
PROGRESS - Predictable
Component-based Development

of Embedded Systems

Paul Pettersson

Mälardalen University
•  Campuses in Eskilstuna &

Västerås
•  110 km west of Stockholm
•  Top ranking in quality work

evaluation by Swedish
National Agency for Higher
Education

•  Six prioritized research areas
–  Embedded systems
–  Innovation and Product

Development
–  Environment, Energy and

Resource Optimization
–  Sustainable Development,

Working Life, and Management
–  Welfare and Health
–  Didactics and Intercultural

Communication

•  In numbers:
–  Staff 1000
–  Professors 60
–  Students 13000
–  60 programs and 750 courses
–  Turnover 75MEuro

MRTC & Progress
•  Mälardalen Real-Time

Research Centre:
–  Hosted by Mälardalen univ.
–  Real-Time Embedded

Systems
–  Industrial Software

Engineering
•  Research groups:

•  Progress:
–  National Strategic Centre for

Embedded Software
Development hosted by
MRTC

–  Lead by Hans Hansson
–  2006-2011

Progress
Focus on component-based development of

real-time embedded systems

Hypothesis:
 building embedded software (and systems)
from reusable components
–  complexity,
–  integration, and
–  quality assurance

 can be handled in a more cost efficient and
scalable way

Overview
•  MRTC, and Progress
•  Procom – Progress

component model
•  ProSave, ProSys,
•  attribute framework

•  PrIDE – Progress IDE
•  editing
•  simulation
•  verification

•  UPPAAL PORT
•  analysis model for real-

time components
•  verification by partial-

order reduction

•  REMES
•  modelling of embedded

resources
•  analysis: feasibility,

optimality, trade-off

•  Conclusion

PROCOM
 A component model for real-time embedded systems

ProCom – Key aspects

•  Design-time components.

•  Rich component concept.
•  Including models of timing and resources, analysis results,

documentation, source code, etc.

•  Support for reuse components.

•  Components of different maturity should be allowed to co-
exist.

ProCom – Key aspects
•  Components abstracted from physical

deployment.

•  Different concerns depending on granularity.
–  Distribution, communication, analysis, etc.

Architectural
model (CBD)

Platform model
mapping

ProCom – a multi-layered
component model

•  ProSys model (upper layers)
–  Systems and subsystem

components
–  Active, typically distributed
–  Asynchronous message passing

•  ProSave model (lower layers)
–  Function block, primitive
–  Passive, non-distributed
–  Explicit transfer of data and control

•  Connection between the layers
–  A subsystem can internally be

modelled by ProSave.

System

C1 C2 C3

ProSys – the upper layers
•  Components (subsystems):

–  Active, possibly distributed.
–  Interact through message ports.

•  Communication:
–  Asynchronous messages.
–  Explicit message channels.

Subsystem A

Subsystem B

Subsystem C

ProSave – the lower levels
•  Passive components

–  Similar to task or function block

•  Interact through input- and output ports.
–  Data ports
–  Trigger ports

•  read-execute-write semantics:
1.  Initially passive, receiving input data.
2. When triggered, read input

data and turn active
3. Executing internal component behavour
4. Write output; goto 1.

Component A

ProSave – the lower level
•  More complex components can have:

–  Multiple output groups:
•  Output can be produced at different

 points in time.
•  Each group written once per

activation.

–  Multiple input groups (services):
•  Services can share state.
•  Individual control flows

Component A
Component A

Component C

ProSave – the lower level
•  Separated data- and control flow

Component A Component B

•  Hierarchical nesting
•  Primitive components
•  Composite components

ProSave – the lower level
•  Connectors for more elaborate control:

–  Data fork
–  Data or

–  Control fork
–  Control join

–  Control selection
–  Control or

Modelling a ProSys subsystem
in ProSave

•  Message ports ↔ trigger and data
•  Clocks and events

C1 C2

C3

10 Hz

Truck Example

Truck Example

Progress IDE - PrIDE

Procom editor

REMES editor
Timed Automata editor Verification using UPPAAL Port and Cora

Simulator

ATTRIBUTE FRAMEWORK
 Integration of Extra-Functional Properties in PROCOM

Attribute Framework

•  Integration of extra-functional properties in
the component model

•  Reuse and composability of EFP
– often poor support for this in CBD

•  Attribute Framework:
– Manage EFP in a systematic way
– Store various analysis results (for reuse)
– Generic for may different type of EFPs

Execution time
Priorities
Deadline

Schedule policy
End-to-end deadline

Response time
Computation time

WCET/BCET

Static memory usage
Dynamic memory usage

CPU usage
Power consumption
Memory footprint

Disk access
Network access Safety

Reliability
Availability

Recoverability
Maintainability
Accessibility

Nb of reuse

Throughput

Confidentiality

Nb of tests

Cost

Value range

Compliance to standard

Precision

Extensibility

Confidentiality

Integrity

Security

Evolvability

Credibility

Accuracy

LoC

...

