST);
- A discussion regarding possible future work.

Does
$$\mathcal{S} \models P_{\geq \theta}(\varphi)$$
 ?

æ

6 / 37

24/10/2010

・ロト ・日本 ・日本

where :

Axel Legay (INRIA in collaboration with

Does
$$\mathcal{S} \models P_{\geq \theta}(\varphi)$$
 ?

where :

• S is a Stochastic system;

Does $\mathcal{S} \models P_{\geq \theta}(\varphi)$?

- S is a Stochastic system;
- P_{≥θ}(X) means : "the probability for X to happen should be greater or equal to θ";
- θ is a probability threshold.

Does $\mathcal{S} \models P_{\geq \theta}(\varphi)$?

- S is a Stochastic system;
- P_{≥θ}(X) means : "the probability for X to happen should be greater or equal to θ";
- θ is a probability threshold.
- Executions of S are sequences of states (random variables) that can be reached by following the transitions from an initial state;

Does $\mathcal{S} \models P_{\geq \theta}(\varphi)$?

- S is a Stochastic system;
- P_{≥θ}(X) means : "the probability for X to happen should be greater or equal to θ";
- θ is a probability threshold.
- Executions of S are sequences of states (random variables) that can be reached by following the transitions from an initial state;
- φ is some execution-based property (specification language);

Does $\mathcal{S} \models P_{\geq \theta}(\varphi)$?

- S is a Stochastic system;
- P_{≥θ}(X) means : "the probability for X to happen should be greater or equal to θ";
- θ is a probability threshold.
- Executions of S are sequences of states (random variables) that can be reached by following the transitions from an initial state;
- φ is some execution-based property (specification language);

- Consider a machine that flips a (possibly biaised) coin;
- Is the probability p of having a head greater or equal to some θ ?

24/10/2010

7 / 37

- Consider a machine that flips a (possibly biaised) coin;
- Is the probability p of having a head greater or equal to some θ ?

A solution

- Do several flips and deduce the answer from them;
- If the number of flips is infinite, our answer will be correct up to some type error.

This is the statistical model checking approach!

24/10/2010

7 / 37

Test $H_0: P(\text{having a head}) \ge \theta$ against $H_1: P(\text{having a head}) < \theta$

24/10/2010

8 / 37

With (Type error):

Test $H_0: P(\text{having a head}) \ge \theta$ against $H_1: P(\text{having a head}) < \theta$

With (Type error):

- α : the probability to accept H_1 while H_0 is true;
- 2 β : the probability to accept H_0 while H_1 is true.

The approach can also be used to compute the probability (PESTIMATION, Monte Carlo)

We want to test :

$$H_0: p \ge p_0$$
 against $H_1: p \le p_1$, where
 $p_0 = \theta + \delta$ and $p_1 = \theta - \delta$.

æ

24/10/2010

9 / 37

With:

Axel Legay (INRIA in collaboration with

We want to test :

$$H_0: p \ge p_0$$
 against $H_1: p \le p_1$, where
 $p_0 = \theta + \delta$ and $p_1 = \theta - \delta$.

24/10/2010

9 / 37

With:

- Type erros α and β , and
- Indifference region 2δ (needed to terminate in finite time).
- Parameters influence the number of simulations.

Bernouili Variables for experiments

• Bernouili variable X_i of parameter p

- Takes two values : $X_i = 0$ or $X_i = 1$;
- $P[X_i = 1] = p$ and $P[X_i = 0] = 1 p$;
- Realization is denoted x_i .

Bernouili Variables for experiments

• Bernouili variable X_i of parameter p

- Takes two values : $X_i = 0$ or $X_i = 1$;
- $P[X_i = 1] = p$ and $P[X_i = 0] = 1 p$;
- Realization is denoted x_i.
- Experiments:
 - We assume independent trials;
 - We can generate as much trials as we want;
 - p is the probability to get a head ;
 - Associate a bernouili variable X_i to each trial;

24/10/2010

10 / 37

• $X_i = 1$ iff the trial is a tail.

- Algorithm 1 : Single Sampling plan (SSP):
 - Pre-compute a number *n* of experiments;

24/10/2010

11 / 37

• *n* depends on δ, α , and β .

