
A Component-Based Multicore
Programming Environment

Pierre Paulin
Director, SoC Platform Automation
STMicroelectronics (Canada) Inc.
Workshop on Fundamentals of Component-Based Design,
ESWeek 2010 , Scottsdale, AZ, 24 Oct. 2010

2

Core’s Law (for Embedded SoCs)
Co

re
s p

er
 C

hi
p

20
04

20
02

20
06

20
12

 Number embedded cores in SoC products

doubling every ~2 years

2
4
8

16
32
64
128
256

20
08

20
10

20
14

20
16

Multi-
core

Many-
core

Dual-
core

???

Source:
Casual
observation

3

Core’s Law: What’s Next?
Co

re
s p

er
 C

hi
p

20
04

20
02

20
06

20
12

 2
4
8

16
32
64
128
256

20
08

20
10

20
14

20
16

Dual-
core

Corezilla

Many-
core Multi-

core

Corrama

MCU!

I/O Mem

RISC DSP

H/W

Bus!

Bus!

Coremporium

4

Lessons of History
  50 years of sequential

programming has taken
us to the edge of the
abyss

  With parallel
programming,
we will all take a huge
leap forward

Multi-Processor SoC!

Platform Programming Models

for! Control
Audio Video Video

Prog. Model

 NoC

PE

PE

PE

PE

PE

PE

HW

HW

Controller, DMAs

Shared
L1

MEM

PE

PE

PE

PE

Shared
L1

MEM

PE

PE

PE

PE

Controller, DMAs

MCU!

I/O Mem

RISC DSP

H/W

Bus!
Bus!

5

Outline

  Platform 2012 Multicore Fabric
  Platform 2012 Programming Environment

  Component-based programming models
  Component-aware debug and visualization tools

  Case Studies
  Video High-Quality Rescaling

  Mapped to S/W platform
  Mapped to H/W-S/W platform

  VC1 codec

6

The P2012 Scalable Tile

System bus

HOST

NI L1

CC DMA

NI

DMA

L1

CC
L2

CC

STxP70
[config I/S]

[Bit-Stream
Processing]

[VECx
extension]

OCE

[FPU]

DDR

Peripherals

NI

DMA

L1

CC

HW 1

HW 2

HW 3

HW 4
SoC carrier

accelerator

…

NI

DMA

L1

CC

NI

DMA

L1

CC

Fabric Ctrl

DMA
BR

  P2012 Fabric can
integrate up to 32
clusters

  1-16 configurable
cores / cluster

  Optional H/W
Processing Elements

  Few 100 GOPs to
several TOPS

7

Local Interconnect (ANoC – Asynchronous NoC)

Slave Master

Clk, Power domain

HW PE
K

SIF
S SO SI

IT

HW PE
0

SIF
S SO SI

IT

P2012 Cluster Overview

NI

ENCore<n>

S

M

Shared L1 I$
Shared DMEM

HW Synchronizer

SI SO

S M

Stream Out Stream In

Cluster
Controller

M

S

STxP70

I-$ TCDM

OCE

ITC DMA

DMA

SI SO S M

I
T

S M

 Fabric Interconnect (ANoC – Asynchronous NoC)
GALS I/F

PE 0 PE n

JTAG

Debug & Test Unit

8

P2012 Design Flow

F1
F2

F3
F4

Application

Runtime SW
libraries & drivers

Customizable core

NI

DMA

L1

CC

Customizable tile

NI

DMA

L2

CC

SW only cluster

NI

DMA

L2

CC

HW/SW cluster

NI

DMA

L2

CC

HW cluster V1 SW fabric

Tools

L2

CC

STxP70
[config I/S]

[Bit-Stream
Processing]

[VECx
extension]

OCE

[FPU]

9

Outline

  Platform 2012 Multicore Fabric
  Platform 2012 Programming Environment

  Component-based programming models
  Component-aware debug, visualization and analysis

tools
  Case Studies

  Video High-Quality Rescaling
  Mapped to S/W platform
  Mapped to H/W-S/W platform

  VC1 codec

10

Software Development Kit Stack

11

Component
repository Prog. Patterns

Streaming:
PEDF, DDF

Parallel
Threads OpenMP

OpenCL

Standard Progr. Models Advanced Prog. Models Native Prog. 
Layer

NPL API

System Infrastructure & Runtime!
Dynamic Deployment Execution Engines QoS Power Management