Huge List of Properties…

Estimation

Static Analysis

Probabilistic
Analysis

Measurement

Simulation

Origin differs…

WCET

latency

End-to-end
separation time

Value range

Resource model

Cost
Static

memory
usage

Component
Component Instance

Interface
Port

Between several
elements

Communication channel

Relation to different component
model entities differs…

Requirements
Specification Deployment Component-based design

Early estimate Static Analysis

Model Checking

Probabilitic
Analysis

Measurement(s)

Simulation

Schedulability
Analysis

Expert estimate

Value refinement

Development phase differs…

Attribute Structure

Component
Editor

Attribute
Editor

PROGRESS IDE

Attribute Documentation

UPPAAL PORT
 Modelling and verification of Real-time components

Modelling and Verification
•  Establish correctness at

design time of models
•  Functional and timing

properties of components
–  Model of functional and

real-time behaviour
–  Verification of safety

liveness properties
•  Difficulties/complexity:

–  hierarchical model,
communication structure,
functional behaviour, timing

•  Common approach:
–  Perform analysis of

component model on
equivalent ”flat” model

–  Performance problems
•  Our approach:

–  Perform analysis directly
on hierarchical component
model

–  Apply reduction techniques
to exploit component model
structure

–  Partial-order reduction

ProSave + Timed Automata
•  ProSave

– Ports, read-execute-write
– Function and timing

•  timed automaton with start/final location
•  ports mapped to data variables
•  analysis model

– Horizontal composition
•  Connections
•  Components

– Veritical composition
•  Composite components

A C

B

y:=0

y≥5
a:=1-a

y≤20
clock y;
int a;

map: ap2

D F

E

C

PORT for Timed Systems
•  Attempted before:

–  Bengtsson et. al. (’98), Minea (’99)
•  Local time semantics
•  Allows time to progress independently in parallel automata

–  Niebert et al (event zones, ’04-), Maler et al
(interleavings ‘06)

•  Our approach
–  Based on local time semantics
–  Structured model  more information
–  Components execute independently

•  read  execute  write semantics

Partial Order Reduction
•  interleaving semantics:

–  A and B parallel actions:
explore AB and BA

•  reduce interleaving
–  A and B are independent
–  commutativity, enabledness, …

•  explore representative traces
–  maintains correctness
–  BA representative of AB

•  timing adds problems

A

A

B

B
x:=0

x:=0

y:=0

y:=0

{ x≥y } { x≤y }

Independence in Components
•  active component (in a transition):

–  delay A = { A }
–  internal A = { A }
–  write A = { A } ⋃ { K | connection from A to K) }

•  independent: transitions α and β if
–  no component active in both:

 active(α) ⋂ active(β) = ∅
•  example:

B

C

A D

Dependent:
internal A – write A
internal C – write A
internal D – write A
 write A – write B
internal B – write B
internal C – write B

Local Time Semantics
•  local clocks cA, cB, cC
•  local transitions: delay K, internal K,

–  delay K advances clock cK
•  write transition of A

–  synchronize reference clocks cA and cK
if A is connected to K

B

C

A
write (trig)

internal internal

A B C

Time
Idle
Internal
Final

write (data)

internal
delay

•  internal K and delay K as before
•  write transition of A

–  if A triggers K then cA = cK
–  If dependent(writeA, writeK) then cA ≤ cK

Further Relaxed Synchronization

B

C

A
write (trig)

internal internal

A B C

Time
Idle
Internal
Final

write (data)

internal C

Preserve order of
dependent transitions

Preserves start
of component C

delay

Implementation
•  UPPAAL PORT: Extension of model-checking

tool UPPAAL with
–  partial order reduction
–  native support for

component model
ProSave

•  IDE support for
–  editing and simulation

of ProSave
– PORT model-checking

of local reachability
– model-checking of safety and liveness

Benchmark
•  Each component:

 initial
 read
 delay ∈ [0,4]
 write

global = no partial order reduction
local =relaxed partial order semantics

Based on example of [Salah, Bozga and Maler’06]

REMES
 Modelling and verification of Embedded Resources

Embedded Resources
•  Embedded systems typically designed w.r.t.

resource constraints
–  computational power (CPU), memory, energy,

bus bandwidth, ports, etc.
•  Challenge

–  provide early design stage modelling and
prediction methods

– model resource usage and provide analysis
techniques

–  resource-wise feasibility,
optimal resource usage, and trade-off analysis

Embedded Resources

C2
{RC2}

C3
{RC3}

Cn
{RCn}

{RB} ≤ {RC1}
C1

{RC1} B
{RB}

Repository

Resource Analysis Problems

•  Feasibility
– Accumulated resource usage within provided

resource bounds
•  Optimal and worst-case consumption

– Min/max accumulated resource usage
•  Trade-off analysis:

