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Introduction

Our goal:

@ Specification and analysis of large and complex
heterogeneous systems

Verification:

e Verifying applications working within a subset
of components of the system

Problem:
@ A component may use global ressources

@ Behaviors of other components have to be
considered
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Introduction

Solution

@ Stochastic Abstraction
e Abstraction of global behaviors with probabilities
o Analyse the resulting (smaller) stochastic system
o Use Statistical Model Checking

l"

o Advantages -«
e Stochastic abstraction considerably reduces the size of
the heterogeneous system
o Probabilities to quantify the level of failures
e Statistical Model Checking allows to go beyond
classical reasonings
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The rest of this talk

@ An introduction to statistical model checking;
@ An application of stochastic abstraction (EADS, COMBEST);

@ A discussion regarding possible future work.
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Learning from a Simple Problem

o Consider a machine that flips a (possibly biaised) coin;

@ Is the probability p of having a head greater or equal to some 67
A solution

@ Do several flips and deduce the answer from them;

@ If the number of flips is infinite, our answer will be correct up to some
type error.

This is the statistical model checking approach!
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Hypothesis Testing

Test Hp : P(having a head)>0 against H; : P(having a head) < 0

With (Type error):
© o : the probability to accept H; while Hp is true;
@ [ : the probability to accept Hy while Hj is true.

The approach can also be used to compute the probability
(PESTIMATION, Monte Carlo)
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Indifference Region

We want to test :

Ho : p> po against Hy : p<pj, where
po=6+0and p =6 —0.

With:
@ Type erros « and (3, and

o Indifference region 2§ (needed to terminate in finite time).

o Parameters influence the number of simulations.
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Bernouili Variables for experiments

@ Bernouili variable X; of parameter p

o Takes two values : X; =0 or X; = 1;
o PIXi=1]=pand PX;i=0]=1—p;
o Realization is denoted x;.
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Bernouili Variables for experiments

@ Bernouili variable X; of parameter p
o Takes two values : X; =0 or X; = 1;
e P[IX;=1]=pand P[X;=0]=1-p;
o Realization is denoted x;.

@ Experiments:

o We assume independent trials;

e We can generate as much trials as we want;
e p is the probability to get a head ;

o Associate a bernouili variable X; to each trial;
e X; = 1 iff the trial is a tail.
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Two Algorithms

@ Algorithm 1 : Single Sampling plan (SSP):
o Pre-compute a number n of experiments;
e n depends on §,a, and 3.

Axel Legay (INRIA in collaboration with 24/10/2010 11 / 37



Two Algorithms

@ Algorithm 1 : Single Sampling plan (SSP):
o Pre-compute a number n of experiments;
e n depends on §,a, and 3.

@ Algorithm 2: Basically a on-the-fly version of the Single Sampling Plan
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Single Sampling plan : Principles

@ Choose n and c with ¢ < n;

@ n observations xi, ..., x, for n samplings Xi,..., Xy;
R

o Accept Hy if Y> ¢ and H; otherwise;

Difficulty : Find n and ¢ such that . and 3 are satisfied J

Axel Legay (INRIA in collaboration with 24/10/2010



Single Sampling plan : Disadvantages

Computing ¢ and n is equivalent to solve an optimal problem on a
sequence of binomial equations;

This is difficult : No unique solution;

Difficult to minimize n;

@ Approximation algorithms exist (Haakan Youness).

Better for black box systems
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Sequential Hypothesis Testing

@ Check hypothesis after each sample and stop as soon as possible

@ We can find an acceptance line and a rejection line given «, 3,6, 6.
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Wald's Testing (SPRT)

Compute

m Pr(Xi = Xj | p= 9—5) . (9_5)dm(1 _0_'_5)m—dm (1)
Pr(Xi=xi | p=0+08) (6+0)dm(1—6—§)m=dm’
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Wald's Testing (SPRT)

Compute

W T Pr(Xi=x | p=0-25) (0—08)9m(L—0+5)m )
. PI‘(X,':X,'|p:¢9—i-5)_(t9—i—(5)d"’(1—9—5)'"_‘!"’7

Stop when :
o W > (1—-p)/a: Hp is accepted;
e W < /(1 —a): Hy is accepted.

