ARTIST Summer School in Europe 2011
Aix-les-Bains (near Grenoble), France

Domain Specific Modeling

' Languages for Cyber Physical
& Systems: Where Are. Semantics
¥ Coming From?

. R SIS
S—

= Janos Sztipanovits

Institute for Software Integrated Systems
Vanderbilt University

Nashville, TN 37221

: Emailsjanos:sztipanovits@yvanderbilt.edu

V About the Topic

CPS is a rapidly emerging, cross-disciplinary field
with well-understood and urgent need for formal
methods driven by challenges in

model-based design

system verification and

manufacturing

V Overview

= Cyber-Physical Systems (CPS)
CPS and Domain Specific Modeling Languages
Model Integration Challenge

= Formal Semantics of DSMLs
Structural Semantics
Behavioral Semantics

* Practical Use of Formal Semantics
Addressing Horizontal Heterogeneity
Addressing Vertical Heterogeneity

= Summary

V Overview

= Cyber-Physical Systems (CPS)
— CPS and Domain Specific Modeling Languages
Model Integration Challenge

= Formal Semantics of DSMLs
Structural Semantics
Behavioral Semantics

* Practical Use of Formal Semantics
Addressing Horizontal Heterogeneity
Addressing Vertical Heterogeneity

= Summary

E? CPS is About Engineered Systems -

Sectors

Health and
Biomedical

Opportunities
In-home healthcare delivery. More >
capable biomedical devices for
measuring health. New prosthetics for
use within and outside the body.
Networked biomedical systems that
increase automation and extend the
biomedical device beyond the body.

Agriculture

Energy efficient technologies. Increased
automation. Closed-loop bioengineering
processes. Resource and environmental
impact optimization. Improved safety of

food products. »
Michael Narremark: HorﬁBpl

Smart Grid

Highway systemsthat allow traffic to AT
become denser while also operating y

THOMAS L.
FRIEDMAN
Hot, Flal,

and Crowded

WUV RTED & R E S I s,
AN L O W AR

L™

Sectors

Goals

Aerospace

« Aircraft that fly faster and further on
less energy.

« Air traffic control systems that make
more efficient use of airspace.

Automotive

» Automobiles that are more capable
and safer but use less energy.

» Highways that are safe, higher
throughput and energy efficient.

Defense

» Fleets of autonomous, robotic
vehicles

» More capable defense systems

« Integrated, maneuverable,
coordinated, energy efficient

aDociliont t ybar attocle

Energy Internet: When IT Meets ET

Vv

= Networking and Information Technology (NIT) have
been increasingly used as universal system
integrator in human — scale and societal — scale
systems

= Functionality and salient system characteristics
emerge through the interaction of networked
physical and computational objects

= Engineered products turn into Cyber-Physical
Systems (CPS): networked interaction of physical
and computational processes

Known Drivers of CPS

V The Good News...

Networking and computing delivers precision and flexibility in
interaction and coordination

Computing/Communication Integrated CPS
= Rich time models = Elaborate coordination of
physical processes
= Precise interactions across = Hugely increased system size
highly extended spatial/ with controllable, stable
temporal dimension behavior
= Flexible, dynamic = Dynamic, adaptive

communication mechanisms architectures
= Precise time-variant, nonlinear = Adaptive, autonomic systems

behavior
= Introspection, learning, = Self monitoring, self-healing
reasoning system architectures and

better safety/security
guarantees.

Vv

Computing/Communication

...and the Challenges

Cyber vulnerability

New type of interactions
across highly extended
spatial/temporal dimension

Flexible, dynamic
communication mechanisms

Precise time-variant, nonlinear

behavior

Introspection, learning,
reasoning

Fusing networking and computing with physical processes brings
new unsolved problems

Integrated CPS

Physical behavior of systems
can be manipulated

Lack of composition theories
for heterogeneous systems:
much unsolved problems

Vastly increased complexity
and emergent behaviors

Lack of theoretical
foundations for CPS
dynamics

Verification, certification,
predictability has
fundamentally new
challenges.

‘7 Foundation for Convergence:
Model-Based Design

Communication Control

Modeling Layer

« Systems Engineering: Operation research, Reliability, Requirement spec.,..
« Control Engineering: Foundation of system theory: Linear, Nonlinear, ...

» Software Engineering: Formal methods, Model-based SE, RT software, ..

« Communication Engineering: Information theory, Layered protocaols, ...

(Re)-convergence of Systems, Control, Software, Communication
Engineering

Overview

Vv

= Cyber-Physical Systems (CPS)
CPS and Domain Specific Modeling Languages
—> Model Integration Challenge

= Formal Semantics of DSMLs
Structural Semantics
Behavioral Semantics

* Practical Use of Formal Semantics
Addressing Horizontal Heterogeneity
Addressing Vertical Heterogeneity

= Summary

Components of a CPS

ISG Battery

Components
span:
« Multiple
physics
Multiple
domains
« Multiple
tools

VMS

Servos

/Linkages -

= Physical
Functional:
implements some
function in the
design
Interconnect: acts
as the facilitators
for physical
interactions

= Cyber
Computation and
communication
that implements
some function
Requires a physical
platform to run/to
communicate

= Cyber-Physical
Physical with
deeply embedded
computing and
communication

CPS Design Flow Requires
Model Integration

Architecture Design Integrated Multi-physics/Cyber Design Detailed Design

Modeling Exploration Modeling Simulation V&V Modeling Analysis

— T

Rapid exploration Exploration with integrated optimization and V&V

Structure/CAD/M

* Design Space + Design Space + Constraint Architecture

Constraint Modeling Modeling
Modeling Architecture Modeling Dynamics, RT
» Architecture Dynamics Modeling Software, CAD,
Modeling Computational Behavior Thermal, ...
 Low-Res Modeling Detailed Domain
Component CAD/Thermal Modeling Modeling
Modeling Manufacturing Modeling

Domain Specific Modeling Languages

Example: Architecture
Modelin

ISublanguage Formalism, Language Constructs, Examples Usage
/ Capability
_ : Systems
Hierarchical Arch|tect
_ Module Explore
Architecture | Interconnect Design
Modeling - Components Space
- Interfaces - Derive
- Interconnects Candidate
- Parameters | Designs
- Properties
Hierarchically = B p:w;;;l'aa"er @\— Systems
Des|gn Lay ere d | eselEngi | gmt_Battery Transmission_and_Driveline ArChl teCt
Parametric Define
Space Alternatives o Design
MOdelIng - Alternatives/ Transmission_PowerHandling_MaxRPM_withISG Engine. ransmlalibllily withISG Space
Options - —— - - - Define
- Parameters Constraint
- Constraints

Example: Dynamics Modeling

, w275 | Component
YPNABoNANS) = Zii" | Engineer
Graphs B G ERE model
- Efforts, dynamics
Flows, S with Hybrid
Physical - Sources, — R Bond Graphs
Dynamics ﬁzzif:sgge | 1 hﬂ ITO = | | System
Modeling . Resistan Ce: OJD o T Mo Toe sa | Engineers
: L - Compose
Transformers) | system
Gyrators, i dynamics
Dataflow + = L Domain
Stateflow + TT ’ e s e, || Engineers
Schedule | . e - design
Computational - Interaction Sensor| © = _ | Actuator controller
Dynamics with Physical , e = = e System
Modeling Components Soft = Processor Engineers
- Cyber Assembly ~ Topology - Processor
Components ‘ allocate
- Processing Allocation - Platform
Components Effects

Example: Physical Structure
nd Manufacturing Modelin

Standard Structural CE30mponent
Structural e : Interfaces (ex: SAE ngineer
Interraces Power Out (SAE #1) Power In (SAE #1) #1) () _Deflnes
_ - Defined with Structural
Solid Peer Roles: Interface
Modeling - Axis System
GeometW) CP-\D I_S_ulr(face C9 Diesel VU_ISG_V1 - Defines
- INKS) :
Architecture
At G Component
' ~ - Engineer
. -Make Power Out (SAE #1) Power In (SAE #1) g
Manufacturing - Material -Defines Part
Modeling - Fab PFQC 1 Fastener Type: Nuts/Bolts/\washers (Hand) COSF
- Complxity L;) NumberOfF asteners 12 -Defines
_ Shape/Wt : FastenerDiameter 0.4375
p MechanicalFasten FastenerPitch 14 Stru CtU ral
;?(TS:tCos:/unlt E actonarl dogDistan, 0 Interface,
ML Fastener
Interfaces "~ [E
-Fastener Types, AdhesiveFaster L (
Num# o ectronicsrasten

