
- 1 -

Janos Sztipanovits
Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN 37221
Email: janos.sztipanovits@vanderbilt.edu

http://www.artist-embedded.org/

Domain Specific Modeling
Languages for Cyber Physical
Systems: Where Are Semantics
Coming From?

Domain Specific Modeling
Languages for Cyber Physical
Systems: Where Are Semantics
Coming From?
Janos Sztipanovits
Institute for Software Integrated Systems
Vanderbilt University
Nashville, TN 37221
Email: janos.sztipanovits@vanderbilt.edu

About the Topic

CPS is a rapidly emerging, cross-disciplinary field
with well-understood and urgent need for formal
methods driven by challenges in

  model-based design
  system verification and
  manufacturing

Overview

  Cyber-Physical Systems (CPS)
  CPS and Domain Specific Modeling Languages
  Model Integration Challenge

  Formal Semantics of DSMLs
  Structural Semantics
  Behavioral Semantics

  Practical Use of Formal Semantics
  Addressing Horizontal Heterogeneity
  Addressing Vertical Heterogeneity

  Summary

Overview

  Cyber-Physical Systems (CPS)
  CPS and Domain Specific Modeling Languages
  Model Integration Challenge

  Formal Semantics of DSMLs
  Structural Semantics
  Behavioral Semantics

  Practical Use of Formal Semantics
  Addressing Horizontal Heterogeneity
  Addressing Vertical Heterogeneity

  Summary

CPS is About Engineered Systems

Boston Dynamics: BigDog

Energy Internet: When IT Meets ET

Known Drivers of CPS

  Networking and Information Technology (NIT) have
been increasingly used as universal system
integrator in human – scale and societal – scale
systems

  Functionality and salient system characteristics
emerge through the interaction of networked
physical and computational objects

  Engineered products turn into Cyber-Physical
Systems (CPS): networked interaction of physical
and computational processes

The Good News…

  Rich time models

  Precise interactions across
highly extended spatial/
temporal dimension

  Flexible, dynamic
communication mechanisms

  Precise time-variant, nonlinear
behavior

  Introspection, learning,
reasoning

  Elaborate coordination of
physical processes

  Hugely increased system size
with controllable, stable
behavior

  Dynamic, adaptive
architectures

  Adaptive, autonomic systems

  Self monitoring, self-healing
system architectures and
better safety/security
guarantees.

Computing/Communication Integrated CPS

Networking and computing delivers precision and flexibility in
interaction and coordination

…and the Challenges

  Cyber vulnerability

  New type of interactions
across highly extended
spatial/temporal dimension

  Flexible, dynamic
communication mechanisms

  Precise time-variant, nonlinear
behavior

  Introspection, learning,
reasoning

  Physical behavior of systems
can be manipulated

  Lack of composition theories
for heterogeneous systems:
much unsolved problems

  Vastly increased complexity
and emergent behaviors

  Lack of theoretical
foundations for CPS
dynamics

  Verification, certification,
predictability has
fundamentally new
challenges.

Computing/Communication Integrated CPS

Fusing networking and computing with physical processes brings
new unsolved problems

Control Systems

package org.apache.tomcat.session;

import org.apache.tomcat.core.*;

import org.apache.tomcat.util.StringManager;
import java.io.*;

import java.net.*;
import java.util.*;

import javax.servlet.*;

import javax.servlet.http.*;

/**
 * Core implementation of a server session

 *

 * @author James Duncan Davidson [duncan@eng.sun.com]
 * @author James Todd [gonzo@eng.sun.com]

 */

public class ServerSession {

 private StringManager sm =
 StringManager.getManager("org.apache.tomcat.session");

 private Hashtable values = new Hashtable();
 private Hashtable appSessions = new Hashtable();

 private String id;
 private long creationTime = System.currentTimeMillis();;

 private long thisAccessTime = creationTime;
 private long lastAccessed = creationTime;

 private int inactiveInterval = -1;

 ServerSession(String id) {
 this.id = id;

 }

 public String getId() {
 return id;

 }

 public long getCreationTime() {

 return creationTime;
 }

 public long getLastAccessedTime() {
 return lastAccessed;