- Algorithm 1 : Single Sampling plan (SSP):
 - Pre-compute a number *n* of experiments;
 - *n* depends on δ, α , and β .
- Algorithm 2: Basically a on-the-fly version of the Single Sampling Plan

24/10/2010

11 / 37

• Choose *n* and *c* with $c \leq n$;

æ

12 / 37

24/10/2010

Axel Legay (INRIA in collaboration with

- Choose *n* and *c* with $c \leq n$;
- *n* observations x_1, \ldots, x_n for *n* samplings X_1, \ldots, X_n ;

- Choose n and c with $c \leq n$;
- *n* observations x_1, \ldots, x_n for *n* samplings X_1, \ldots, X_n ;

•
$$Y = \sum_{i=1}^{n} x_i;$$

- Choose n and c with $c \leq n$;
- *n* observations x_1, \ldots, x_n for *n* samplings X_1, \ldots, X_n ;

- $Y = \sum_{i=1}^{n} x_i;$
- Accept H_0 if $Y \ge c$ and H_1 otherwise;

- Choose n and c with $c \leq n$;
- *n* observations x_1, \ldots, x_n for *n* samplings X_1, \ldots, X_n ;

- $Y = \sum_{i=1}^{n} x_i;$
- Accept H_0 if $Y \ge c$ and H_1 otherwise;

- Choose n and c with $c \leq n$;
- *n* observations x_1, \ldots, x_n for *n* samplings X_1, \ldots, X_n ;
- $Y = \sum_{i=1}^{n} x_i$;
- Accept H_0 if $Y \ge c$ and H_1 otherwise;

Difficulty : Find *n* and *c* such that α and β are satisfied

24/10/2010

 Computing c and n is equivalent to solve an optimal problem on a sequence of binomial equations;

24/10/2010

- This is difficult : No unique solution;
- Difficult to minimize n;
- Approximation algorithms exist (Haakan Youness).
- Better for black box systems

- Check hypothesis after each sample and stop as soon as possible
- We can find an acceptance line and a rejection line given $\alpha, \beta, \theta, \delta$.

Compute

$$W = \prod_{i=1}^{m} \frac{\Pr(X_i = x_i \mid p = \theta - \delta)}{\Pr(X_i = x_i \mid p = \theta + \delta)} = \frac{(\theta - \delta)^{d_m} (1 - \theta + \delta)^{m - d_m}}{(\theta + \delta)^{d_m} (1 - \theta - \delta)^{m - d_m}}, \quad (1)$$

표 문 표

15 / 37

24/10/2010

where $d_m = \sum_{i=1}^m x_i$.

Compute

$$W = \prod_{i=1}^{m} \frac{\Pr(X_i = x_i \mid p = \theta - \delta)}{\Pr(X_i = x_i \mid p = \theta + \delta)} = \frac{(\theta - \delta)^{d_m} (1 - \theta + \delta)^{m - d_m}}{(\theta + \delta)^{d_m} (1 - \theta - \delta)^{m - d_m}}, \quad (1)$$

э

15 / 37

24/10/2010

where $d_m = \sum_{i=1}^m x_i$.

Stop when :

- $W \geq (1-eta)/lpha$: H_1 is accepted;
- $W \leq \beta/(1-\alpha)$: H_0 is accepted.

• In theory : the test does not guarantee α and β !

24/10/2010

16 / 37

• New parameters α' and β' such that

- In theory : the test does not guarantee α and β !
- New parameters α' and β' such that

•
$$\alpha' \leq \frac{\alpha}{1-\beta}$$
 and $\beta' \leq \frac{\beta}{1-\alpha}$
• $\alpha' + \beta' \leq \alpha + \beta$;

• In practice : one observes that α and β are almost often guarantee, and it may even be better!

24/10/2010

16 / 37

Example

Let
$$p_0=0.5,\; p_1=0.3,\; lpha=0.2,\; eta=0.1$$
 :

- In theory : $\alpha' \leq \frac{0.2}{0.9} = 0.222...$ and $\beta' \leq \frac{0.1}{0.8} = 0.125;$
- Computer simulation : $\alpha' = 0.175$ and $\beta' = 0.082$.

From Flipping a coin to Model Checking

• Flipping a coin is nothing more than testing whether a finite execution satisfies a property.

24/10/2010

17 / 37

• Consequence : Wald's testing directly applies to model check properties of white-box stochastic systems.

From Flipping a coin to Model Checking

- Flipping a coin is nothing more than testing whether a finite execution satisfies a property.
- Consequence : Wald's testing directly applies to model check properties of white-box stochastic systems.

Properties

- Natural : those that can be checked on finite executions: next, bounded until;
- Better than classical logics : Clock drift, Fourier Transform, Systems Biology.