WeldedFasten

15

Model Integration Challenge:
Physics

Heterogeneity of Physics

]

Electrl?al Mechan-lcal e © ©
Domain Domain

Theories, Theories,

Dynamics, Dynamics,
Tools Tools " J \ J
Physical components are involved in multiple physical interactions (multi-

physics)
Challenge: How to compose multi-models for heterogeneous physical

components

Model Integration Challenge:
Abstraction Layers

v

Plant Dynamics Controller
Models — Models
Physical design
Software Software
Architecture K=Y Component
Models Code
ftwar ign
System Resource
Architecture <=y Management
Models Models

System/Platform Design

Dynamics: B(?) =« ,(B, (¢),...,B,(?))
* Properties: stability, safety, performance
» Abstractions: continuous time, functions,

signals, flows,...

Software :

B(i) =« (B, (i),..., B, (i)
* Properties: deadlock, invariants,

security,...

» Abstractions: logical-time, concurrency,
atomicity, ideal communication,..

Systems :

tolerance

B(t,)=x,(B, ({),.... B, (%))
* Properties: timing, power, security, fault

» Abstractions: discrete-time, delays,
resources, scheduling,

Cyber-physical components are modeled using multiple abstraction layers
Challenge: How to compose abstraction layers in heterogeneous CPS
components?

A Pragmatic Approach:
Model Integration Language Structural
Hierarchical Ported Models /Interconnects ||« Semantics I
Structured Design Spaces ’ — G - ResearCh
Meta-model Composition Operators i enerative
Rules
,/' : /A : '§ o Ve ' MetaGME Semantic
Translators
/) \\0) N
\Q‘:)é,zt',/ éu"l \\‘ % \\?}O'O CyPhy
’b//' (D/' ‘\\9 *\ é%SL/SF
SL/SF Manuf ‘ CAD' o0 @ CyPhy
Meta, = Meta, Meta < SEER
= Cvth
£
. °
®
o

I

MATLAB *
SIMULINK -
rameworks - Assets / IP / Designer Expertise

Tools an
Impact: Open Language Engineering Environment - Adaptability of Process/Design
Flow = Accommodate New Tools/Frameworks , Accommodate New Languages

Overview

Vv

= Cyber-Physical Systems (CPS)
CPS and Domain Specific Modeling Languages
Model Integration Challenge

—>= Formal Semantics of DSMLs

Structural Semantics
Behavioral Semantics

* Practical Use of Formal Semantics
Addressing Horizontal Heterogeneity
Addressing Vertical Heterogeneity

= Summary

What Do We Expect From
Formal Semantics?

= Specify
= Unambiguate

= Compute

Vv

DSML Semantics

Models represent:

Structure

(logical, physical,..)f -

Behavior |
(cont. discrete,..) |

Modeling Language
Semantics:

Mathematical
Structural Domains:
(set of well-formed | ¢ graphs

* term algebra + logic

Behavioral Behavioral
(set of fgasible (set of feasible

» denotational operational

Structural
(set of well-formed
Lmodel structure
Behavioral Behavioral
(set of feasible (set of feasible
behaviors) behaviors)

« denotational

« operational

Example 1/2

Physical Structure (components and terminals)

ew O

KTI I<EMF

mbg =T(mph)

Input voltage

Armature current

Electrical
domain

Electrical_Source

Mechanical

Mechanical
Rotation
domain

Mechanical_Load

Bond Graph model

m - mu Out

In»

-

-
el Vs
_ - = z7
77
‘7z
7’
M5, —~ 1 ﬁ , ,/
o MSe oJ1 Out // %
Vs

oum - -a ‘]\\\Angular velocity
(energy flows)
N ~ oy
\\ \\\ \\\\
\\ R_fric R 0
\\ - wa’ w
™
" B—1
1 IR In l/ 0J2
I

Example 2/2

Structura operational: simulated trajectories

(set of well-formed

modelstryctyres)
Simulink model of the system | < 2
‘R rEB———0
— —
Behavioral Behavioral msl _T(mbg) 1]
(set of feasible (set of feasible
Rebaviors) pbehaviors) ‘ »11
« denotational + operational < < — -
~ N N \‘ N N ;@ - ~
~ N \ N % | _ - -
N \ ~ e 4
~ % \ Y % 3 & -
~
®—J" ’ Outoutd e OutOutd P inind] 1—>®
0]1 € —Eex— ez — €y = 0 I ’—bo.nro i:om s 1nOut0 1 w
Elecvicsl_Source_ - = = Motor S . Mechanical_Losd
OJLfi=fo=fi=Ffi)
- =
— Se:e; = E(t)
mde _T(mbg) =
: = 3 M .5
Rar‘m-e2 —Rarm"’fZ = ;
. o 1)
Lorm:€z = Lapm * f3
GY: €s = f1 * KT

