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About the Topic 

CPS is a rapidly emerging, cross-disciplinary field 
with well-understood and urgent need for formal 
methods driven by challenges in 

  model-based design 
  system verification and 
  manufacturing 
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CPS is About Engineered Systems 

Boston Dynamics: BigDog 

Energy Internet: When IT Meets ET 



Known Drivers of CPS 

  Networking and Information Technology (NIT) have 
been increasingly used as universal system 
integrator in human – scale and societal – scale 
systems 

  Functionality and salient system characteristics 
emerge through the interaction of networked 
physical and computational objects 

  Engineered products turn into Cyber-Physical 
Systems (CPS): networked interaction of physical 
and computational processes 



The Good News… 

  Rich time models 

  Precise interactions across 
highly extended spatial/
temporal  dimension 

  Flexible, dynamic  
communication mechanisms 

  Precise time-variant, nonlinear 
behavior 

  Introspection, learning, 
reasoning  

  Elaborate coordination of 
physical processes 

  Hugely increased system size 
with controllable, stable 
behavior 

  Dynamic, adaptive 
architectures 

  Adaptive, autonomic systems 

  Self monitoring, self-healing 
system architectures and 
better safety/security 
guarantees.  

Computing/Communication Integrated CPS 

Networking and computing delivers precision and flexibility in  
interaction and coordination  



…and the Challenges 

  Cyber vulnerability 

  New type of interactions 
across highly extended 
spatial/temporal  dimension 

  Flexible, dynamic  
communication mechanisms 

  Precise time-variant, nonlinear 
behavior 

  Introspection, learning, 
reasoning  

  Physical behavior of systems 
can be manipulated 

  Lack of composition theories 
for heterogeneous systems: 
much unsolved problems 

  Vastly increased complexity  
and emergent behaviors 

  Lack of theoretical 
foundations for CPS 
dynamics 

  Verification, certification, 
predictability has 
fundamentally new 
challenges.  

Computing/Communication Integrated CPS 

Fusing networking and computing with physical processes brings  
new unsolved problems 



Control Systems 

package org.apache.tomcat.session; 

import org.apache.tomcat.core.*; 

import org.apache.tomcat.util.StringManager; 
import java.io.*; 

import java.net.*; 
import java.util.*; 

import javax.servlet.*; 

import javax.servlet.http.*; 

/** 
 * Core implementation of a server session 

 * 

 * @author James Duncan Davidson [duncan@eng.sun.com] 
 * @author James Todd [gonzo@eng.sun.com] 

 */ 

public class ServerSession { 

    private StringManager sm = 
        StringManager.getManager("org.apache.tomcat.session"); 

    private Hashtable values = new Hashtable(); 
    private Hashtable appSessions = new Hashtable(); 

    private String id; 
    private long creationTime = System.currentTimeMillis();; 

    private long thisAccessTime = creationTime; 
    private long lastAccessed = creationTime; 

    private int inactiveInterval = -1; 

    ServerSession(String id) { 
        this.id = id; 

    } 

    public String getId() { 
        return id; 

    } 

    public long getCreationTime() { 

        return creationTime; 
    } 

    public long getLastAccessedTime() { 
        return lastAccessed; 

    } 

    public ApplicationSession getApplicationSession(Context context, 
        boolean create) { 

        ApplicationSession appSession = 

            (ApplicationSession)appSessions.get(context); 

        if (appSession == null && create) { 

            // XXX 

            // sync to ensure valid? 

            appSession = new ApplicationSession(id, this, context); 
            appSessions.put(context, appSession); 

        } 

        // XXX 
        // make sure that we haven't gone over the end of our 
        // inactive interval -- if so, invalidate and create 

        // a new appSession 

        return appSession; 
    } 

    void removeApplicationSession(Context context) { 

        appSessions.remove(context); 
    } 

    /** 
     * Called by context when request comes in so that accesses and 

     * inactivities can be dealt with accordingly. 
     */ 

    void accessed() { 
        // set last accessed to thisAccessTime as it will be left over 

        // from the previous access 

        lastAccessed = thisAccessTime; 
        thisAccessTime = System.currentTimeMillis(); 

    } 

    void validate() 

Software Communication 
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Foundation for Convergence:  
Model-Based Design 

Modeling Layer 
•  Systems Engineering: Operation research, Reliability, Requirement spec.,.. 
•  Control Engineering: Foundation of system theory: Linear, Nonlinear, … 
•  Software Engineering: Formal methods, Model-based SE, RT software, .. 
•  Communication  Engineering: Information theory, Layered protocols, … 

(Re)-convergence of Systems, Control, Software, Communication 
Engineering 



Overview 

  Cyber-Physical Systems (CPS) 
  CPS and Domain Specific Modeling Languages 
  Model Integration Challenge 

  Formal Semantics  of DSMLs 
  Structural Semantics 
  Behavioral Semantics 

  Practical Use of Formal Semantics 
  Addressing Horizontal Heterogeneity  
  Addressing Vertical Heterogeneity  

  Summary 



Components 
span: 
•  Multiple 

physics 
•  Multiple 

domains 
•  Multiple 

tools 

  Physical 
  Functional: 

implements some 
function in the 
design 

  Interconnect: acts 
as the facilitators 
for physical 
interactions 

  Cyber 
  Computation and 

communication 
that implements 
some function 

  Requires a physical 
platform to run/to 
communicate 

  Cyber-Physical 
  Physical with 

deeply embedded 
computing and 
communication 

Battery 

VMS 
ISG 

Servos 
/Linkages 

Engine 
Transmission 

Components of a CPS 



CPS Design Flow Requires 
Model Integration 

Modeling 

Architecture Design Integrated Multi-physics/Cyber Design Detailed Design 

Exploration Modeling V&V Simulation Modeling Analysis 

Rapid exploration Exploration with integrated optimization and V&V 
Deep 
analysis 

Physics-based  

Structure/CAD/Mfg  

SW  

Domain Specific Modeling Languages 

•  Design Space + 
Constraint 
Modeling 

•  Architecture 
Modeling 

•  Low-Res 
Component 
Modeling  

•  Design Space + Constraint 
Modeling 

•  Architecture Modeling 
•  Dynamics Modeling 
•  Computational Behavior 

Modeling 
•  CAD/Thermal Modeling 
•  Manufacturing Modeling 

•  Architecture 
Modeling 

•  Dynamics,  RT 
Software, CAD, 
Thermal, … 

•  Detailed Domain 
Modeling 



Example: Architecture 
Modeling  

Architecture 
Modeling 

Sublanguage 
/ Capability 

Formalism, Language Constructs, Examples Usage 

Hierarchical 
Module 
Interconnect 
-  Components 
-  Interfaces 
-  Interconnects 
-  Parameters 
-  Properties 

Systems 
Architect 
-  Explore 

Design 
Space  

-  Derive 
Candidate 
Designs 

Design 
Space 
Modeling 

Systems 
Architect 
-  Define 

Design 
Space  

-  Define 
Constraint 

Hierarchically 
Layered 
Parametric 
Alternatives 
-  Alternatives/

Options 
-  Parameters 
-  Constraints 



Computational 
Dynamics 
Modeling 

Physical 
Dynamics 
Modeling 

Domain 
Engineers 
-  design 

controller 
System 
Engineers 
-  Processor 

allocate 
-  Platform 

Effects 

Component 
Engineer  
- model    
   dynamics  
   with Hybrid  
 Bond Graphs 
System 
Engineers 
- Compose    
   system  
   dynamics 

Dataflow + 
Stateflow + TT 
Schedule 
-  Interaction 

with Physical 
Components 

-  Cyber 
Components 

-  Processing 
Components 

Hybrid Bond 
Graphs 
-  Efforts, 

Flows, 
-  Sources, 

Capacitance, 
Inductance, 

-  Resistance, 
- 

Transformers
Gyrators,  

Sensor Actuator 

Software 
Assembly 

Processor 
Topology 

Allocation 

Example: Dynamics Modeling  



15 

Solid 
Modeling 
(CAD / 
Geometry) 

Manufacturing 
Modeling 

Component 
Engineer 
- Defines 
Structural 
Interface  
System 
Engineer 
- Defines 
Architecture 

Component 
Engineer 
- Defines Part 
Cost 
- Defines 
Structural 
Interface, 
Fastener 

Structural 
Interfaces 
-  Defined with 

Peer Roles: 
-  Axis 
-  Point 
-  Surface 

-  CAD Links 

Component 
Manuf. Cost 
- Make 

-  Material 
-  Fab Proc 
-  Complxity 
-  Shape/Wt 

- OTS: Cost/unit 
Structural 
Interfaces 
- Fastener Types, 
Num# … 

Standard Structural 
Interfaces (ex: SAE 
#1) 