 }

 public ApplicationSession getApplicationSession(Context context,
 boolean create) {

 ApplicationSession appSession =

 (ApplicationSession)appSessions.get(context);

 if (appSession == null && create) {

 // XXX

 // sync to ensure valid?

 appSession = new ApplicationSession(id, this, context);
 appSessions.put(context, appSession);

 }

 // XXX
 // make sure that we haven't gone over the end of our
 // inactive interval -- if so, invalidate and create

 // a new appSession

 return appSession;
 }

 void removeApplicationSession(Context context) {

 appSessions.remove(context);
 }

 /**
 * Called by context when request comes in so that accesses and

 * inactivities can be dealt with accordingly.
 */

 void accessed() {
 // set last accessed to thisAccessTime as it will be left over

 // from the previous access

 lastAccessed = thisAccessTime;
 thisAccessTime = System.currentTimeMillis();

 }

 void validate()

Software Communication

9

Foundation for Convergence:
Model-Based Design

Modeling Layer
•  Systems Engineering: Operation research, Reliability, Requirement spec.,..
•  Control Engineering: Foundation of system theory: Linear, Nonlinear, …
•  Software Engineering: Formal methods, Model-based SE, RT software, ..
•  Communication Engineering: Information theory, Layered protocols, …

(Re)-convergence of Systems, Control, Software, Communication
Engineering

Overview

  Cyber-Physical Systems (CPS)
  CPS and Domain Specific Modeling Languages
  Model Integration Challenge

  Formal Semantics of DSMLs
  Structural Semantics
  Behavioral Semantics

  Practical Use of Formal Semantics
  Addressing Horizontal Heterogeneity
  Addressing Vertical Heterogeneity

  Summary

Components
span:
•  Multiple

physics
•  Multiple

domains
•  Multiple

tools

  Physical
  Functional:

implements some
function in the
design

  Interconnect: acts
as the facilitators
for physical
interactions

  Cyber
  Computation and

communication
that implements
some function

  Requires a physical
platform to run/to
communicate

  Cyber-Physical
  Physical with

deeply embedded
computing and
communication

Battery

VMS
ISG

Servos
/Linkages

Engine
Transmission

Components of a CPS

CPS Design Flow Requires
Model Integration

Modeling

Architecture Design Integrated Multi-physics/Cyber Design Detailed Design

Exploration Modeling V&V Simulation Modeling Analysis

Rapid exploration Exploration with integrated optimization and V&V
Deep
analysis

Physics-based

Structure/CAD/Mfg

SW

Domain Specific Modeling Languages

•  Design Space +
Constraint
Modeling

•  Architecture
Modeling

•  Low-Res
Component
Modeling

•  Design Space + Constraint
Modeling

•  Architecture Modeling
•  Dynamics Modeling
•  Computational Behavior

Modeling
•  CAD/Thermal Modeling
•  Manufacturing Modeling

•  Architecture
Modeling

•  Dynamics, RT
Software, CAD,
Thermal, …

•  Detailed Domain
Modeling

Example: Architecture
Modeling

Architecture
Modeling

Sublanguage
/ Capability

Formalism, Language Constructs, Examples Usage

Hierarchical
Module
Interconnect
-  Components
-  Interfaces
-  Interconnects
-  Parameters
-  Properties

Systems
Architect
-  Explore

Design
Space

-  Derive
Candidate
Designs

Design
Space
Modeling

Systems
Architect
-  Define

Design
Space

-  Define
Constraint

Hierarchically
Layered
Parametric
Alternatives
-  Alternatives/

Options
-  Parameters
-  Constraints

Computational
Dynamics
Modeling

Physical
Dynamics
Modeling

Domain
Engineers
-  design

controller
System
Engineers
-  Processor

allocate
-  Platform

Effects

Component
Engineer
- model
 dynamics
 with Hybrid
 Bond Graphs
System
Engineers
- Compose
 system
 dynamics