• Easy to parallelize (independent sampling, unbiased distributed sampling);

э

18 / 37

24/10/2010

 Easy to parallelize (independent sampling, unbiased distributed sampling);

24/10/2010

18 / 37

• Independent of system's size;

 Easy to parallelize (independent sampling, unbiased distributed sampling);

24/10/2010

- Independent of system's size;
- Independent of system's probability distribution;

- Easy to parallelize (independent sampling, unbiased distributed sampling);
- Independent of system's size;
- Independent of system's probability distribution;
- Easy to trade accuracy for speed;

- Easy to parallelize (independent sampling, unbiased distributed sampling);
- Independent of system's size;
- Independent of system's probability distribution;
- Easy to trade accuracy for speed;
- Uniform approach;

- Easy to parallelize (independent sampling, unbiased distributed sampling);
- Independent of system's size;
- Independent of system's probability distribution;
- Easy to trade accuracy for speed;
- Uniform approach;
- Easy to implement :
- In most cases, one only need to implement a "trace checker" that tests whether an execution satisfies a given property;

18 / 37

• No need for complex data structures.

Case Study: Accuracy of clock Synchronization (EADS)

Chalenges:

- Heterogeneous System over an Ethernet backbone
 - Distributed application
 - 280 communicating components
- Local clocks synchronized using the Precision Time Protocol
- Requirement: Verify that the difference between any 2 clocks is lower than a given bound

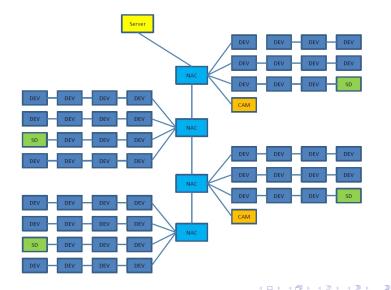
Case Study: Accuracy of clock Synchronization (EADS)

Chalenges:

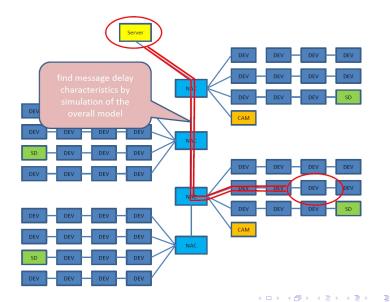
- Heterogeneous System over an Ethernet backbone
 - Distributed application
 - 280 communicating components
- Local clocks synchronized using the Precision Time Protocol
- Requirement: Verify that the difference between any 2 clocks is lower than a given bound
- Our goals: (1) Compute the best bound to satisfy this requirement without analyzing the whole architecture in a step, (2) compute the probability for a bound fixed by EADS $(50\mu s)$.

- Apply stochastic abstraction between any device an the system;
- Compute the probability to synchronize for several values of the bound;
- Proceed similarly for all the devices;
- Keep the minimal bound for which synchonization is guarantee with probability 1

How to Compute Stochastic Abstraction?

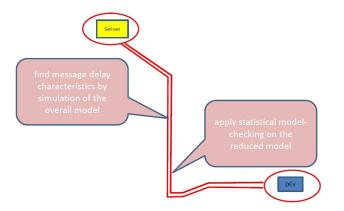


How to Compute Stochastic Abstraction?



24/10/2010 21 / 37

How to Compute Stochastic Abstraction?



A B A B A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
B
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

A tool

- whose input language is powerful enough to describe the EADS case study;
- in where stochastic aspects can easily be described;
- in where statistical model checking algorithms can easily be implemented;
- with an engine capable to generate executions in an efficient manner.

Our Solution: BIP!

24/10/2010

First step

• Learn the Probability distributions (1)

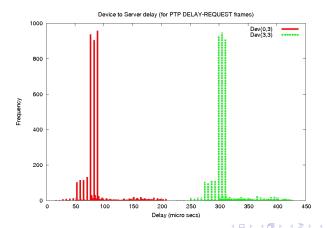
Run several simulations on the big model and extract the delays and the number of time they occurs;

24/10/2010

First step

Learn the Probability distributions (1)

Run several simulations on the big model and extract the delays and the number of time they occurs;



24/10/2010

Output State of the distributions to study PTP

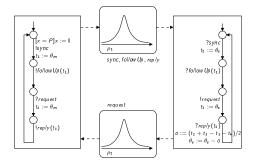
Let assume that we measured the delays 33 times. The result will be a series of delay values and, for each value, the number of times it has been observed. As an example, delay 5 has been observed 3 times, delay 19 has been observed 30 times. The probability distribution is represented with a table of 33 cells. In our case, 3 cells of the table will contains the value 5 and 30 will contain the value 19. The BIP engine will simply select a value in the table following a uniform probability distribution.

24/10/2010

Operation Producing Stochastic Abstraction

Stochastic choices are directly integrated in the BIP engine!

Producing Stochastic Abstraction



Stochastic choices are directly integrated in the BIP engine!

What are the questions?

- Qualitative Question : Does $\mathcal{S} \models P_{\geq \theta}(\varphi)$?
- Quantitative Question : What is the probability for ${\cal S}$ to satisfy arphi ?

Principle

- Reason on a finite set of executions and answer the question;
- We may make mistakes, but we should be as precise as we want!