GY:ey= fo % Kgyp

012135—96—87 =0

0]2:fs=fe=f7 I - -
ISk == denotational: mathematical equations

Reyiciee = Rppic * [

mie; =mx f5

Modeling Language Semantics
Has Extensive Research Histo

Broy, Rumpe ‘1997
Harel ‘1998
Harel and Rumpe ‘2000

Tony Clark, Stuart Kent, Bernhard Rumpe, Kevin
Lano, Jean-Michel Bruel and Ana Moreira -
Precise UML Group

Edward Lee, Alberto Sangiovanni-Vincentelli
2004

Joseph Sifakis ‘2005

Overview

Vv

= Cyber-Physical Systems (CPS)
CPS and Domain Specific Modeling Languages
Model Integration Challenge

= Formal Semantics of DSMLs
—> Structural Semantics
Behavioral Semantics

* Practical Use of Formal Semantics
Addressing Horizontal Heterogeneity
Addressing Vertical Heterogeneity

= Summary

Specification of Domain-Specific @

Modeling Languages

Abstract syntax
of DSML-s are

defined by
metamodels.

A metamodeling
language is one
of the DSML-s.

Semantics of
metamodeling
languages:
structural
semantics.

Key Concept: Modeling languages define a set of well- formed
models and their interpretations. The interpretations are
mappings from one domain to another domain.

Association
1
H

H <
Containment -., Association sre . H Auribute
Endpoint L ' _.-=~" Containment
Association.::” H o
= Endpoint -’
e y dst -
n . so| ClassName |sa o
Attribute
Containment

| OCL Constraints: ClassName
’_I T self.transTo->forAll(s | s <> self) Type {Bool, String, Enum}

EnumList: {ltem1, ltem2, ltem3, Itemd}

Basic metamodeling notation: UML Class Diagram + OCL

P, re Transition
se > ;
<<FCO»> gmx ==Connection==
— Y S H Trigger : field
aefiult:TranS|tlon.SeId| dst } Guard - field
arked: 001 Jo Action : field
isSync : hool
[
FPrimitiveState CompoundState
==Atom== ==Model==
n..XIn..z
.[>~ ratell T Name: |NewOrState |Drstate
StateDataRelation e DSt
0.7 «=Connection=»
L R) Init
Value : field it
Color: field
c
State
<shtom>> | < I
1 dst [0..7 |
Init OrState |] AndState Datavar
<=Atom>> <<Model>> <<Model>> | <=Atom=> < >
AndState

MetaGME metamodel of simple statecharts Model-editor generated from metamodel

Structural Semantics of
V DSMls ~1/3

= Gives semantics to metamodels
= A domain D is given by
An alphabet 2

A finite set of n-ary function symbols Y that
describes the relations between members of the

alphabet
A set of model realizations R, — a term algebra over
Y generated by > rER,,r>C,—reD

A set of constraints C such that
= WedenoteD=(2, Y,Ry, C)

V Structural Semantics of
DSMLs — 2/3
= Complex constraints cannot be captured by simple type
systems. Common fix is to use a constraint language
(e.g. OCL).
= We use Logic Programming because:

- LP extends term algebra semantics while supporting
declarative rules

- The fragment of LP supported is equivalent to full first-order
logic over term algebras

- Unlike purely algebraic specs, there is a clear execution
sematics for logic programs making it possible to specify
model transformations in the same framework

- Many analysis techniques is available for LP.

V Structural Semantics of
DSMLs — 3/3

= Model realization that satisfies the domain constraints is

simply called a model of a domain

= The decision procedure for domain constraints
satisfaction is as follows
represent the model realization as a logic formula V¥ (r)
compute deductive closure of a sum of the formula W(r) and C
examine the deductive closure to find if r satisfies the domain
rules.
= Constraints are given as proofs

positive domain: r satisfies constraints if any wellform (.) term
can be derived

negative domain: r satisfies constraints if it is impossible to
derive any malform (.) term

‘7 Formalization of Structural
Semantics

I = <Y,RY,C,([])a> Key Concept: DSML syntax is understood as a constraint
D(Y C)—{ ER 7l C} system that identifies behaviorally meaningful models.
L) Ely |71 Structural semantics provides mathematical formalism

[R >R, for interpreting models as well-formed structures.