Platform Models!
TLM Performance Power Functional

Programming Environment!
Component-based Language-based

Analysis, Optimization, Mapping
API-based

Execution engine configuration

Trace and debug info management

12

Programming Tools Outline

  MIND Component Infrastructure
  Component-based

Programming models
  Programming tools flow
  Runtime
  Apex Application Modeling
  Trace, Visualization and Analysis
  Component-aware Debug

F1
F2

F3
F4

Component-based Progr. Models

  Encapsulation & Interfaces
  Good for distributed memory

  Binding through link components
  Heterogeneity

  Control interface
  Introspection
  Observability

  Semantic neutral
  Can be used to

support multiple
prog. models

Mem2

µProc2

Mem1

µProc1

RPC, Marshalling Demarshalling

Mem

µProc

Direct Call

Component

Interfaces

Component

Binding

S/W
Architecture,
Components,

Interfaces

link

13

14

S/W Components
  Support of Multiple Commn/Execution Semantics

component component

Synchronous
Call

RPC

component component

Asynchronous
Call

Scheduler
• Priority-based
• Preemptive
• Non-preemptive
• Real-time

component component

Push Model
(streaming)

S/W Architecture,
Components,
Interfaces

ADL
IDL

Tools

FIFO

Component Application Capture

T2

F1

T2’ T2’’

F2
T1

T3

F3
F4 F5

Dataflow
filter

Data Level
Parallelism

Patterns

Identical
working tasks

Comm.
PPP

Dynamic
Task
Pools

T5

  Explicit description of the application architecture
  ADL: Architecture Description Language
  IDL: Interface Description Language

  Built on Fractal MIND Component infrastructure
  Open source (LGPL) available on OW2 (mind.ow2.org)

15

ADL

ADL ADL

16

MIND Toolchain

ADL

ADL ADL IDL

ADL ADL C

mindc

mpp gcc

ADL ADL Generated C

Executable/
Loadable binary

ADL : Architecture Description Language
IDL : Interface Definition Language
mindc : MIND ADL/IDL parser and C code generator
mpp : MIND PreProcessor

Inputs
ADL

F1
F2
F3

F4 F5

interface comm.QueueWriter {
 void createQ(size_t sz, int nb);
 void destroyQueue();
 void * readNext();
}

int METH(itf, func) (void) {
 while((in= CALL(input, readNext)()) !=0) {
 compute_function(in,out,PRIVATE.arg);
 }
}

17

Prog. Tools & Runtime Outline

  MIND Component Infrastructure
  Component-based

Programming models
  Programming tools flow
  Runtime
  Apex Application Modeling
  Trace, Visualization and Analysis
  Component-aware Debug

F1
F2

F3
F4

Programming Models Objectives

  Efficiency:
  Max parallelism with mininum overhead

  Productivity:
  Abstraction
  Ease of debugging
  High-level analysis

  Scalability:
  More resources more performance

  Platform independence:
  Patterns designed from applications perspective

18

PPM Development: Dual Approach

  Build basic set of Parallel Programming Patterns
  For exploiting data-level (DLP) &

task-level parallelism (TLP)
  Communication, synchronization and memory

management patterns
  Constructions for thread-based programming

  Thread creation/assignment, synchronization, msg. passing
  Constructions for dataflow programming (streaming)

  Execution engines (schedulers), filters template, queues
  Refine PPPs from application experience

  Video Codecs (VC1, H.264)
  Image Quality Improvnt. (HQR, TMNR, TNR, MC-DEI)
  Image analysis (pedestrian recognition)

19

Parallel Programming Pattern (PPP) lib

Execution
model

…

Exchanger

Synchr
Buffer

Communication/
synchronization

Memory
access

Async
Prefetch ...

PEDF

SDF

Prefetch

Thread

Run-to-
Compl.

