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Introduction

Our goal:

Speci�cation and analysis of large and complex
heterogeneous systems

Veri�cation:

Verifying applications working within a subset
of components of the system

Problem:

A component may use global ressources

Behaviors of other components have to be

considered
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Introduction

Solution

Stochastic Abstraction

Abstraction of global behaviors with probabilities
Analyse the resulting (smaller) stochastic system
Use Statistical Model Checking

Advantages

Stochastic abstraction considerably reduces the size of
the heterogeneous system
Probabilities to quantify the level of failures
Statistical Model Checking allows to go beyond
classical reasonings
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The rest of this talk

An introduction to statistical model checking;

An application of stochastic abstraction (EADS, COMBEST);

A discussion regarding possible future work.

Axel Legay (INRIA in collaboration with Verimag, Grenoble) 24/10/2010 5 / 37



Veri�cation Process

Question

Does S |= P≥θ(ϕ) ?

where :

S is a Stochastic system;

P≥θ(X ) means : �the probability for X to happen should be greater or
equal to θ�;

θ is a probability threshold.

Executions of S are sequences of states (random variables) that can
be reached by following the transitions from an initial state;

ϕ is some execution-based property (speci�cation language);
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Learning from a Simple Problem

Consider a machine that �ips a (possibly biaised) coin;

Is the probability p of having a head greater or equal to some θ?

A solution

Do several �ips and deduce the answer from them;

If the number of �ips is in�nite, our answer will be correct up to some
type error.

This is the statistical model checking approach!
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Hypothesis Testing

Test H0 : P(having a head)≥θ against H1 : P(having a head) < θ

With (Type error):

1 α : the probability to accept H1 while H0 is true;

2 β : the probability to accept H0 while H1 is true.

The approach can also be used to compute the probability
(PESTIMATION, Monte Carlo)
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Indi�erence Region

We want to test :

H0 : p≥ p0 against H1 : p≤p1, where
p0 = θ + δ and p1 = θ − δ.

With:

Type erros α and β, and

Indi�erence region 2δ (needed to terminate in �nite time).

Parameters in�uence the number of simulations.
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Bernouili Variables for experiments

Bernouili variable Xi of parameter p

Takes two values : Xi = 0 or Xi = 1;
P[Xi = 1] = p and P[Xi = 0] = 1− p;
Realization is denoted xi .

Experiments:

We assume independent trials;
We can generate as much trials as we want;
p is the probability to get a head ;
Associate a bernouili variable Xi to each trial;
Xi = 1 i� the trial is a tail.
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Two Algorithms

Algorithm 1 : Single Sampling plan (SSP):

Pre-compute a number n of experiments;
n depends on δ,α, and β.

Algorithm 2: Basically a on-the-�y version of the Single Sampling Plan
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Single Sampling plan : Principles

Choose n and c with c ≤ n;

n observations x1, . . . , xn for n samplings X1, . . . ,Xn;

Y =
∑

n

i=1 xi ;

Accept H0 if Y≥ c and H1 otherwise;

Di�culty : Find n and c such that α and β are satis�ed
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Single Sampling plan : Disadvantages

Computing c and n is equivalent to solve an optimal problem on a
sequence of binomial equations;

This is di�cult : No unique solution;

Di�cult to minimize n;

Approximation algorithms exist (Haakan Youness).

Better for black box systems

Axel Legay (INRIA in collaboration with Verimag, Grenoble) 24/10/2010 13 / 37



Sequential Hypothesis Testing

Check hypothesis after each sample and stop as soon as possible

We can �nd an acceptance line and a rejection line given α, β, θ, δ.
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Wald's Testing (SPRT)

Compute

W =
m∏
i=1

Pr(Xi = xi | p = θ − δ)

Pr(Xi = xi | p = θ + δ)
=

(θ − δ)dm(1− θ + δ)m−dm

(θ + δ)dm(1− θ − δ)m−dm
, (1)

where dm =
∑

m

i=1 xi .

Stop when :

W ≥ (1− β)/α : H1 is accepted;

W ≤ β/(1− α) : H0 is accepted.
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More Mathematics

In theory : the test does not guarantee α and β!

New parameters α′ and β′ such that

α′≤ α
1−β and β′≤ β

1−α

α′ + β′ ≤ α + β;

In practice : one observes that α and β are almost often guarantee,
and it may even be better!

Example

Let p0 = 0.5, p1 = 0.3, α = 0.2, β = 0.1 :

In theory : α′≤0.2
0.9 = 0.222... and β′≤0.1

0.8 = 0.125;

Computer simulation : α′ = 0.175 and β′ = 0.082.

Axel Legay (INRIA in collaboration with Verimag, Grenoble) 24/10/2010 16 / 37



More Mathematics

In theory : the test does not guarantee α and β!

New parameters α′ and β′ such that

α′≤ α
1−β and β′≤ β

1−α

α′ + β′ ≤ α + β;

In practice : one observes that α and β are almost often guarantee,
and it may even be better!

Example

Let p0 = 0.5, p1 = 0.3, α = 0.2, β = 0.1 :

In theory : α′≤0.2
0.9 = 0.222... and β′≤0.1

0.8 = 0.125;

Computer simulation : α′ = 0.175 and β′ = 0.082.

Axel Legay (INRIA in collaboration with Verimag, Grenoble) 24/10/2010 16 / 37



From Flipping a coin to Model Checking

Flipping a coin is nothing more than testing whether a �nite execution
satis�es a property.

Consequence : Wald's testing directly applies to model check
properties of white-box stochastic systems.

Properties

Natural : those that can be checked on �nite executions: next,
bounded until;

Better than classical logics : Clock drift, Fourier Transform, Systems
Biology.
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Advantages

Easy to parallelize (independent sampling, unbiased distributed
sampling);

Independent of system's size;

Independent of system's probability distribution;

Easy to trade accuracy for speed;

Uniform approach;

Easy to implement :

In most cases, one only need to implement a �trace checker� that tests
whether an execution satis�es a given property;

No need for complex data structures.
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Case Study: Accuracy of clock Synchronization (EADS)

Chalenges:

Heterogeneous System over an Ethernet backbone

Distributed application
280 communicating components

Local clocks synchronized using the Precision Time Protocol

Requirement: Verify that the di�erence between any 2 clocks is lower
than a given bound

Our goals: (1) Compute the best bound to satisfy this requirement
without analyzing the whole architecture in a step, (2) compute the
probability for a bound �xed by EADS (50µs).
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Solution

Apply stochastic abstraction between any device an the system;

Compute the probability to synchronize for several values of the
bound;

Proceed similarly for all the devices;

Keep the minimal bound for which synchonization is guarantee with
probability 1
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How to Compute Stochastic Abstraction?

Axel Legay (INRIA in collaboration with Verimag, Grenoble) 24/10/2010 21 / 37



How to Compute Stochastic Abstraction?

Axel Legay (INRIA in collaboration with Verimag, Grenoble) 24/10/2010 21 / 37



How to Compute Stochastic Abstraction?

Axel Legay (INRIA in collaboration with Verimag, Grenoble) 24/10/2010 21 / 37



What do we need?

A tool

whose input language is powerful enough to describe the EADS case
study;

in where stochastic aspects can easily be described;

in where statistical model checking algorithms can easily be
implemented;

with an engine capable to generate executions in an e�cient manner.

Our Solution: BIP!
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First step

1 Learn the Probability distributions (1)

Run several simulations on the big model and extract the delays and the
number of time they occurs;
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2 Use the distributions to study PTP

Let assume that we measured the delays 33 times. The result will be a
series of delay values and, for each value, the number of times it has been
observed. As an example, delay 5 has been observed 3 times, delay 19 has
been observed 30 times. The probability distribution is represented with a
table of 33 cells. In our case, 3 cells of the table will contains the value 5
and 30 will contain the value 19. The BIP engine will simply select a value
in the table following a uniform probability distribution.
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Second Step

3 Producing Stochastic Abstraction

!followUp(t1)

?request

[x = P]x := 0

!sync

t1 := θm

t4 := θm

!reply(t4)

?followUp(t1)

t2 := θs

?sync

!request

t3 := θs

?reply(t4)

θs := θs − o

o := (t2 + t3 − t1 − t4)/2

ρ1

ρ2

sync, followUp, reply

request

Stochastic choices are directly integrated in the BIP engine!
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Statistical model checking (1)

What are the questions?