Dataflow +
Stateflow + TT
Schedule
-  Interaction

with Physical
Components

-  Cyber
Components

-  Processing
Components

Hybrid Bond
Graphs
-  Efforts,

Flows,
-  Sources,

Capacitance,
Inductance,

-  Resistance,
- 

Transformers
Gyrators,

Sensor Actuator

Software
Assembly

Processor
Topology

Allocation

Example: Dynamics Modeling

15

Solid
Modeling
(CAD /
Geometry)

Manufacturing
Modeling

Component
Engineer
- Defines
Structural
Interface
System
Engineer
- Defines
Architecture

Component
Engineer
- Defines Part
Cost
- Defines
Structural
Interface,
Fastener

Structural
Interfaces
-  Defined with

Peer Roles:
-  Axis
-  Point
-  Surface

-  CAD Links

Component
Manuf. Cost
- Make

-  Material
-  Fab Proc
-  Complxity
-  Shape/Wt

- OTS: Cost/unit
Structural
Interfaces
- Fastener Types,
Num# …

Standard Structural
Interfaces (ex: SAE
#1)

Example: Physical Structure
and Manufacturing Modeling

Physical components are involved in multiple physical interactions (multi-
physics)
Challenge: How to compose multi-models for heterogeneous physical
components

Electrical	

Domain	

Mechanical	

Domain	

Hydraulic	

Domain	

Thermal	

Domain	

Heterogeneity	
 of	
 Physics	

Theories,	

Dynamics,	

Tools	

Theories,	

Dynamics,	

Tools	

Theories,	

Dynamics,	

Tools	

Theories,	

Dynamics,	

Tools	

Model Integration Challenge:
Physics

Cyber-physical components are modeled using multiple abstraction layers
Challenge: How to compose abstraction layers in heterogeneous CPS
components?

H
eterogeneity	
 of	
 A

bstrac<ons	

Plant Dynamics
Models

Controller
Models

Dynamics:
•  Properties: stability, safety, performance
•  Abstractions: continuous time, functions,
 signals, flows,… Physical design

Software
Architecture

Models

Software
Component

Code
Software design

Software :
•  Properties: deadlock, invariants,
 security,…
•  Abstractions: logical-time, concurrency,
 atomicity, ideal communication,..

System
Architecture

Models

Resource
Management

Models
System/Platform Design

Systems :
•  Properties: timing, power, security, fault
 tolerance
•  Abstractions: discrete-time, delays,
 resources, scheduling,

Model Integration Challenge:
Abstraction Layers

A Pragmatic Approach:
Model Integration Language

Pro-­‐E	

CATIA	

Tools	
 and	
 Frameworks	
 	
 Assets	
 /	
 IP	
 /	
 Designer	
 Exper:se	

SL/SF	

Meta	

Manuf	

Meta	

CAD	

Meta	

Model	
 Integra:on	
 Language	

Impact: Open Language Engineering Environment  Adaptability of Process/Design
Flow  Accommodate New Tools/Frameworks , Accommodate New Languages

Thermal	

Desktop	

SEER-­‐MFG	

Hierarchical	
 Ported	
 Models	
 /Interconnects	
 	

Structured	
 Design	
 Spaces	

Meta-­‐model	
 Composi<on	
 Operators	

Structural
Semantics

MetaGME Seman<c	

Translators	

CyPhy	

SL/SF	

CyPhy	

	
 SEER	

CyPhy	

	
 CAD	

Generative
Rules

Overview

  Cyber-Physical Systems (CPS)
  CPS and Domain Specific Modeling Languages
  Model Integration Challenge

  Formal Semantics of DSMLs
  Structural Semantics
  Behavioral Semantics

  Practical Use of Formal Semantics
  Addressing Horizontal Heterogeneity
  Addressing Vertical Heterogeneity

  Summary

What Do We Expect From
Formal Semantics?

  Specify

 Unambiguate

 Compute

Behavior
(cont. discrete,..)

DSML Semantics

Models represent:

Structure
(logical, physical,..)

Behavior
(cont. discrete,..)