DDF

Queue
iterator

Parallel Programming Models

HAL	 	

A
bs

tr
ac

tio
n

Na've	 Programming	 Layer	 (NPL)	

	 	 Application F1 F3 F2

Parallel Programming Models
High-‐level	 threading	 for	 	
Data	 Level	 Parallelism	

GCD-‐core	
Stream	 DDF,	 SDF	
(S/W,	 HW/SW)	

Codec, IQI, Modem …

Thread
pool

FIFO

20

21

Parallel Programming Patterns

Pattern A

Platform

NPL / HAL

Inter-cluster

Intra-cluster
Pattern B

Application PPP
Component repository

Component
Framework

  High-level set of patterns used to
parallelize applications
  Exploiting different types of parallelism
  Interchangeable implementations

  Component-based
(MIND framework)

SIMD

SISD

MIMD

SPMD

MISD

Single
Instruction

Multiple
Instructions

Single Data

Multiple Data

Single
Program

Multiple
Programs

MPMD

Data-level
parallelism

Task-level
parallelism

L1

L1-L2
via

CDMA

Multiple
implemns.

L1-L2

22

Communication patterns (examples)

  Exchanger:
 buf = exchange(buf)

  Swapping buffers between two participants

  Queue Iterator:

 buf=writeNext(buf);
 buf=readeNext()

  Iteration based communication
between producer(s) and
consumer(s)
  Single queue
  Split / Join / Broadcast

T1 T2

T1 Ti Tn

split

join

… …

23

Communication patterns (examples)

  Synchronized buffer:

 request/release{read,write}(buf)

  Synchronized read/write on shared buffer
  Sliced Synchronized buffer:

Specialization to access a large buffer in smaller slices

  FIFO: push(); pop(); peek()

  Packet based streaming between producer and consumer
  Buffer copy or buffer pointer passing
  Single queue
  Split / Join / Broadcast

Synch
buffer

FIFO

T1 T2

T1 T2

24

Memory access patterns

  Prefetcher: key=load(ptrL3,size), ptrL1=get(key), free(key)
  Prefetching data from L3 to L1

  load() programs the prefetch and returns a key without waiting for the transfer
  get() returns a pointer to L1, blocks until the transfer is completed
  Also supports 2D arrays: key=load(ptr, width, height)

  Async. Prefetcher: load(ptr, size, handler(key)), free(key)
  Enables efficient thread-pool execution engines

  load() programs the prefetch and returns waiting for the transfer
  handler(key) is invoked by the execution engine when the transfer is completed
  Also supports 2D arrays: load(ptr, width, height, handler(key))

25

Execution Patterns: Static Threads
  Static mapping of

kernels on a set of
platform resources

  Minimal runtime
overhead
  No kernel multiplexing

required
  Manual load balancing

  Similar computational
requirements for each
kernels

  Example usage
  Video High-Quality

Rescaling (HQR)
  Mapped to S/W

Thread Creation Bootstrap

main() main() main()

C1
C2

C3
C1

C2

C3

Component Constructors

26

Execution Patterns: Thread Pool
  Dynamic dispatch of

kernels on a set of
platform resources

  Some runtime overhead
  Mux K kernels on

 R resources
  Dynamic load balancing

  Different heuristics
offered
  Job stealing
  Cache awareness

  Example usage
  H.264 Motion Estimator
  Mapped to S/W

Application
Main Controller

Kernel
#1

Thread Pool

[]

Kernel
#N

…

T.P.
registration

I/F

Runnable
I/F

Execution Patterns: Dataflow

27

F1 F2
F3

Mode Controller

Host Communication

 Predicated Execution Data-Flow
(PEDF)

 Host Communication Component
 Models part of application

that communicates with host
 Mode Controller

 Configures control
parameters, steps pipeline

 Filters
 Perform actual data

computation
 Example use: Video HQR

 Mapped to H/W-S/W

28

Prog. Tools & Runtime Outline

  MIND Component Infrastructure
  Component-based

Programming models
  Programming tools flow
  Runtime
  Apex Application Modeling
  Trace, Visualization and Analysis
  Component-aware Debug

F1
F2

F3
F4

Traces
Visualization/debug!

P2012 Mapping Flow

29

Programming Tools!
Component-based

Application Capture!

Analysis, Optimization

Streaming:
- PEDF, DDF

Parallel
Thread

OpenMP

OpenCL

Communication genn.