– Decide the best trade-off between multiple
resources, possibly dependent, e.g., memory
and cpu

REMES
•  REsource Model for

Embedded Systems
•  To model resource-

wise behaviour of
interacting embedded
components

•  Charon based

•  modes
–  atomic or composite
–  models behaviour and

timing of component
•  control points

–  init, entry, exit
•  variables

–  integer, clocks (arrays)
–  global, local

•  actions
•  constraints (invariants)
•  conditional connectors

Embedded Resources

•  r – accumulated resource consumption
•  r’ – rate of consumption over time

– discrete or continuous
–  referable or non-referable

•  Examples:
–  r’=0 and referable : discrete, e.g. memory
–  r’=0 and non-referable : discrete, e.g., CPU
–  r’=n, n Z, and non-referable : energy or

 bandwidth
€

∈

Analysing REMES based ES
•  REMES modes have access to resources R1,…,Rn
•  Goal to analyse scenarios of resource usage
•  Analysis model:

 rtot = (w1*r1) + … + (wn*rn)

–  rtot : accumulated resource consumption for R1,…,Rn
–  r1,…, rn: accumulated consumption of R1,…,Rn
–  w1,…, wn : weights, relative importance of R1,…,Rn

REMES to PTA
•  Translation to Priced Timed Automata [Alur et al’01,

Behrman et al’01]
–  Timed automata extended with linear cost variable
–  Minimum reachable, etc decidable

•  Mapping of REMES modes, edges, variable, etc to
PTA locations, edges, etc.

•  Multiple resources r1, …, rn:

 cost = (w1* c1) + … + (wn* cn)

–  c1, …, cn : cost of resource r1, …, rn
–  for each location: cost’ = (w1* c’1) + … + (wn* c’n)

where w1, …, wn constants and c’1, …, c’n static

Analyzing REMES models

Model Checker
(UPPAAL Cora)

PTA (MPTA)

resource-aware property error trace

yes

Assumptions from
hardware abstraction:

Memory budget, Bandwidth, Cost model

Resource Analysis
•  Feasibility analysis:

–  are the accumulated values of consumed
resources within the provided resource amounts?

–  one cost variable encoding all accumulated
resources

•  Strong feasibility:

•  Weak feasibility:

•  Live feasibility: €

AFcos t≤nv
AG(q⇒ AFcos t≤nv)

Resource Analysis (2)
•  Op$mal	
 and	
 Worst-­‐Case	
 Resource	
 Consump$on	

– minimum/maximum cost for reaching given
location or predicate

– minimizing/ maximizing the one-cost function

 cost = (w1* c1) + … + (wn* cn)

–  decidable also if cost is not a monotonically
increasing function [Bouyer et al. “On the optimal
reachability problem of weighted timed automata”
2007]

Resource Analysis (3)

•  Trade-­‐off	
 analysis:	

 more	
 than	
 one	
 property	
 to	
 sa$sfy	

  Pareto	
 analysis	

  adjust	
 weights	
 and	
 use	
 weighted	
 sum	
 	

 weights	
 can	
 be	
 set	
 by	
 AHP	
 analysis	

 minimize	
 a	
 primary	
 cost,	
 while	
 imposing	
 an	
 upper	

bound	
 on	
 secondary	
 cost	
 (two	
 costs)	

 Op$mal	
 condi$onal	
 reachability	
 of	
 MPTA	
 [Larsen	
 &	

Rasmussenm	
 2005].	
 E.g.	
 energy	
 minimized,	
 cpu	

bounded,	
 loca$on	
 v:	

Integrated in PrIDE

•  REMES and PTA editor/visualizer
•  Transformation to TA or PTA
•  Simulation (using UPPAAL)
•  Verification by model-checking in UPPAAL, UPPAAL Port

(partial-order) and UPPAAL Cora (PTA)

Conclusion
This talk:
•  Procom:

–  Progress component model
–  ProSys and ProSave
–  attriute framework

•  PORT + REMES:
–  partial order reduction
–  modelling and analysis of

embedded resources
–  feasibility, optimality and

trade-off analysis
•  PrIDE: Progress IDE

–  modelling, simulation,
model-checking (functional,
timing, resources)

Not in this talk:
•  Modelling:

–  UML state machines +
MARTE

–  connection to EAST-ADL2
–  modelling patterns
–  error modelling

•  Predictability analysis
–  static analysis
–  WCET
–  dependability

•  Platform
–  scheduling

•  Case studies, …

Thanks!

Acknoledgments: Tomáš Bureš, Jan Carlson, Ivica Crnkovic, John Håkansson,
Marin Orlić, Cristina Seceleanu, Séverine Sentilles, Petr Stepan, Jagadish
Suryadevara, Aneta Vulgarakis