Modeling Language
Semantics:

Structural
(set of well-formed
model structures)

Behavioral
(set of feasible

behaviors)

Mathematical
Domains:
•  graphs
•  term algebra + logic

•  denotational

Behavioral
(set of feasible

behaviors)
•  operational

Example 1/2

Physical Structure (components and terminals)

Transformation:

mph

mbg

mbg =T(mph)

Bond Graph model
(energy flows)

Example 2/2

denotational: mathematical equations

operational: simulated trajectories

msl =T(mbg)

mde =T(mbg)

Modeling Language Semantics
Has Extensive Research History

  Broy, Rumpe ‘1997
  Harel ‘1998
  Harel and Rumpe ‘2000
  Tony Clark, Stuart Kent, Bernhard Rumpe, Kevin

Lano, Jean-Michel Bruel and Ana Moreira -
Precise UML Group

  Edward Lee, Alberto Sangiovanni-Vincentelli
‘2004

  Joseph Sifakis ‘2005
  …

Overview

  Cyber-Physical Systems (CPS)
  CPS and Domain Specific Modeling Languages
  Model Integration Challenge

  Formal Semantics of DSMLs
  Structural Semantics
  Behavioral Semantics

  Practical Use of Formal Semantics
  Addressing Horizontal Heterogeneity
  Addressing Vertical Heterogeneity

  Summary

Key Concept: Modeling languages define a set of well- formed
models and their interpretations. The interpretations are
mappings from one domain to another domain.

Specification of Domain-Specific
Modeling Languages

Abstract syntax
of DSML-s are
defined by
metamodels.

A metamodeling
language is one
of the DSML-s.

Model-editor generated from metamodel MetaGME metamodel of simple statecharts

Basic metamodeling notation: UML Class Diagram + OCL

OCL Constraints:
self.transTo->forAll(s | s <> self)

Semantics of
metamodeling
languages:
structural
semantics.

Structural Semantics of
DSMLs – 1/3

  Gives semantics to metamodels
  A domain D is given by

  An alphabet Σ
  A finite set of n-ary function symbols Υ that

describes the relations between members of the
alphabet

  A set of model realizations RΥ – a term algebra over
Υ generated by Σ

  A set of constraints C such that

  We denote D = (Σ, Υ, RΥ , C)

  Complex constraints cannot be captured by simple type
systems. Common fix is to use a constraint language
(e.g. OCL).

  We use Logic Programming because:
-  LP extends term algebra semantics while supporting

declarative rules
-  The fragment of LP supported is equivalent to full first-order

logic over term algebras
-  Unlike purely algebraic specs, there is a clear execution

sematics for logic programs making it possible to specify
model transformations in the same framework

-  Many analysis techniques is available for LP.

Structural Semantics of
DSMLs – 2/3

Structural Semantics of
DSMLs – 3/3

  Model realization that satisfies the domain constraints is
simply called a model of a domain

  The decision procedure for domain constraints
satisfaction is as follows
  represent the model realization as a logic formula Ψ(r)
  compute deductive closure of a sum of the formula Ψ(r) and C
  examine the deductive closure to find if r satisfies the domain

rules.

  Constraints are given as proofs
  positive domain: r satisfies constraints if any wellform (.) term

can be derived

  negative domain: r satisfies constraints if it is impossible to
derive any malform (.) term

Key Concept: DSML syntax is understood as a constraint
system that identifies behaviorally meaningful models.
Structural semantics provides mathematical formalism
for interpreting models as well-formed structures.

Formalization of Structural
Semantics

Structural Semantics defines modeling domains using
term algebra extended with Logic Programming.
This mathematical structure is the semantic domain of
metamodeling languages.

Microsoft Research Tool: FORMULA
•  Fragment of LP is equivalent to full first-order logic
•  Provide semantic domain for model transformations.

Jackson & Sz. ‘2007
Jackson, Schulte, Sz.
‘2008
Jackson & Sz. ‘2009

Y: set of concepts,
RY : set of possible
 model realizations
C: set of constraints
 over RY
D(Y,C): domain of well-
formed models
[]: interpretations

Use of structural semantics:
•  Conformance testing:
•  Non-emptiness checking:
•  DSML composing:
•  Model finding:
•  Transforming:

GME-FORMULA Tool Interfaces

Modeling Lngs

Constraint
Defs

Models

FORMULA	
 (MicrosoC	
 Research)	

Formula Domain Formula Model

Validation
Tool

Analyzer
Tool

Generic	
 Modeling	
 Environment	
 	
 (ISIS)	

Relations among
Modeling lngs and

Models
…

Model	
 	

Translator	

Metamodel	
 	

Translator	

Example
domain	
 DFA	
 {
	
 	
 	
 primitive	
 Event	
 ::=	
 (lbl:	
 Integer).	