Example: Physical Structure 
and Manufacturing Modeling  



Physical components  are involved in multiple physical interactions (multi-
physics) 
Challenge: How to compose multi-models for heterogeneous physical 
components  

Electrical	
  
Domain	
  

Mechanical	
  
Domain	
  

Hydraulic	
  
Domain	
  

Thermal	
  
Domain	
  

Heterogeneity	
  of	
  Physics	
  

Theories,	
  
Dynamics,	
  
Tools	
  

Theories,	
  
Dynamics,	
  
Tools	
  

Theories,	
  
Dynamics,	
  
Tools	
  

Theories,	
  
Dynamics,	
  
Tools	
  

Model Integration Challenge: 
Physics 



Cyber-physical components  are modeled using multiple abstraction layers 
Challenge: How to compose abstraction layers in heterogeneous CPS 
components? 

H
eterogeneity	
  of	
  A

bstrac<ons	
  

Plant Dynamics 
Models 

Controller 
Models 

Dynamics:  
•  Properties: stability, safety, performance 
•  Abstractions: continuous time, functions,  
  signals, flows,… Physical design 

Software 
Architecture 

Models 

Software 
Component 

Code 
Software design 

Software :  
•  Properties: deadlock, invariants, 
                    security,… 
•  Abstractions: logical-time, concurrency,  
  atomicity, ideal communication,.. 

   

System  
Architecture 

Models 

Resource 
Management 

Models 
System/Platform Design 

Systems :  
•  Properties: timing, power, security, fault  
  tolerance 
•  Abstractions: discrete-time, delays,   
  resources, scheduling, 

Model Integration Challenge: 
Abstraction Layers 



A Pragmatic Approach:  
Model Integration Language 

Pro-­‐E	
  
CATIA	
  

Tools	
  and	
  Frameworks	
  	
  Assets	
  /	
  IP	
  /	
  Designer	
  Exper:se	
  

SL/SF	
  
Meta	
  

Manuf	
  
Meta	
  

CAD	
  
Meta	
  

Model	
  Integra:on	
  Language	
  

Impact: Open Language Engineering Environment  Adaptability of Process/Design 
Flow  Accommodate New Tools/Frameworks , Accommodate New Languages 

Thermal	
  
Desktop	
  

SEER-­‐MFG	
  

Hierarchical	
  Ported	
  Models	
  /Interconnects	
  	
  
Structured	
  Design	
  Spaces	
  
Meta-­‐model	
  Composi<on	
  Operators	
  

Structural 
Semantics 

MetaGME Seman<c	
  
Translators	
  

CyPhy	
  
SL/SF	
  

CyPhy	
  
	
  SEER	
  

CyPhy	
  
	
  CAD	
  

Generative 
Rules 
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What Do We Expect  From 
Formal Semantics? 

  Specify 

 Unambiguate  

 Compute 



Behavior 
(cont. discrete,..)  

DSML Semantics 

Models represent: 

Structure 
(logical, physical,..)  

Behavior 
(cont. discrete,..)  

Modeling Language  
Semantics: 

Structural 
(set of well-formed 
model structures) 

Behavioral 
(set of feasible  

behaviors) 

Mathematical 
Domains: 
•  graphs 
•  term algebra + logic 

•  denotational 

Behavioral 
(set of feasible  

behaviors) 
•  operational 



Example 1/2 

Physical Structure (components and terminals) 

Transformation: 

mph 

mbg 

mbg =T(mph) 

Bond Graph model 
(energy flows) 



Example 2/2 

denotational: mathematical equations  

operational: simulated trajectories 

msl =T(mbg) 

mde =T(mbg) 



Modeling Language Semantics 
Has Extensive Research History 

  Broy, Rumpe ‘1997 
  Harel ‘1998 
  Harel and Rumpe ‘2000 
  Tony Clark, Stuart Kent, Bernhard Rumpe, Kevin 

Lano, Jean-Michel Bruel and Ana Moreira -  
Precise UML Group 

  Edward Lee, Alberto Sangiovanni-Vincentelli 
‘2004 

  Joseph Sifakis ‘2005 
  … 
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Key Concept: Modeling languages define a set of well- formed 
models and their interpretations. The interpretations are 
mappings from one domain to another domain. 

Specification of Domain-Specific 
Modeling Languages 

Abstract syntax 
of DSML-s are 
defined by 
metamodels.  

A metamodeling 
language is one 
of  the DSML-s. 

Model-editor generated from metamodel MetaGME metamodel of simple statecharts 

Basic metamodeling notation: UML Class Diagram + OCL 

OCL Constraints: 
self.transTo->forAll(s | s <> self)  

Semantics of 
metamodeling 
languages: 
structural 
semantics.  



Structural Semantics of 
DSMLs – 1/3 

  Gives semantics to metamodels 
  A domain D is given by 

  An alphabet Σ 
  A  finite set of n-ary function symbols Υ that 

describes the relations between members of the 
alphabet 

  A set of model realizations RΥ – a  term algebra over 
Υ generated by Σ  

  A set of constraints C such that  

  We denote D = (Σ, Υ, RΥ , C) 



  Complex constraints cannot be captured by simple type 
systems. Common fix is to use a constraint language 
(e.g. OCL).  

  We use Logic Programming because: 
-  LP extends term algebra semantics while supporting 

declarative rules 
-  The fragment of LP supported is equivalent to full first-order 

logic over term algebras 
-  Unlike purely algebraic specs, there is a clear execution 

sematics for logic programs making it possible to specify 
model transformations in the same framework 

-  Many analysis techniques is available for LP. 

Structural Semantics of 
DSMLs – 2/3 



Structural Semantics of 
DSMLs – 3/3 

  Model realization that satisfies the domain constraints is 
simply called a model of a domain 

  The decision procedure for domain constraints 
satisfaction is as follows 
  represent the model realization as a logic formula Ψ(r) 
  compute deductive closure of a sum of the formula Ψ(r) and C  
  examine the deductive closure to find if r satisfies the domain 

rules.  

  Constraints are given as proofs 
  positive domain: r satisfies constraints if any wellform (.) term 

can be derived 

  negative domain: r satisfies constraints if it is impossible to 
derive any malform (.)  term  



Key Concept: DSML syntax is understood as a constraint 
system that identifies behaviorally meaningful models. 
Structural semantics provides mathematical formalism 
for interpreting models as well-formed structures.  

Formalization of  Structural 
Semantics 

Structural Semantics defines modeling domains using  
term algebra extended with Logic Programming.  
This mathematical structure is the semantic domain of  
metamodeling languages. 

Microsoft Research Tool:  FORMULA 
•  Fragment of LP is equivalent to full first-order logic  
•  Provide semantic domain for model transformations. 

Jackson & Sz. ‘2007 
Jackson, Schulte, Sz.  
‘2008 
Jackson & Sz. ‘2009 

Y:    set of concepts,  
RY :  set of possible  
       model realizations 
C:    set of constraints  
       over RY 
D(Y,C): domain of well-
formed models 
[ ]: interpretations 

Use of structural semantics:          
•  Conformance testing:   
•  Non-emptiness checking:  
•  DSML composing:  
•  Model finding:  
•  Transforming: 



GME-FORMULA Tool Interfaces 

Modeling Lngs 

Constraint 
Defs 

Models 

FORMULA	
  (MicrosoC	
  Research)	
  

Formula Domain Formula Model 

Validation 
Tool 

Analyzer 
Tool 

Generic	
  Modeling	
  Environment	
  	
  (ISIS)	
  

Relations among 
Modeling lngs and  

Models 
… 

Model	
  	
  
Translator	
  

Metamodel	
  	
  
Translator	
  



Example 
domain	
  DFA	
  { 
	
  	
  	
  primitive	
  Event	
  ::=	
  (lbl:	
  Integer).	
  
	
  	
  	
  primitive	
  State	
  ::=	
  (lbl:	
  Integer).	
  
	
  	
  	
  [Closed(src,	
  trg,	
  dst)]	
  

primitive	
  Transition	
  ::=	
  (src:	
  State,	
  trg:	
  Event,	
  dst:	
  
State).	
  
	
  	
  	
  [Closed(st)]	
  
	
  	
  	
  primitive	
  Current	
  	
  	
  	
  ::=	
  (st:	
  State).	
  
	
  	
  	
  nonDeterTrans	
  :=	
  Transition(s,	
  e,	
  sp),	
  Transition
(s,	
  e,	
  tp),	
  sp	
  !=	
  tp.	
  

	
  	
  	
  conforms	
  	
  	
  	
  	
  	
  :=	
  !nonDeterTrans.	
  
} 



Ongoing Work 

  FORMULA (Schulte, Jackson et al, MSR) - A tool 
suite for building models and analyzing their 
properties. Co-developed with the European 
Microsoft Innovation Center (EMIC), Aachen, 
Germany 

  GME-FORMULA translator – Extension of the MIC 
tool suite (VU-ISIS in cooperation with MSR) 

  Analysis tools – Domain and Model Equivalence, 
Domain Composition,  Model Completion (VU- 
ISIS in cooperation with MSR) 
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Behavioral Semantics  

  Given a DSML 

  Behavioral semantics will be defined by 
specifying the transformation between the DSML 
and a modeling language  with behavioral  
semantics.  



Implicit Methods for Specifying 
Behavioral Semantics 

Representation as AST 

C++ Interpreter/Generator Graph rewriting rules 

Executable 
Model 

(Simulators) 

Executable Code Executable 
Specification 

Implicit 



Explicit Methods for Specifying 
Behavioral Semantics 

Representation as AST 

C++ Interpreter/Generator Graph rewriting rules 

Executable 
Model 

(Simulators) 

Executable Code Executable 
Specification 

Explicit 



Specifying Behavioral Semantics 
With Semantic Anchoring 

Representation as AST 

Graph rewriting rules 

Abstract Data Model Model Interpreter 

MIC-GReAT 
(Karsai, VU-ISIS) 

MIC-UDM 
MIC-GME 

Abstract State Machine Formalism 



Example Specification : FSM 

structure Event 
  eventType as String 
class State 
  initial    as Boolean 
  var active as Boolean = false 
class Transition 
abstract class FSM 
  abstract property states           as Set of State 
    get 
  abstract property transitions      as Set of Transition 
    get 
  abstract property outTransitions   as Map of  
    <State, Set of Transition> 
    get 
  abstract property dstState as Map of <Transition, State> 
    get 
  abstract property triggerEventType as Map of  
    <Transition, String> 
    get 
  abstract property outputEventType  as Map of  
    <Transition, String> 
    get 

abstract class FSM 
  Run (e as Event) as Event? 
    step 
      let CS as State = GetCurrentState () 
    step 
      let enabledTs as Set of Transition = {t | t in  
        outTransitions (CS) where e.eventType =  
        triggerEventType(t)} 
    step 
      if Size (enabledTs) >= 1 then 
        choose t in enabledTs 
          step 
            CS.active := false 
          step 
            dstState(t).active := true 
          step 
            if t in me.outputEventType then 
              return Event(outputEventType(t)) 
            else 
              return null 
      else 
        return null 

Abstract Data Model  Interpreter 

Underlying abstract machine - ASM Language: AsmL 
Yuri Gurevich, MSR 



Ongoing Work 

  Semantic anchoring of DSMLs using 
“semantic units” 

  Compositional specification of semantics for 
heterogeneous modeling languages 

  Investigating alternative frameworks (e.g. 
based on FORMULA) 
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Capturing Physical Semantics 

Modeling Language  
Semantics: 

Structural 
(set of well-formed 
model structures) 

Behavioral 
(set of feasible  

behaviors) 

•  denotational 

Behavioral 
(set of feasible  

behaviors) 
•  operational 

Physical 
(struct. and  behav.  

constraints) 

Rational: 
•  Get the physics right 
•  The rest is mathematics 
   (Kalman, 2005) 



Physical Semantics: 
Structural Implications 1/2 

Electrical 
domain 

Mech. 
domain 

? 

Electrical 
domain 

Mech. 
domain 

El.-Mech 
(inter-
dom.) 

Energy is 
conserved at 
couplings between 
domains 



Physical Semantics: 
Structural Implications 2/2 

? 

Collateral energy flow 
…other rules… 

Heat energy 
generated on 
dissipative 
elements: creates 
additional energy 
coupling 



Physical Semantics: 
Behavioral Implications 

Denotational  
behavioral 
semantics 

One Junction Rule 

Rate of power 
transfer between 
components is 
balanced 



Physical Semantics: 
Ongoing Work 

  Extend metamodeling language and 
metaprogrammable modeling tool (GME) with 
generative constructs 

  Make specification of generative modeling 
constructs integrated with metamodeling 

  Extend structural semantics and tools with 
dynamic constructs 

  Develop rule libraries for relevant cross-physical 
domains 
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Integration Inside Abstraction 
 Layers: Composition 

Plant Dynamics 
Models 

Controller 
Models 

Dynamics:  
•  Properties: stability, safety, performance 
•  Abstractions: continuous time, functions,  
  signals, flows,… Physical design 

Software 
Architecture 

Models 

Software 
Component 

Code 
Software design 

Software :  
•  Properties: deadlock, invariants, 
                    security,… 
•  Abstractions: logical-time, concurrency,  
  atomicity, ideal communication,.. 