Axel Legay (INRIA in collaboration with 24/10/2010



More Mathematics

@ In theory : the test does not guarantee « and f3!
@ New parameters o/ and 3’ such that
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More Mathematics

@ In theory : the test does not guarantee « and f3!
@ New parameters o/ and 3’ such that
o o/<1%; and F'<%
o+ <a+p;
@ In practice : one observes that « and (3 are almost often guarantee,
and it may even be better!

Let po=0.5 p1 =03, =02, 3=0.1:
@ In theory : a’g% = 0.222... and ﬁ’g% = 0.125;
e Computer simulation : o/ = 0.175 and 3’ = 0.082.
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From Flipping a coin to Model Checking

@ Flipping a coin is nothing more than testing whether a finite execution
satisfies a property.

e Consequence : Wald’s testing directly applies to model check
properties of white-box stochastic systems.
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From Flipping a coin to Model Checking

@ Flipping a coin is nothing more than testing whether a finite execution
satisfies a property.

e Consequence : Wald’s testing directly applies to model check
properties of white-box stochastic systems.

Properties

@ Natural : those that can be checked on finite executions: next,
bounded until;

@ Better than classical logics : Clock drift, Fourier Transform, Systems
Biology.
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@ Easy to parallelize (independent sampling, unbiased distributed
sampling);
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@ Easy to parallelize (independent sampling, unbiased distributed
sampling);

Independent of system’s size;

Independent of system’s probability distribution;

Easy to trade accuracy for speed;

Uniform approach;

Easy to implement :

o In most cases, one only need to implement a “trace checker” that tests
whether an execution satisfies a given property;

o No need for complex data structures.
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Case Study: Accuracy of clock Synchronization (EADS)

Chalenges:

@ Heterogeneous System over an Ethernet backbone

o Distributed application
e 280 communicating components

@ Local clocks synchronized using the Precision Time Protocol

@ Requirement: Verify that the difference between any 2 clocks is lower
than a given bound
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Case Study: Accuracy of clock Synchronization (EADS)

Chalenges:

@ Heterogeneous System over an Ethernet backbone

o Distributed application
e 280 communicating components

@ Local clocks synchronized using the Precision Time Protocol

@ Requirement: Verify that the difference between any 2 clocks is lower
than a given bound

@ Our goals: (1) Compute the best bound to satisfy this requirement
without analyzing the whole architecture in a step, (2) compute the
probability for a bound fixed by EADS (50us).

24/10/2010 19 / 37
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@ Apply stochastic abstraction between any device an the system;

@ Compute the probability to synchronize for several values of the
bound;

@ Proceed similarly for all the devices;

@ Keep the minimal bound for which synchonization is guarantee with
probability 1

Axel Legay (INRIA in collaboration with 24/10/2010 20 / 37
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What do we need?

A tool
e whose input language is powerful enough to describe the EADS case
study;

@ in where stochastic aspects can easily be described;

@ in where statistical model checking algorithms can easily be
implemented,;

@ with an engine capable to generate executions in an efficient manner.

Our Solution: BIP!
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First step

© Learn the Probability distributions (1)

Run several simulations on the big model and extract the delays and the
number of time they occurs;
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First step

© Learn the Probability distributions (1)

Run several simulations on the big model and extract the delays and the
number of time they occurs;

Device to Server delay (for PTP DELAY-REQUEST frames)

1000 T T T T T T T
Dev(0,3)
[5 Et f—
800 - g
600 - A
=
3
2
H
S
g
w
400 - g
200 - g
0 $ T . : ze
o 50 100 150 200 250 300 350 400 450

Delay (micro secs)
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@ Use the distributions to study PTP

Let assume that we measured the delays 33 times. The result will be a
series of delay values and, for each value, the number of times it has been
observed. As an example, delay 5 has been observed 3 times, delay 19 has
been observed 30 times. The probability distribution is represented with a
table of 33 cells. In our case, 3 cells of the table will contains the value 5
and 30 will contain the value 19. The BIP engine will simply select a value
in the table following a uniform probability distribution.
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© Producing Stochastic Abstraction

Stochastic choices are directly integrated in the BIP engine!
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Second Step

© Producing Stochastic Abstraction

Axel Legay (INRIA in collaboration with
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Statistical model checking (1)

What are the questions?

e Qualitative Question : Does S = P>p(p) ?

e Quantitative Question : What is the probability for S to satisfy ¢?
Principle

@ Reason on a finite set of executions and answer the question;

@ We may make mistakes, but we should be as precise as we want!