Structural Semantics defines modeling domains using
Y. set of concepts term algebra extended with Logic Programming.
R, : set of possible This mathematical structure is the semantic domain of

model realizations metamodeling languages.

C: setof constraints Use of structural semantics:

D(Yg)v-ecgfrgain ofwell.| | * Conformance testing: xE€D

tormed models * Non-emptiness checking: D(Y C) = {nil}

[]: interpretations : I\D/Ii(l\j/lel_l]Si;;)gi]r[:g.smg: o D, % D,|D, +D D' includes D..

« Transforming: m'=T(m); mEX mey

Jackson & Sz. 2007 Microsoft Research Tool: FORMULA
:JZaCkSO”’ Schulte, Sz. « Fragment of LP is equivalent to full first-order logic

008 * Provide semantic domain for model transformations.

Jackson & Sz. ‘2009

Generic Modeling Environment (ISIS)

rbsid Yy 4 iDBXOND

=]

<<Carvacion>

LEERXXBOABRY A

Modeling Lngs

Metamod
Translator

Formula Domain &

E? GME-FORMULA Tool Interfaces -

e

ad oox

L ——
Lo vew Tor wosow e

n o

a Yy L iO

Relations among
Modeling Ings and

Models

PYIER VIR STIRe

I Models

Pt

% St

& 34 Oneray

+ 4 Feaes
Jotbdiomaae > x|
Aeae

Constraint !
Defs
T Lo yermere

Validation
Tool

Policy Assistant | Policy Inference | Metamodel Preview | Model Preview | Fomula

[T Policy Name. Polcy Description

General | Policy Assistant | Policy Inference

Metamodel Preview | Model Preview | Formula Immediate Window

Policy Group A

treatment relationship. (Weaker)
deris a physician
b treatment relationship right no

Policy Name

IneverAdmited

tisNot Doctor
IneverAdmitedOrHaveBeenRe

Analyzer
Tool

There has been a treatment relationship. (Weaker)

(Stronger)

lisNotDoctc Checks f the Provider is a physician

Query “SharpsData.conforms" on
True

Hint
“model SharpsDataDemo” has result: t imply B
t imply

Output | Emor List

FORMULA (Microsoft Research)

Model
Translator

Formula Model

Example

domain DFA { Event
pr‘?m?t%ve Event ::= (1bl: Integer). <<Atom>> | 0.
primitive State ::= (lbl: Integer). dsl
[Closed(src, trg, dst)] label : field
primitive Transition ::= (src: State, trg: Event, dst: Tra"Siti‘?"
State). o--| <<Connection>>
[Closed(st)] :
primitive Current ::= (st: State). EventlD : field
nonDeterTrans := Transition(s, e, s Transition
(s, e, tp), sp != tp. (5 %P2 Current State
<<Reference>> o <<Atom>> [0.”
conforms := !nonDeterTrans. se
} label : field

model Al of DFA {
el is Event(l) e2 is Event(2) 1

sl is State(l) s2 is State(2)
Transition(sl, el, s2)

Transition(s2, e2, el)
Current(sl)

Nl B W] N e

V Ongoing Work

= FORMULA (Schulte, Jackson et al, MSR) - A tool
suite for building models and analyzing their
properties. Co-developed with the European
Microsoft Innovation Center (EMIC), Aachen,
Germany

= GME-FORMULA translator — Extension of the MIC
tool suite (VU-ISIS in cooperation with MSR)

= Analysis tools — Domain and Model Equivalence,
Domain Composition, Model Completion (VU-
ISIS in cooperation with MSR)

Overview

Vv

= Cyber-Physical Systems (CPS)
CPS and Domain Specific Modeling Languages
Model Integration Challenge

= Formal Semantics of DSMLs
Structural Semantics

—> Behavioral Semantics

* Practical Use of Formal Semantics
Addressing Horizontal Heterogeneity
Addressing Vertical Heterogeneity

= Summary

Vv

= Givena DSML |L=(Y,R,.C.(]).,)
D(,C)=f€ER,|rl=C}

SIS

= Behavioral semantics will be defined by
specifying the transformation between the DSML
and a modeling language with behavioral

semantics.

