Requirements for a Real-Time Mapping Flow based on Convex Programming

Maarten Wiggers
University of Twente, The Netherlands
Visiting scholar, UC Berkeley

Joint work with Marco Bekooij

Overview

- System organization
 - All synchronization on FIFO buffers
 - All arbitration through budget schedulers
- Convex program to find buffers and budgets
 - Satisfy real-time constraints
 - Polynomial complexity
- Approach based on
 - Model with only upper bounds on arrival times

Dataflow history

- Untimed dataflow static scheduling
 - Edward Lee and David Messerschmitt
- Timed dataflow static scheduling
 - S. Sriram and S. Bhattacharyya
- Timed dataflow run-time scheduling
 - Subject current talk

Trends

- Integration : multi-stream systems
 - User starts and stops streams
- Adaptation : data-dependent processing
 - Infrequent; e.g. modes in digital radios
 - Frequent; e.g. entropy encoding in MPEG

Trends

• Integration : multi-stream systems

User starts and s

Adaptation : dat

Infrequent; e.g.

Frequent; e.g. el

Run-time scheduling increasingly attractive

Untimed multi-rate dataflow

Untimed multi-rate dataflow

Untimed multi-rate dataflow

Example schedules: (AAABB)* or (AABAB)*

Timed single-rate dataflow

- Timed dataflow actor
 - Two atomic events: start and finish
 - Constant firing duration from start to finish
 - Consumes at start and produces at finish

Throughput - 1 location buffer

$$\frac{1}{\mathsf{throughput}} = \mathsf{MCR} = \max(\tfrac{1}{1}, \tfrac{3}{1}, \tfrac{1+3}{1}) = 4$$

Maximum Cyle Ratio (MCR) :=
$$\max_{c \in C} (\frac{\sum_c \text{ firing durations}}{\sum_c \text{ tokens}})$$

Periodic schedule

Periodic schedule of dataflow graph

Period equal to MCR = 4

Next slides ...

- Timed dataflow has constant firing durations
- Next slides will introduce task graphs
 - Task graphs are closer to final implementation
 - Timed dataflow conservatively models task graph

Task graph

- Task
 - Variable execution time (upper bound = WCET)
 - Produces and consumes during execution
- Buffer is a fixed capacity circular buffer

Conservative dataflow model

- 1-1 function: task graph to dataflow graph
 - From buffers to unordered pairs of queues
 - From containers to tokens

 Conservative iff container productions not later than corresponding token productions

Conservative production times

Data-driven schedule of task graph (constant execution time)

Periodic schedule of dataflow graph

Period equal to MCR = 4

Monotone production times

- Def.: Earlier production times cannot result in later production times
- Timed SRDF has monotone production times
 - Assumed every actor on private resource
- Preserves conservatism over compositions
- Explained in:
 - Wiggers, Bekooij, Smit. EMSOFT, 2009

Modeling schedulers in dataflow

- Timed SRDF cannot express run-time schedulers
 - Run-time schedulers make decisions based on arrival time of data
- Timed non-determinate merge : no monotone productions
 - Earlier arrival -> re-order -> later production times
- Attractive : temporally monotone determinate model
 - Abstract from scheduling algorithm
 - Model worst-case relative finish time
- Resulting model has monotone arrival times
 - Bounds multiprocessor scheduling anomalies

Response time

- Task execution i has
 - e(i) := enabling time: sufficient data and space present
 - s(i) := start time
 - f(i) := finish time
- Execution time := f(i) e(i), in isolation
- Response time := f(i) e(i), on shared resource

f(i)

Three classes of schedulers

- Response time depends on
 - Own execution time
 - Interference : activation rate + execution time
- Classification of interference dependencies
 - 1. Activation rate & execution times
 - Static priority pre-emptive
 - 2. Execution times (starvation-free schedulers)
 - Round robin, weighted round robin
 - 3. Bounded by construction (budget schedulers)
 - Time division multiplex, priority-budget scheduling

Budget schedulers

- Guarantees a task a minimum budget B in every time interval of length P
 - Subclass of the aperiodic servers
 - e.g., time-division multiplex, priority-based budget scheduler, polling server, constant-bandwidth server

Response time analysis

- Worst case response time for budget scheduler
 - B := budget
 - P := interval in which budget is guaranteed
 - -x(i) := execution time of execution i

$$\max(f(i) - e(i)) = x(i) + (P - B) \cdot \lceil \frac{x(i)}{B} \rceil$$

Time-division multiplex

Example

	Task A	Task B
Budget	1/2	3
Period	2	4
WCET	1	3
Worst-case response time	1 + (2-1/2) * 2 = 4	3 + (4-3) * 1 = 4

 $\frac{1}{\mathsf{throughput}} = \mathsf{MCR} = \max(\frac{4}{1}, \frac{4}{1}, \frac{4+4}{1}) = 8$ MCR = Maximum Cycle Ratio

Schedules

Labeled transition system

Set of convex constraints

Set of convex constraints

Max-plus algebra

$$P - B_A + P \cdot \frac{x_A}{B_A}$$

Set of constraints

$$P - B_B + P \cdot \frac{x_B}{B_B}$$

Parameterized timed dataflow model

Run-time scheduled task graph

Set of convex constraints

Set of constraints

$$P - B_A + P \cdot \frac{x_A}{B_A}$$

$$P - B_B + P \cdot \frac{x_B}{B_B}$$

Parameterized timed dataflow model

Run-time scheduled task graph

Timed dataflow synthesis

Run-time scheduled task graph

abstraction

semantics

Linear program: find buffer size

(1): $s(A) \ge s(B) + 4 - d \cdot \mu$

μ is desired MCR (throughput)

- $(2): s(A) \ge s(A) + 4 \mu$
- $(3): s(B) \ge s(A) + 4$
- $(4): s(B) \ge s(B) + 4 \mu$

Objective: $\min d$

Monotonicity of model tells rounding to next integer is allowed

Convex programming

- Generalization of linear programming
- Constraints specify a convex space instead of polyhedron
- Efficiently solvable (polynomial complexity)

Convex program: buffers & budgets

$$P - B_A + P \cdot \frac{x_A}{B_A} \qquad P - B_B + P \cdot \frac{x_B}{B_B}$$

$$(3)$$

$$(2)$$

$$(1)$$

$$d$$

$$(4)$$

(1):
$$s(A) \ge s(B) + P - B_B + P \cdot \frac{x_B}{B_B} - d \cdot \mu$$

(2):
$$s(A) \ge s(A) + P - B_A + P \cdot \frac{x_A}{B_A} - \mu$$

(3):
$$s(B) \ge s(A) + P - B_A + P \cdot \frac{x_A}{B_A}$$

$$(4): s(B) \ge s(B) + P - B_B + P \cdot \frac{x_B}{B_B} - \mu$$

$$(5): P \geq B_A + B_B$$

Objective: $\min \alpha_A B_A + \alpha_B B_B + \beta d$

Monotonicity of model tells rounding to next integer is allowed

More expressive models

More expressive models

- More expressive dependency relations
 - Not every producer firing causes consumer firing
 - Dependency relation is no longer a convex expression
- Conservative linear abstractions of dependencies
 - Linear bounds on token transfer times
 - Allows efficient computation of budgets and buffers

Example applications

Conclusion

- Run-time scheduling attractive
 - Multi-application systems
 - Data-dependent processing
- Modeling run-time scheduling with timed dataflow: restrict to budget schedulers
- Results in temporally monotone dataflow model
 - LP/SOCP formulations for resource allocations
- Budget schedulers allow for efficient resource allocation: can this class be increased?

Questions?

m.h.wiggers@utwente.nl