Axel Legay (INRIA in collaboration with 24/10/2010
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Statistical model checking (2)

Qualitative question :

@ Two algorithsm for the qualitative question : SPRT and SSP;

@ They say yes or no, but can make a mistake (confidence).
Quantitative question :

@ PESTIMATION computes an estimation p’ of the probability for S to

satisfy ¢;
@ The estimation can be bound : |p — p'| < g;
@ The algorithm can make a mistake.
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Statistical model checking (3)

o PESTIMATION is much slower that SSP or SPRT;
@ A good strategy for answering the quantitative question :

o Computer and estimation with a low confidence;
e Validate this estimation with SSP or SPRT, but with a high confidence.
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In Practice

Model/Abstraction:

@ PTP and HCS modeled using BIP

@ Distributions of delays: 2000 measures
Statistical Model Checking:

e Quantitative question: precision 1072, confidence 10~2: 100000
simulations

e Qualitative question: precision 1073, confidence 1071%: 300000
simulations
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Some Results 1/2

Probability of bounded accuracy
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(0,00 (0,3) (1,00 (1,100 (2,00 (2,3) (3,00 (33
Device

Probability of satisfying Bounded Accuracy for a bound of 50us

@ The property is not satisfied for the given bound !
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Some Results 2/2

Probability of bounded accuracy
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Some Results 2/2

Probability of bounded accuracy
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Probability of satisfying Bounded Accuracy as a function of the bound

@ The best bound for which B.A. is satisfied with probability 1 is 105us
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SPRT VS. SSP VS. PESTIMATION

Precision | 10~ 102 | 1073
Confidence [ 1075 T 1071 | 107% [ 1071 | 107" 10°70 |
4883 9488 488243 948760 48824291 94875993
PESTIMATION 17s 34s 29m 56m > 3h > 3h
sSSP 1604 3579 161986 368633 16949867 32792577
10s 22s 13m 36m > 3h > 3h
SPRT 316 1176 12211 22870 148264 311368
2s 7s 53s 1m38s 11m 31lm
Precision | 10~ 102 103
Confidence [[107®% [ 1077 | 1075 [ 10 [ 1075 [ 10770 |
110 219 1146 2292 11508 23015
SSP / SPRT ‘ 1s ‘ 1s ‘ 6s ‘ 13s ‘ 51s ‘ 1mads
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Proportion of Failures (1)

@ Proportion of failure = number of failure divided by number of
observations on a simulation.

@ What is the average proportion of failure?

@ What is the worst proportion of failure?

Solution : compute it on 2000 simulations with A = 50pus:

o Device (2,0) gives 0,24;
@ Device (0,0) gives 0,076.
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Proportion of Failures (2)

Proportion of failures
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Average proportion of failures as function of the bound A for the
asymmetric version
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Influence of Drift?

@ Drift is used to model the fact that, due to the influence of the
material, clocks of the master and the device may not progress as the
same rate;

@ Each time the clock of the server is increased by 1 time unit, the clock
of the device is increased by 1 + 1073 time units

Observations :

@ Experiments : almost the same probabilities; Reason : the value of the
drift is much smaller than the on of the jitter;

e With a drift of one time unit : Strong influence : Device (0,0) goes
from a probability of 0,387 to a probability of 0,007.

Drift + Simulation = EASY;
Drift + exhaustive Verification = ALMOST IMPOSSIBLE

24/10/2010 35 / 37
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Results for stochastic abstraction

@ Abstraction and verification method

@ Applied to 2 case studies:

o HCS case study [FORTE'10]

o AFDX network [RV'10]
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o Static analysis of the code for automatic extraction of the abstraction;

e Mixing confidence on the distribution with confidence on the
statistical model checking algorithm;

o Handling non determinism;

@ Using our knowledge of the system to improve the statistical model
checking procedure;

@ Various components described in various formalisms.
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