Std Progr. Models Advanced Prog. Models Native!
PM
NPL
API

PPP
Lib

P2012 Platform!Performance  
Analysis! L2

M
E
M

CC PE0
PE1
…

PEn

C

C

C

C
DMA
HWS

L1

M
E
M

Runtime

Execution
Engines

Deployment

QoS,
Power mgr.

Apex
functional
simulation

API-
based

Trace synthesis, debug info generation
Execution engine confign.

 NoC

PE

PE

PE

HW

PE

PE

PE

HW

Controller, DMAs

Shared
L1

MEM

PE

PE

PE

PE

Shared
L1

MEM

PE

PE

PE

PE

Controller, DMAs

Application-to-Platform Mapping

T2

F1

T2’ T2’’

F2
T1

T3

F3
F4 F5

Dataflow
filter

Data Level
Parallelism

Patterns

Identical
working tasks

Comm.
PPP

Dynamic
Task
Pools

T5

F4 F5

F3

F1

Mapping tools : assignment, transformations, comm. generation, runtime link"

Runtime:  
dynamic

deployment,  
assignment,

&
scheduling"

30

Platform 2012

Software Runtime Architecture

Execute	

Na've	 Progr.	 Layer	

Synchro	 Queues	

HAL	

Deploy	

Component	
Dynamic	

Deployment	

Code	
Loading	

PlaJorm	 QoS	
Power	
mana-‐	
gement	

Monitoring	

Threading	 	
Execu'on	 engine	 Streaming	 	
Execu'on	 Engine	

HAL	

Fault-‐	
tolerance	

Thread	
alloc	

Comm	
alloc	

Mem	
alloc	

HAL	

Parallel	 Progr.	 Models	

Fabric
Controller

Cluster N

PE Synch /
Control

Monitor PE
PE

…

Cluster 1

PE Synch /
Control

Monitor PE
PE

…

31

32

Gap

P2012 mapping tools

Component-based Models

Apex: Application Modeling
 & Simulation Environment

Firmware on P2012 TLM

Refinement

in f out
C

f
in

f f
out

f f f

C C C

C C C

Apex benefits
  No need for TLM platform
  Fast simulation: >100x TLM speed
  High-level validation parallelism
  Compatible with mapping tools

Apex Sequential
Model

Parallel
Model

Apex Objectives
  Capture, validation of high-level

sequential & parallel descriptions
  Verification of parallel correctness

C Reference
Model

L2
Shared

L1
PE
PE
…

C

C

C CDMA

33

Visualization and analysis flow

Mapping!
tools!

Visualization and analysis
tools (in STWorkbench)!

Low- 
level!

Traces!

SoC

Cluster
2

Cluster
N

Fabric Ctrl P2012

Host

System
Trace

Module

F1 F2
F3

Cluster
0

Cluster
1

Trace
Database

• Correspondence between
application description 
and platform resources!

• Application mapping
results!

• Used resources!
• Symbolic names /  
physical IDs!

34

Prog. Model-aware visualization
  Displays broadcast, exchanger, split/join, sync. buffer, exec. patterns

Cache fill / flush

Exchange

Join

Split

35

NPL Visualization

Mutex ownership
change

Mutex critical section

Nested
functions

Barrier

36

Component-aware multi-core debug

  Component-aware debug
  Print state variables (attributes, private data)
  Break on component method, conditional breakpoint on a

specific instance
  Jump over compiler-generated interface stubs
  Print instance hierarchy of the application
  Print current location in the hierarchy

  Multicore features
  Single cockpit controlling multiple debugger instances
  Support for identical program images
  Support for heterogeneous program images planned

37

P2012 Debug flow

Mapping!
tools!

F1 F2
F3

Component
hierarchy!

description!

Component awareness!
Extensions (Python) !

Standard GDB V7

Terminal STWorkbench

Multi-core support

SoC

Cluster
2

Cluster
N

Fabric Ctrl P2012

Host

Debug
& Test
Unit

Cluster
0

Cluster
1

Outline

  Platform 2012 Multicore Fabric
  Platform 2012 Programming Environment

  Component-based programming models
  Component-aware debug, visualization and analysis

tools
  Case Studies

  Video High-Quality Rescaling
  Mapped to S/W platform
  Mapped to H/W-S/W platform

  VC1 video codec

38

39

HQR (High-Quality Rescaling)

  HD 1080p, 120 fps
  SDF model variant

  One “token” on in/out per link per filter firing
  Or simple static multi-rate

  Tokens typically a line of pixel data
  Multiple modes (on frame-by-frame basis)
  Some dynamic control flow, exceptions

  E.g. dynamic bypass of a filter

Gaussian
(GA)

Gradient
Approx

D
 =

 5

D
 =

 4

D
 =

 4

D
 =

 9

D
 =

 4

U,V

Y D
 =

 6

D
 =

 2
 Horizontal

Antialiasing
(AAL-H)

Vertical
Antialiasing

(AAL-V)

Horizontal
NewSpline

Vertical
NewSpline

Threads
& DLP

40

Two Mapping Approaches

  Map to S/W-based platform
  Data-level parallelism

  Structured threading model
  Multi-processor & SIMD

  All tasks for a given data
element assigned to single PE

  Map to H/W-dominated
platform
  Task-level parallelism

  Dataflow programming model
  Software-based control

  Tasks assigned to a single H/
W Processing Unit
  DLP inside each H/W PU

In Out

F2 F1 F3 … … F4

PEDF dataflow

HQR

S/W

H/W

41

Stripe Width = W Pixels Accessed = W + 2 + 2

S/W Mapping: HQR example

  Data-level
parallelism
  Each image line split

into stripes
  Each PE runs all

filters for a stripe
  SIMD optimization of

each filter
  Parallel Progr.

Patterns
  Data iterator split

and join patterns
  Synchronization

between PEs using
“exchanger” pattern
(for border pixels)

Task1 Task2 Task3 Task4

Input Image

42

S/W Mapping: HQR example

  Data-level
parallelism
  Each image line split

into stripes
  Each PE runs all

filters for a stripe
  SIMD optimization of

each filter
  Parallel Progr.

Patterns
  Data iterator split

and join patterns
  Synchronization

between PEs using
“exchanger” pattern
(for border pixels)

Task1 Task2 Task3 Task4

PE1 PE2 PE3 PE4

Iterator Split

Iterator Join Data
exchange

F1

F3

F2

F4

F6

F5

F1

F3

F2

F4

F6

F5

F1

F3

F2

F4

F6

F5

F1

F3

F2

F4

F6

F5

43

HQR PPP Profiling Results

PE0 PE1 PE2 PE3
W0 W1 W2 W3

readNext(0)
readNext(1) readNext(2) readNext(3)

writeNext(0) writeNext(1) writeNext(2) writeNext(3)

PE4
Split

PE5

Join

readNext()

writeNext()

exchange exchange exchange

50 instr./call

65 instr./call

65 instr./call

80 instr./call

65 instr./call

  Concrete impact
on performance
in the case of
HQR

"   Less than 1%

44

Prog. Tools: HQR Mapping Results

  Vectorization results (16 way VECx EFU):
  Results for standalone CA-ISS
  Average vector unit utilization 79%

  Parallel processing results (1 vs. 4 PEs)

19179956

9406673

5731049 4811882

Cache Enabled Initial Burst communication Buffer dimensionning

Single CPU 4 CPU 4 CPU 4 CPU

C
yc

le
s 2 X 3.3 X 3.9 X

Results on
cycle-approx
TLM platform

45

HQR Optimization Process
 # PEs 697

26

200

16 12

Reference code: frame-based
(no vectorization)

Line-based
(vectorization unoptimized)

Line/column switch before
hor. spline filter (simplifies processing)

Line/column switch before last
filter (vectorization optimized)

Use new specialized
SIMD instructions

8 Wide EFU

~5X cost of
H/W solution

H/W Mapping: HQR Example

46

Gaussian
(GA)

Gradient
Approx

D
 =

 5

D
 =

 4

D
 =

 4

D
 =

 9

D
 =

 4

U,V

Y D
 =

 6

D
 =

 2
 Horizontal

Antialiasing
(AAL-H)

Vertical
Antialiasing

(AAL-V)

Horizontal
NewSpline

Vertical
NewSpline

Y, U,V PE0 Y PE1
U PE2

V PE3   Task-level parallelism
  Assignment of each filter to a H/W PU
  Grouping of highly communicating PUs to a single PE

  In contrast with S/W mapping, where
  Data-level parallelism exploited (Multi-PE and SIMD)
  Each PE performs all tasks

PEDF Dataflow Programming Model

47

F1 F2
F3

Mode Controller

Host Communication

 Host Communication
Component
 Gets host request params.

  Frame data
  Required processing type
  Processing parameters

 Mode Controller
 Configures control

parameters, steps pipeline
 Filters

 Actual data computation
 Auto-generated Iteration

Controller
Iteration Controller

Predicated Execution Data Flow

48

TLM
Native

Overview of PEDF Mapping Flow

Mapping tools!

F1 F2
F3

Mode Controller

Host Comm.

Apex Host
Execution

NOC Model

PE 1 PE 2 PE 0 PE 3

Mode Ctl

F1 F2
…

F3 Fm
…

Fn Fr
…

Fs Fz
…

MEM

Cluster
Controller

ISS Host Com.

Abstract
PEDF
Application
Capture

  Single PEDF
description

  Mapped to Host
with Apex tool

  Mapped to TLM
platform
  Control code on

STxP70
  Microcode on data

streaming ports of H/
W PEs

HW-SW Interaction in P2012

HWPE

L1 Memory

Data
Streamer

STXp70

SI SO

SO

HWPE SI SO

SI

HWPE SI SO

HWPE SI SO

M

T

M

L2 Memory

Data streaming

Load/Store

Streaming data flow

Configuration and control flow

Hardware Processing

Data Mover Cluster Control

49

50

Mapping to HW/SW Platform

STxP70 ISS

NOC Model

PE 1 PE 2 PE 0 PE 3

Confg. Ctl Itr Ctl

Fa Fj
…

Fk Fm
…

Fn Fr
…

Fs Fz
…

Functional MODEL TLM / COSIM

  Application capture using DF variant prog. model
  Host execution (APEX) for functional validation
  Automatic control code generation for TLM/COSIM

for perfomance analysis

Connectivity “Glue”

Filter 1 Filter 0

Iteration Controller

Configuration Controller

Filter 2 Filter N … …

TNR Performance Comparison
FlexMap v.s. hand-coded (STxP70 Instrns/Frame)

>50% reduction in !
execution time!

51

  More abstract capture allows for more optimization

52

Multiple Programming Models

  Top-level:
Dynamic Dataflow pipeline

  Interchangeable Thread/DLP
and PEDF implementations
of HQR

  Components act as
semantic-neutral
structuring mechanism Dynamic Dataflow

TMNR In Out

F2 F1 F3 … … F4

PEDF dataflow

HQR

Threads
& DLP

FIFO FIFO

MV Pred

  Processing functions
  Vectorial (SIMD) data

parallelism

VC1 overview: task-level parallelism

2 decoded reference frames
in L3. Circular buffer

Process one segment of macro-
block at a time (dataflow)

•  Comm components
–  Available in a library
–  Binding between

parallel components

Contains motion
vectors + data

Ctrl

 LoopFilter

IDCT Reconstruction

Intra Prediction

Motion
Compen

VLD

Control

Bit Parse VLD
Intra

VLD
Inter

AC/DC IZZ

IQ IDCT Smooth

MC Deblock

Range
mapping

?
+

Prefetch
manager

Queue
Queue

Queue (MB)

Queue

Reference
pictures

Display

Input
bitstream

Uses the CDMA 1 decoded frame

Queue
(2lines)

QueueIterator
Broadcast

Frame/slice control
read by all

Simple
Queue

MV Pred
Queue

I/F to obtain the
reference MB

Intensity
compensn.

  Application components
  Pipelined task-level

parallelism

53

Component-based Prog. Models

  Demonstrated value of components
  Supports multiple programming models

  DLP/threads S/W mapping
  PEDF HW/SW mapping

  Multiple & evolving execution targets
  H/W-S/W partitioning

  Multiple simulation environments

  Platform independence
 Abstraction of communication

  No overhead in practical use
  S/W mapping: <1% overhead
  H/W-S/W mapping: 50% execution time reduction

54

55

Multi-Processor SoC!

for  
Smart People!

Programming Models:!
- Higher productivity!
- More platform  
 independence!

