

Data-flow: Mapping and Scheduling

Alessio Bonfietti

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

- Embedded Systems
- Multimedia Systems

•MP-SoC (MultiProcessor-System-on-Chip)

Multimedia Applications

Stream Computing based on Data-Flow Model

The Problem

Streaming Application

Target Platform

Alessio Bonfietti

Implicit Mapping

Scheduling

• Blocked Scheduling

Unfolding Approach Scheduling

Modulo Scheduling

Outline

- Definition of the Problem
- Constraint Programming
- Solver: the Model
- Solver: the Search
- Experimental Results
- Current and Future Research

(Modulus) Problem

(Modulus) Problem

Constraint Programming

Constraint Programming is a problem-solving methodology

Solve Hard Combinatorial Problems

Model

Variables

• Finite Domain: set of values that a variable can assume

•Constraint:

- Filtering algorithm
- Domain reduction

Constraint Programming

Constraint Propagation: reduction of the domain of the variables to prevent search to find an infeasible solution

Solve Model

•Define/choose search algorithm

Define/choose heuristics

Once the problem is modeled using constraints, a wide selection of solution techniques are available

Simple Temporal Network Model

R. Dechter. Temporal constraint networks. Articial Intelligence, 49:61,95, 1991.

Alessio Bonfietti

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

CP Model

Variables

 $t^{e_i} = t^{s_i} + ex_i$

- •Start Times $t^{s}_{i} [0 ... \lambda]$
- •Iteration Values $k_i [-\infty.. + \infty]$
- •Modulus Variable $\lambda [0 .. + \infty]$

Constraints

- Resource Constraints (including buffers)
- •Symmetry Breaking Constraints
- Temporal Constraints

Resource (Buffer) Constraints

In real context, the precedence constraint often implies an exchange of intermediate step products between activities that should be stored in buffers.

Symmetry Breaking Constraints

The assignment of different iteration values *k* to communicating tasks allows one to break precedence relation on the modular time horizon.

$$k_j \le \max_{i \in P_j} \left(k_i + \left[\frac{t_i^e - t_j^s + \theta_{(i,j)}}{\lambda} \right] - \delta_{(i,j)} \right) + 1$$

where P_j is the set of predecessors of j

Mav 19tl

2011

$$s_j + k_j \cdot \lambda \ge e_i + (k_i - \delta) \cdot \lambda + \theta$$

Filtering on iteration variables k

Filtering on start time variables **s**

Filtering on the modulus variable $\boldsymbol{\lambda}$

Maintain a proper distance between the iteration variables

Modify the start time to avoid infeasible overlapping of activities

Computes a lower bound for the modulus

Filtering on iteration variables k

$$k_{i} \leq UB(k_{j}) + \delta + \left[\frac{UB(s_{j}) - LB(e_{i}) - \theta}{UB(\lambda)}\right]$$
$$k_{j} \geq LB(k_{i}) - \delta - \left[\frac{UB(s_{j}) - LB(e_{i}) - \theta}{UB(\lambda)}\right]$$

We refer to UB(x), LB(x) as the highest and the lowest values of the domain of the x variable

Filtering on start time variables **s**

$$\Delta_k = k_i - k_j - \delta$$

$$s_j \ge LB(e_i) + \Delta_k \cdot UB(\lambda) + \theta$$

$$e_i \leq UB(s_j) - \Delta_k \cdot UB(\lambda) - \theta$$

Alessio Bonfietti

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Filtering on the modulus variable $\boldsymbol{\lambda}$

Condition: $\Delta_k < 0$

$$\lambda \ge \left[\frac{LB(e_i) - UB(s_j) + \theta}{UB(k_j) - LB(k_i) + \delta} \right]$$

$$\lambda \begin{bmatrix} \delta=1 \end{bmatrix} = \lambda \begin{bmatrix} e_{A} \dots \infty \end{bmatrix}$$

$$\lambda \ge \begin{bmatrix} LB(e_{B}) \\ 1 \end{bmatrix}$$

$$\lambda = A, s=0, k=0$$

$$\lambda' \begin{bmatrix} e_{B} \dots \infty \end{bmatrix}$$

Alessio Bonfietti

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

The solver is based on **tree search** adopting a **schedule or postpone** approach.

C. Le **Pape** and P. **Couronné**. *Time-versus-capacity compromises in project scheduling*. In In Proc. of the 13th Workshop of the UK Planning Special Interest Group, 1994.

Alessio Bonfietti

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

ST200 processor (VLIW) instruction scheduling instances [ST-Microelectronics]

From 10 nodes, 42 arcs to 214 nodes and 1063 arcs.

Two sets:

Industrial

Modified (more challenging set)

Comparison:

- ILP Optimal Value [Ayala&Artigues]
- SMS (heuristic) Solution [Hagog&Zaks]

Mostafa **Hagog** and Ayal **Zaks**. *Swing modulo scheduling for gcc*, 2004.