	
 	
 	
 primitive	
 State	
 ::=	
 (lbl:	
 Integer).	

	
 	
 	
 [Closed(src,	
 trg,	
 dst)]	

primitive	
 Transition	
 ::=	
 (src:	
 State,	
 trg:	
 Event,	
 dst:	

State).	

	
 	
 	
 [Closed(st)]	

	
 	
 	
 primitive	
 Current	
 	
 	
 	
 ::=	
 (st:	
 State).	

	
 	
 	
 nonDeterTrans	
 :=	
 Transition(s,	
 e,	
 sp),	
 Transition
(s,	
 e,	
 tp),	
 sp	
 !=	
 tp.	

	
 	
 	
 conforms	
 	
 	
 	
 	
 	
 :=	
 !nonDeterTrans.	

}

Ongoing Work

  FORMULA (Schulte, Jackson et al, MSR) - A tool
suite for building models and analyzing their
properties. Co-developed with the European
Microsoft Innovation Center (EMIC), Aachen,
Germany

  GME-FORMULA translator – Extension of the MIC
tool suite (VU-ISIS in cooperation with MSR)

  Analysis tools – Domain and Model Equivalence,
Domain Composition, Model Completion (VU-
ISIS in cooperation with MSR)

Overview

  Cyber-Physical Systems (CPS)
  CPS and Domain Specific Modeling Languages
  Model Integration Challenge

  Formal Semantics of DSMLs
  Structural Semantics
  Behavioral Semantics

  Practical Use of Formal Semantics
  Addressing Horizontal Heterogeneity
  Addressing Vertical Heterogeneity

  Summary

Behavioral Semantics

  Given a DSML

  Behavioral semantics will be defined by
specifying the transformation between the DSML
and a modeling language with behavioral
semantics.

Implicit Methods for Specifying
Behavioral Semantics

Representation as AST

C++ Interpreter/Generator Graph rewriting rules

Executable
Model

(Simulators)

Executable Code Executable
Specification

Implicit

Explicit Methods for Specifying
Behavioral Semantics

Representation as AST

C++ Interpreter/Generator Graph rewriting rules

Executable
Model

(Simulators)

Executable Code Executable
Specification

Explicit

Specifying Behavioral Semantics
With Semantic Anchoring

Representation as AST

Graph rewriting rules

Abstract Data Model Model Interpreter

MIC-GReAT
(Karsai, VU-ISIS)

MIC-UDM
MIC-GME

Abstract State Machine Formalism

Example Specification : FSM

structure Event
 eventType as String
class State
 initial as Boolean
 var active as Boolean = false
class Transition
abstract class FSM
 abstract property states as Set of State
 get
 abstract property transitions as Set of Transition
 get
 abstract property outTransitions as Map of
 <State, Set of Transition>
 get
 abstract property dstState as Map of <Transition, State>
 get
 abstract property triggerEventType as Map of
 <Transition, String>
 get
 abstract property outputEventType as Map of
 <Transition, String>
 get

abstract class FSM
 Run (e as Event) as Event?
 step
 let CS as State = GetCurrentState ()
 step
 let enabledTs as Set of Transition = {t | t in
 outTransitions (CS) where e.eventType =
 triggerEventType(t)}
 step
 if Size (enabledTs) >= 1 then
 choose t in enabledTs
 step
 CS.active := false
 step
 dstState(t).active := true
 step
 if t in me.outputEventType then
 return Event(outputEventType(t))
 else
 return null
 else
 return null

Abstract Data Model Interpreter

Underlying abstract machine - ASM Language: AsmL
Yuri Gurevich, MSR

Ongoing Work

  Semantic anchoring of DSMLs using
“semantic units”

  Compositional specification of semantics for
heterogeneous modeling languages

  Investigating alternative frameworks (e.g.
based on FORMULA)

Overview

  Cyber-Physical Systems (CPS)
  CPS and Domain Specific Modeling Languages
  Model Integration Challenge

  Formal Semantics of DSMLs
  Structural Semantics
  Behavioral Semantics

  Practical Use of Formal Semantics
  Addressing Horizontal Heterogeneity
  Addressing Vertical Heterogeneity

  Summary

Capturing Physical Semantics

Modeling Language
Semantics:

Structural
(set of well-formed
model structures)

Behavioral
(set of feasible

behaviors)

•  denotational

Behavioral
(set of feasible

behaviors)
•  operational

Physical
(struct. and behav.

constraints)

Rational:
•  Get the physics right
•  The rest is mathematics
 (Kalman, 2005)

Physical Semantics:
Structural Implications 1/2

Electrical
domain

Mech.
domain

?

Electrical
domain

Mech.
domain

El.-Mech
(inter-
dom.)

Energy is
conserved at
couplings between
domains

Physical Semantics:
Structural Implications 2/2

?

Collateral energy flow
…other rules…

Heat energy
generated on
dissipative
elements: creates
additional energy
coupling

Physical Semantics:
Behavioral Implications

Denotational
behavioral
semantics

One Junction Rule

Rate of power
transfer between
components is
balanced

Physical Semantics:
Ongoing Work

  Extend metamodeling language and
metaprogrammable modeling tool (GME) with
generative constructs

  Make specification of generative modeling
constructs integrated with metamodeling

  Extend structural semantics and tools with
dynamic constructs

  Develop rule libraries for relevant cross-physical
domains

Overview

  Cyber-Physical Systems (CPS)
  CPS and Domain Specific Modeling Languages
  Model Integration Challenge

  Formal Semantics of DSMLs
  Structural Semantics
  Behavioral Semantics

  Practical Use of Formal Semantics
  Addressing Horizontal Heterogeneity
  Addressing Vertical Heterogeneity

  Summary

Integration Inside Abstraction
 Layers: Composition

Plant Dynamics
Models

Controller
Models

Dynamics:
•  Properties: stability, safety, performance
•  Abstractions: continuous time, functions,
 signals, flows,… Physical design

Software
Architecture

Models

Software
Component

Code
Software design

Software :
•  Properties: deadlock, invariants,
 security,…
•  Abstractions: logical-time, concurrency,
 atomicity, ideal communication,..

System
Architecture

Models

Resource
Management

Models
System/Platform Design

Systems :
•  Properties: timing, power, security, fault
 tolerance
•  Abstractions: discrete-time, delays,
 resources, scheduling,

Integration Across Abstraction
Layers: Much Unsolved Problems

Plant Dynamics
Models

Controller
Models

Physical design

Software
Architecture

Models

Software
Component

Code
Software design

System
Architecture

Models

Resource
Management

Models
System/Platform Design

Controller dynamics is developed
without considering implementation
uncertainties (e.g. word length, clock
accuracy) optimizing performance.

Software architecture models are
developed without explicitly considering
systems platform characteristics, even
though key behavioral properties
depend on it.

System-level architecture defines
implementation platform configuration.
Scheduling, network uncertainties, etc. are
introduce time variant delays that may
require re-verification of key properties on
all levels.

Assumption: Effects of digital implementation
 can be neglected

Assumption: Effects of platform properties
 can be neglected

X

X

  Leaky abstractions are caused by lack of
composability across system layers.
Consequences:
  intractable interactions
  unpredictable system level behavior
  full-system verification does not scale

  Solution: simplification strategies
  Decoupling: Use design concepts that

decouple systems layers for selected
properties

  Cross-layer Abstractions: Develop methods that can
handle effects of cross-layer interactions

Dealing With Leaky Abstractions

Example for Decoupling:
Passive Dynamics

Physical models

Abstract Model

Real-time Model

implementation

Goals:

•  Effect of “leaky abstraction”:
 loss of stability due to
 implementation-induced time
 delays (networks, schedulers)
•  Passivity of dynamics
 decouples stability from
 time varying delays
•  Compositional verification of
 essential dynamic properties

−  stability
−  safety

•  Hugely decreased verification
 complexity
•  Hugely increased flexibility

implementation

time safety:

time robustness

Passivity-based Design and
Modeling Languages 1/4

Modeling Language
Semantics:

Structural
(set of well-formed
model structures)

Behavioral
(set of feasible

behaviors)

denotational

Behavioral
(set of feasible

behaviors)

operational

Physical
(struct. and behav.

constraints)

Fix for stability:
•  Passivity-based
 design

Heterogeneous
Abstractions

(stability)

for all t2 ≥ t1 and the input u(t) ϵ U

Structural constraints are
more involved (next page)

[Antsaklis ‘2008]

Passivity-based Design and
Modeling Languages 2/4

Bilinear transform:
power and wave vars.

•  Bilinear transform (b)
•  Power and Wave variables
•  Passive down- and up-sampler
 (PUS, PDS)

•  Delays
•  Power junction
•  Passive dynamical
 system

Constrain modeling language with constructs below:

[Kottenstette‘2011]

Passivity-based Design and
Modeling Languages 3/4

Constrain modeling language with composition constraints below:

negative feedback interconnection
of two passive systems is passive

parallel interconnection of two passive
systems is still passive

Extensive research in the VU/ND/UMD NSF project toward
correct-by-construction design environments (where correct-
by-construction means what the term suggest)

Passivity-based Design and
Modeling Languages 4/4

Constrain modeling language behavior with these constraints (for LTI)

•  For LTI passive systems, we can always assume quadratic storage
function

•  For continuous-time system this leads to the following LMI

•  In discrete-time the LMI becomes the following

where

[Antsaklis ‘2008]

Summary

  Penetration of networking and computing in
engineered systems forces a grand convergence
across engineering disciplines.

  Signs of this convergence presents new
opportunities and challenges for formal methods
research:
  New foundation for model integration – emergence of

metaprogrammable tool suites and multi-modeling
  Embedding physical semantics in modeling languages

  Model-based design facilitates a necessary
convergence among software, system, control
and network engineering

References

-  Jackson, E., Sztipanovits, J.: ‘Formalizing the Structural Semantics of
Domain-Specific Modeling Languages,”
Journal of Software and Systems Modeling pp. 451-478, September 2009

-  Jackson, Thibodeaux, Porter, Sztipanovits: “Semantics of Domain-Specific Modeling Languages,”
in P. Mosterman, G. Nicolescu: Model-Based Design of Heterogeneous Embedded Systems. Pp.
437-486, CRC Press, November 24, 2009

-  Ethan K. Jackson, Wolfram Schulte, and Janos Sztipanovits: The Power of Rich Syntax for Model-
based Development, MSR Technical Report, 2009

-  Kai Chen, Janos Sztipanovits, Sandeep Neema: “Compositional Specification of Behavioral
Semantics,” in Design, Automation, and Test in Europe: The Most Influential Papers of 10 Years
DATE, Rudy Lauwereins and Jan Madsen (Eds), Springer 2008

-  Nicholas Kottenstette, Joe Hall, Xenofon Koutsoukos, Panos Antsaklis, and Janos Sztipanovits,
"Digital Control of Multiple Discrete Passive Plants Over Networks", International Journal of
Systems, Control and Communications (IJSCC), Special Issue on Progress in Networked Control
Systems. (Accepted for publication)

-  Xenofon Koutsoukos, Nicholas Kottenstette, Joe Hall, Emeka Eiysi, Heath Leblanc, Joseph Porter
and Janos Sztipanovits, “A Passivity Approach for Model-Based Compositional Design of
Networked Control Systems”, ACM Transactions on Computational Logic . (Accepted for
publication)

-  Heath LeBlanc, Emeka Eyisi, Nicholas Kottenstette, Xenofon Koutsoukos, and Janos
Sztipanovits. "A Passivity-Based Approach to Deployment in Multi-Agent Networks", 7th
International Conference on Informatics in Control, Automation, and Robotics (ICINCO 2010).
Funchal, Madeira, June 15-18, 2010. (Best Student Paper Award)