Qualitative Question : Does S |= P≥θ(ϕ) ?

Quantitative Question : What is the probability for S to satisfy ϕ?

Principle

Reason on a �nite set of executions and answer the question;

We may make mistakes, but we should be as precise as we want!
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Statistical model checking (2)

Qualitative question :

Two algorithsm for the qualitative question : SPRT and SSP;

They say yes or no, but can make a mistake (con�dence).

Quantitative question :

PESTIMATION computes an estimation p′ of the probability for S to
satisfy ϕ;

The estimation can be bound : |p − p′| < q;

The algorithm can make a mistake.
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Statistical model checking (3)

PESTIMATION is much slower that SSP or SPRT;

A good strategy for answering the quantitative question :

Computer and estimation with a low con�dence;
Validate this estimation with SSP or SPRT, but with a high con�dence.
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In Practice

Model/Abstraction:

PTP and HCS modeled using BIP

Distributions of delays: 2000 measures

Statistical Model Checking:

Quantitative question: precision 10−2, con�dence 10−2: 100000
simulations

Qualitative question: precision 10−3, con�dence 10−10: 300000
simulations
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Some Results 1/2

Probability of satisfying Bounded Accuracy for a bound of 50µs

The property is not satis�ed for the given bound !
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Some Results 2/2

Probability of satisfying Bounded Accuracy as a function of the bound

The best bound for which B.A. is satis�ed with probability 1 is 105µs
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SPRT VS. SSP VS. PESTIMATION

Precision 10−1 10−2 10−3

Con�dence 10−5 10−10 10−5 10−10 10−5 10−10

PESTIMATION
4883 9488 488243 948760 48824291 94875993
17s 34s 29m 56m > 3h > 3h

SSP
1604 3579 161986 368633 16949867 32792577
10s 22s 13m 36m > 3h > 3h

SPRT
316 1176 12211 22870 148264 311368
2s 7s 53s 1m38s 11m 31m

Precision 10−1 10−2 10−3

Con�dence 10−5 10−10 10−5 10−10 10−5 10−10

SSP / SPRT
110 219 1146 2292 11508 23015
1s 1s 6s 13s 51s 1m44s
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Proportion of Failures (1)

Proportion of failure = number of failure divided by number of
observations on a simulation.

What is the average proportion of failure?

What is the worst proportion of failure?

Solution : compute it on 2000 simulations with ∆ = 50µs:

Device (2, 0) gives 0, 24;
Device (0, 0) gives 0, 076.
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Proportion of Failures (2)
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In�uence of Drift?

Drift is used to model the fact that, due to the in�uence of the
material, clocks of the master and the device may not progress as the
same rate;

Each time the clock of the server is increased by 1 time unit, the clock
of the device is increased by 1 + 10−3 time units

Observations :

Experiments : almost the same probabilities; Reason : the value of the
drift is much smaller than the on of the jitter;

With a drift of one time unit : Strong in�uence : Device (0, 0) goes
from a probability of 0, 387 to a probability of 0, 007.

Drift + Simulation = EASY;
Drift + exhaustive Veri�cation = ALMOST IMPOSSIBLE
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Results for stochastic abstraction

Abstraction and veri�cation method

Applied to 2 case studies:

HCS case study [FORTE'10]

AFDX network [RV'10]
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Future work

Static analysis of the code for automatic extraction of the abstraction;

Mixing con�dence on the distribution with con�dence on the
statistical model checking algorithm;

Handling non determinism;

Using our knowledge of the system to improve the statistical model
checking procedure;

Various components described in various formalisms.
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