

Many-core thermal management and design

Andrea Bartolini, Matteo Cacciari, Michele Lombardi, Mohammad Sadegh Sadri, Francesco Beneventi

ALMA MATER STUDIORUM - UNIVERSITA DI BOLOGNA

IL PRESENTE MATERIALE È RISERVATO AL PERSONALE DELL'UNIVERSITÀ DI BOLOGNA E NON PUÒ ESSERE UTILIZZATO AI TERMINI DI LEGGE DA ALTRE PERSONE O PER FINI NON ISTITUZIONALI

Background

Background Power

Power

- Platform:
 - Intel server system S7000FC4UR
 - 16 cores 4 quad cores Intel® Xeon® X7350, 2.93GHz
- At the wall Power consumption
 - test:
 - set of synthetic benchmarks with different memory pattern accesses
 - forcing all the cores to run at different performance levels
 - for each benchmark we extract the clocks per instruction metrics (CPI) and correlate it with the power

Power is function of frequency and workload properties

$$P_D = k_A \cdot V_{DD}^2 \cdot f_{CK} + k_B + (k_C + k_D \cdot f_{CK}) \cdot CPI^{k_E}$$

Background – Thermal transient

Thermal locality (Direct Fourier law in

- Continuous model:
 - Thermal neighborhood = Physical
- Discrete model:
 - Thermal neighborhood depends on sample time
- Hotspot simulation of 'Intel SCC like' 48core
 - Each core : Area = 11.82mm2, Pmax = 2.6W
 - We powered on only Core(5,3)
 - T neighborhood > +0.1°C
- Thermal transient Model Order
 - Different building materials reflects in different time constants [1]
 - Silicon die, heat spreader, heat sink
 - Second order model

[1] W. Huang Differentiating the roles of IR measurement and simulation for power and temperature-aware design 2009.

Thermal management

Distributed model predictive control

ALMA MATER STUDIORUM - UNIVERSITÀ DI BOLOGNA

DIO RUM

Thermal-aware task allocation

Problem:

- PE_i processing elements WL tasks (wl_i) f_{MIN} < f_{PE} < f_{MAX}
- Given wl_i choose {PE_i, f_{PE} }
 - Global Deadline is respected
 - Minimize final T_{PEAK}
- Our solution:
- Off-line learn the relation
- $T_j(\tau_0 + \Delta) = f(\overline{T}(\tau_0), \overline{P}, \Delta, T_{env})$
- Solver:
 - Use it as additional constraint in the search tree

Thermal-aware task allocation

Neural network:

- 2 layers dimensions:
 - 13 input
 - 10 hidden layer size
 - 1 output

Thermal-aware task allocation

Peak temp. difference - 1x4 system Peak temp. difference - 1x4 system Peak temp. difference - 2x2 system Our NN approach vs: minimize power (PP) minimize cumulative duration (HH) At different starting temperature

Fig. 3. Difference from NN in final peak temperature for the HH (dark grey) and the PP (light grey) approach

Fig. 4. Difference from NN in final peak temperature for the HH (dark grey) and the PP (light grey) approach – pre-heated platform

- Communication aware MPC
 Implement in SCC
- Distributed MPC
 - Implementing in SCC
- Thermal aware scheduling:
 - Multi-stage allocation
 - Distributed NN
 - On-line thermal aware scheduling