$\label{eq:Qualitative question:} Qualitative question:$

- Two algorithsm for the qualitative question : SPRT and SSP;
- They say yes or no, but can make a mistake (confidence).

Quantitative question :

 PESTIMATION computes an estimation p' of the probability for S to satisfy φ;

24/10/2010

- The estimation can be bound : |p p'| < q;
- The algorithm can make a mistake.

- PESTIMATION is much slower that SSP or SPRT;
- A good strategy for answering the quantitative question :
 - Computer and estimation with a low confidence;
 - Validate this estimation with SSP or SPRT, but with a high confidence.

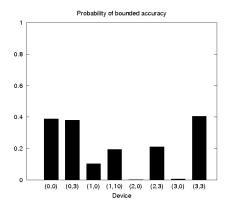
Model/Abstraction:

- PTP and HCS modeled using BIP
- Distributions of delays: 2000 measures

Statistical Model Checking:

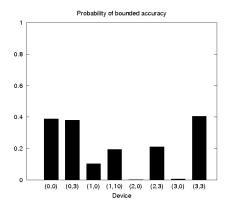
- Quantitative question: precision 10^{-2} , confidence 10^{-2} : 100000 simulations
- Qualitative question: precision 10^{-3} , confidence 10^{-10} : 300000 simulations

Some Results 1/2



Probability of satisfying Bounded Accuracy for a bound of $50 \mu s$

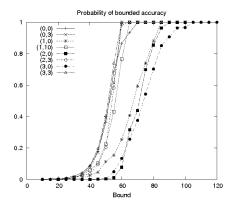
Some Results 1/2



Probability of satisfying Bounded Accuracy for a bound of $50 \mu s$

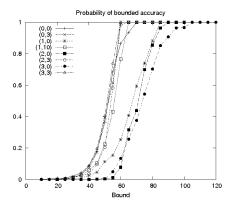
• The property is not satisfied for the given bound !

Some Results 2/2



Probability of satisfying Bounded Accuracy as a function of the bound

Some Results 2/2



Probability of satisfying Bounded Accuracy as a function of the bound

• The best bound for which B.A. is satisfied with probability 1 is $105 \mu s$

Precision	10 ⁻¹		10	-2	10 ⁻³	
Confidence	10-5	10-10	10-5	10-10	10-5	10-10
PESTIMATION	4883	9488	488243	948760	48824291	94875993
	17s	34 <i>s</i>	29 <i>m</i>	56 m	> 3h	> 3h
SSP	1604	3579	161986	368633	16949867	32792577
	10 <i>s</i>	22 <i>s</i>	13 <i>m</i>	36 m	> 3h	> 3h
SPRT	316	1176	12211	22870	148264	311368
	2 <i>s</i>	7 s	53 <i>s</i>	1m38s	11m	31 <i>m</i>

Precision	10-1		10-2		10 ⁻³	
Confidence	10-5	10-10	10-5	10 ⁻¹⁰	10^{-5}	10-10
SSP / SPRT	110 1s	219 1s	1146 6s	2292 13s	11508 51s	23015 1 <i>m</i> 44s

3

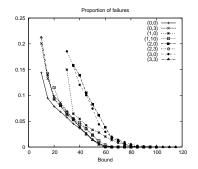
イロト イ団ト イヨト イヨト

- Proportion of failure = number of failure divided by number of observations on a simulation.
- What is the average proportion of failure?
- What is the worst proportion of failure?

Solution : compute it on 2000 simulations with $\Delta = 50 \mu s$:

- Device (2,0) gives 0,24;
- Device (0,0) gives 0,076.

Proportion of Failures (2)



24/10/2010

34 / 37

Average proportion of failures as function of the bound Δ for the asymmetric version

- Drift is used to model the fact that, due to the influence of the material, clocks of the master and the device may not progress as the same rate;
- Each time the clock of the server is increased by 1 time unit, the clock of the device is increased by $1 + 10^{-3}$ time units

Observations :

- Experiments : almost the same probabilities; Reason : the value of the drift is much smaller than the on of the jitter;
- With a drift of one time unit : Strong influence : Device (0,0) goes from a probability of 0, 387 to a probability of 0,007.

Drift + Simulation = EASY; Drift + exhaustive Verification = ALMOST IMPOSSIBLE

- Abstraction and verification method
- Applied to 2 case studies:
 - HCS case study [FORTE'10]
 - AFDX network [RV'10]

- Static analysis of the code for automatic extraction of the abstraction;
- Mixing confidence on the distribution with confidence on the statistical model checking algorithm;
- Handling non determinism;
- Using our knowledge of the system to improve the statistical model checking procedure;
- Various components described in various formalisms.