M. Ayala and C. Artigues. On integer linear programming formulations for the resource-constrained modulo scheduling problem, 2010. http://hal.archives-ouvertes.fr/docs/00/53/88/21/PDF/ArticuloChristianMaria.pdf

			Industrial		Modified			
Instances	nodes	arcs	time(sec)	$\operatorname{Gap}(\%)$	SMS(%)	time(sec)	$\operatorname{Gap}(\%)$	SMS(%)
adpcm-st231.1	86	405	14400	0%	19.23%	Х	Х	Х
adpcm-st231.2	142	722	582362	2.44/2.44%	0%	Х	Х	X
gsm-st231.1	30	190	0.05	0%	0%	250	10.7/10.7%	10.7%
gsm-st231.2	101	462	79362	0%	0%	Х	Х	X
gsm-st231.5	44	192	0.05	0%	13.33%	280	0%	5.26%
gsm-st231.6	30	130	17	0%	31.25%	152	0%	0%
gsm-st231.7	44	192	0.05	0%	41.66%	92	0%	2.38%
gsm-st231.8	14	66	0.05	0%	31.25%	0.27	0%	0%
gsm-st231.9	34	154	0.05	0%	0%	0.56	5.88/0%	8.57%
gsm-st231.10	10	42	0.05	0%	0%	0.1	0%	0%
gsm-st231.11	26	137	0.05	0%	0%	0.37	0%	0%
gsm-st231.12	15	70	0.05	0%	0%	12.65	0%	0%
gsm-st231.13	46	210	1856	0%	0%	985.03	0%	0%
gsm-st231.14	39	176	301.25	0%	17.39%	220	2.94/2.94%	0%
gsm-st231.15	15	70	0.05	0%	28.57%	12.36	0%	8.33%
gsm-st231.16	65	323	7520	0%	0%	Х	Х	X
gsm-st231.17	38	173	0.05	0%	23.81%	90	0%	0%
gsm-st231.18	214	1063	X	0%	30.76%	X	Х	Х
gsm-st231.19	19	86	0.05	0%	0%	38.23	0%	6.25%
gsm-st231.20	23	102	0.05	0%	0%	123	3.23/3.23%	4.76%
gsm-st231.21	33	154	0.05	0%	45.45%	42.06	0%	3.24%
gsm-st231.22	31	146	0.05	0%	0%	80.36	0%	0%
gsm-st231.25	60	273	3652	0%	0%	(604800)	0%	1.75%
gsm-st231.29	44	192	12.6	0%	23.81%	210	0%	0%
gsm-st231.30	30	130	12	0%	0%	58	0%	3.84%
gsm-st231.31	44	192	47	0%	41.67%	142	0%	2.5%
gsm-st231.32	32	138	0.05	0%	31.25%	0.25	0	0%
gsm-st231.33	59	266	2365	0%	11.76%	(604800)	0%	0%
gsm-st231.34	10	42	0.05	0%	6.25%	5.05	0%	0%
gsm-st231.35	18	80	0.05	0%	0%	52	0%	0%
gsm-st231.36	31	143	27	0%	14.29%	230	0%	7.69%
gsm-st231.39	26	118	0.05	0%	0%	95	0%	4.55%
gsm-st231.40	21	103	0.05	0%	0%	15	0%	5.56%
gsm-st231.41	60	315	2356	0%	0%	Х	Х	Х
gsm-st231.42	23	102	0.05	0%	0%	12	0%	14.29%
gsm-st231.43	26	115	0.05	0%	21.73%	15	0%	9.1%

Experimental Results

Solution Quality Tests

1200 synthetic cyclic graphs with 20 to 100 nodes

Average, best and worst gap between the best solution found within a time limit and the ideal lower bound¹.

time(s)	$\operatorname{avg}(\%)$	best(%)	$\operatorname{worst}(\%)$
1	3.706%	2.28%	5.18%
2	3.68%	2.105%	5.04%
5	3.51%	1.81%	5.015%
10	3.37%	1.538%	4.98%
60	3.14%	1.102%	4.83%
300	2.9%	0.518%	4.73%

The approach converges very quickly close to the ideal optimal value.

The *real* optimal value lies somewhere in-between the two values.

1) The ideal lower <u>bound</u> is the maximum between the intrinsic iteration bound *ib* of the graph and the ratio between the sum of the execution times and the total capacity.

Buffer-size constraint Tests

400 synthetic cyclic graphs with 20 nodes and intrinsic buffer size of 6.

Highlight the efficiency of the buffer and symmetry breaking propagation.

ouffesSize	avg(s)	median(s)	$\operatorname{gap}\%$
1	1.1423	0.05	4.925%
2	52.1894	0.1	0.052%
3	157.4673	0.31	0%
6	599.9671	1.215	0%
9	791.5552	1.83	0%

Reasonable limits on the buffer size do not compromise solution quality.

Experimental Results

Modulo Vs Unfolding Scheduling

Study the impact of the overlapped schedule (Modulo S.) w.r.t. the blocked and unfolded approaches.

220 synthetic cyclic graphs with 14 to 65 nodes divided into three classes:

- Small: featuring 14 to 24 nodes
- Medium-size: 25 to 44
- Big: 45-65

Eight different solver configurations

Gap between the solver solution and the Modulo one

	. V					
L L	Solution Gap (%)					
Solver	[14-20]	[25-40]	[45-65]	AVG		
Blocked	108.16%	65.45%	38.83%	55.32%		
Unfold2	55.92%	26.06%	19.89%	26.23%		
Unfold3	33.31%	16.15%	9.99%	18.6%		
Unfold4	29.41%	14.27%	6.278	14.13%		
Unfold5	21.35%	5.33%	8.76%	5.67%		
Unfold6	39.06%	8.67%	4.39%	8.67%		
Unfold8	78.31%	10.71%	7.65%	12.44%		
Unfold10	16.95%	10.21%	10.03%	8.65%		

The worst gap is relative to the blocked schedule, while the unfolded ones tend to have an oscillatory behavior.

Current and Future Work

Alessio Bonfietti

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

Scheduling Representation

Questions ?

Alessio Bonfietti

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA