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Background – Thermal Modeling 
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Background Power 

Power  
• Platform: 

– Intel server system S7000FC4UR 
– 16 cores - 4 quad cores Intel® 

Xeon® X7350, 2.93GHz 
• At the wall Power consumption  

•   test:  
•  set of synthetic benchmarks 

with different memory pattern 
accesses  

•  forcing all the cores to run at 
different performance levels 

•  for each benchmark we extract 
the clocks per instruction 
metrics (CPI) and correlate it 
with the power 

Power is function of frequency 
and workload properties 
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Background – Thermal transient 
1 2 3 4 5 6 7 8 

1 
2 
3 
4 
5 
6 
Ts  < 2ms  
Ts  < 50ms  
Ts  < 75ms  
Ts  < 0.1s  

Ts  < 0.25s  
Ts  < 0.5s  
Ts  > 0.5s  

Thermal locality (Direct Fourier law implication): 
• Continuous model:  

– Thermal neighborhood = Physical neighborhood 
• Discrete model: 

– Thermal neighborhood depends on sample time 
• Hotspot simulation of ‘Intel SCC like’ 48core 

– Each core : Area = 11.82mm2, Pmax = 2.6W 
– We powered on only Core(5,3)  
– T neighborhood > +0.1°C 

• Thermal transient – Model Order 
– Different building materials reflects in  

different time constants [1] 

• Silicon die, heat spreader, heat sink  
• Second order model 

 

 
 

[1] W. Huang Differentiating the roles of IR measurement and 
simulation for power and temperature-aware design 2009. 
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Thermal management 
Holistic view: 
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Distributed model predictive control 
 



Thermal-aware task allocation 
WL Problem: 

• PEi processing elements 
 WL tasks (wli ) 
 fMIN < fPE < fMAX 

• Given wli choose {PEi , fPE }  
• Global Deadline is respected 
• Minimize final TPEAK  

Our solution: 
• Off-line learn the  

relation 
 

• Solver: 
– Use it as additional 

 constraint in the  
search tree 



Thermal-aware task allocation 
Neural network: 
• 2 layers – dimensions: 

– 13 input 
– 10 hidden  

layer size 
– 1 output 

 



Thermal-aware task allocation 
Results: 
• Our NN approach vs: 

– minimize power (PP)  
– minimize cumulative duration (HH) 
– At different starting temperature 

 



Future Work 

• Communication aware MPC 
– Implement in SCC 

• Distributed MPC 
– Implementing in SCC 

• Thermal aware scheduling: 
– Multi-stage allocation 
– Distributed NN 
– On-line thermal aware scheduling 


	Slide Number 1
	Background
	Background – Thermal Modeling
	Background Power
	Background – Thermal transient
	Thermal management
	Distributed model predictive control�
	Thermal-aware task allocation
	Thermal-aware task allocation
	Thermal-aware task allocation
	Future Work