   

System  
Architecture 

Models 

Resource 
Management 

Models 
System/Platform Design 

Systems :  
•  Properties: timing, power, security, fault  
  tolerance 
•  Abstractions: discrete-time, delays,   
  resources, scheduling, 



Integration Across  Abstraction 
Layers: Much Unsolved Problems 

Plant Dynamics 
Models 

Controller 
Models 

Physical design 

Software 
Architecture 

Models 

Software 
Component 

Code 
Software design 

System  
Architecture 

Models 

Resource 
Management 

Models 
System/Platform Design 

Controller dynamics is developed 
without considering implementation  
uncertainties (e.g. word length, clock 
accuracy ) optimizing performance. 

Software architecture models  are 
developed without explicitly considering 
systems platform characteristics, even 
though key behavioral properties  
depend on it. 

System-level architecture defines 
implementation platform configuration.  
Scheduling, network uncertainties, etc. are 
introduce time variant delays that may 
require re-verification of key properties on  
all levels.   

Assumption: Effects of digital implementation 
        can be neglected 

Assumption: Effects of platform properties     
        can be neglected 

X 

X 



  Leaky abstractions are caused by lack of 
composability across system layers.  
Consequences: 
  intractable interactions 
  unpredictable system level behavior 
  full-system verification does not scale 

  Solution: simplification strategies 
  Decoupling: Use design concepts that 

decouple systems layers for selected 
properties    

  Cross-layer Abstractions: Develop methods that can 
handle effects of cross-layer interactions 

Dealing With Leaky Abstractions 



Example for Decoupling:  
Passive  Dynamics 

Physical models 

Abstract Model  

Real-time Model 

implementation 

Goals: 

•   Effect of “leaky abstraction”:  
   loss of stability due to  
   implementation-induced time 
   delays (networks, schedulers) 
•  Passivity of dynamics 
  decouples stability from  
  time varying delays 
•  Compositional verification of 
  essential dynamic properties 

−  stability 
−  safety 

•  Hugely decreased verification  
  complexity  
•  Hugely increased flexibility  

implementation 

time safety: 

time robustness 
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Modeling Language  
Semantics: 

Structural 
(set of well-formed 
model structures) 

Behavioral 
(set of feasible  

behaviors) 

denotational 

Behavioral 
(set of feasible  

behaviors) 

operational 

Physical  
(struct. and  behav.  

constraints) 

Fix for stability: 
•  Passivity-based 
  design 

Heterogeneous 
Abstractions 

(stability) 

for all t2 ≥ t1 and the input u(t) ϵ U 

Structural constraints are  
more involved (next page) 

[Antsaklis ‘2008]  
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Bilinear transform: 
power and wave vars.   

•  Bilinear transform (b) 
•  Power and Wave variables 
•  Passive down- and up-sampler  
  (PUS, PDS) 

•  Delays 
•  Power junction 
•  Passive dynamical 
   system 

Constrain modeling language with constructs  below: 

[Kottenstette‘2011]  
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Constrain modeling language with composition constraints below: 

negative feedback interconnection  
of two passive systems is passive 

parallel interconnection of two passive 
systems is still passive 

Extensive research in the VU/ND/UMD NSF project toward 
correct-by-construction design environments (where correct-
by-construction means what the term suggest) 
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Constrain modeling language behavior with these constraints (for LTI) 

•  For LTI passive systems, we can always assume quadratic storage 
function 

•  For continuous-time system this leads to the following LMI 

•  In discrete-time the LMI becomes the following 

where 

[Antsaklis ‘2008]  



Summary 

  Penetration of networking and computing in 
engineered systems forces a grand convergence 
across engineering disciplines.  

  Signs of this convergence presents new 
opportunities and challenges for formal methods 
research: 
  New foundation for model integration – emergence of 

metaprogrammable tool suites and multi-modeling 
  Embedding physical semantics in modeling languages 

  Model-based design facilitates a necessary 
convergence among software, system, control 
and network engineering  
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