Behavioral Semantics

Implicit Methods for Specifying @
Behavioral Semantics

/?\Representation as AST
D(Y C) {’”ERY [rj=C ﬁ Implicit ﬂ
C++ Interpreter/Generator Graph rewriting rules
| IR, — R, =
D(Y'a C')= {FERY' |7 |= C'} Executable Executable Code Executable
. M I Specification
[[R - R, Mode
(Simulators)

Explicit Methods for Specifying @
Behavioral Semantics

/?\Representation as AST

D(Y C) YER,|r|=C ﬁ Explicit ﬂ
C++ Interpreter/Generator Graph rewriting rules
T,] S — —

(bemr | T

4

D(Y'a C')= {FERY' | r |= C'} Executable Executable Code Executable
fioat

[]: R, — R,. .|V|Ode| Specification

(Simulators)

Specifying Behavioral Semantics
With Semantic Anchorin

Representation as AST

untrie [7
T Name:[2°2 OrState | T Name:[2°1

Injit \rIt

<Conmstons>

Tigger - f
Guars

aton
soye

Prmtestae
<chior>>

Contginment

90

| = A m

MIC-UDM
MIC-GME

Transitions

Graph revwriting

MIC-GReAT
- (Karsai, VU-ISIS

Abstract State Machine Formalism

!

[

structure event

React (e as Event) as Event?

eventType as String B
Tet cs as state = Getcurrentstate ()
] Tass state step
’/‘ — id €5 S Tet enabledTs as Set of Transition = {t | t in outTransitions (CS) where

initial as Boolean
. e. eventType = triggerventType(t)}
var active as Boolean = false ittt & e

p
if size (enabledTs) = 1 then

lass Transition A
choose t in enabledTs

id as string
| > bstract class Fsh write e transition: ® + t.id)
: id as string .
step
: Y' Y" dststate(t).active := true
e

abstract property states as Set of State

get step
abstract property transitions as set of Transition if t in me.outputEventType then
get return Event(outputEventType(t))
abstract property outTransitions as Map of <state, set of Transition> else
return null
abstract property dstState as Map of <Transition, State else
get if size(enabledTs) > 1 then
abstract property triggerEventType as Map of <Transition, string> error ("NON-DETERMINISM ERROR!")
get else
abstract property outputEventType as Map of <Transition, String> return null

Abstract Data Model Model Interpreter

Abstract Data Model

Example Specification : FSM

Interpreter

structure Event
eventType as String
class State
initial as Boolean
var active as Boolean = false
class Transition
abstract class FSM

abstract property states as Set of State

get
abstract property transitions as Set of Transition
get
abstract property outTransitions as Map of
<State, Set of Transition>
get
abstract property dstState as Map of <Transition,
get

abstract property triggerEventType as Map of
<Transition, String>
get

abstract property outputEventType as Map of
<Transition, String>
get

abstract class FSM
Run (e as Event) as Event?

step
let CS as State = GetCurrentState ()
step
let enabledTs as Set of Transition = {t | t in

outTransitions (CS) where e.eventType =
triggerEventType (t) }
step
if Size (enabledTs) >= 1 then
choose t in enabledTs

step

CS.active := false
step

dstState(t) .active := true
step

if t in me.outputEventType then
return Event (outputEventType (t))
else
return null
else
return null

Underlying abstract machine - ASM Language: AsmL

Yuri Gurevich, MSR

V Ongoing Work

= Semantic anchoring of DSMLs using
“semantic units”

= Compositional specification of semantics for
heterogeneous modeling languages

= Investigating alternative frameworks (e.g.
based on FORMULA)

V Overview

= Cyber-Physical Systems (CPS)
CPS and Domain Specific Modeling Languages
Model Integration Challenge

= Formal Semantics of DSMLs
Structural Semantics
Behavioral Semantics

—>= Practical Use of Formal Semantics
Addressing Horizontal Heterogeneity
Addressing Vertical Heterogeneity

= Summary

E? Capturing Physical Semantics

Modeling Language
Semantics:

Structural
(set of well-formed

Physical

(struct. and behav.

Rational:

» Get the physics right

* The rest is mathematics
(Kalman, 2005)

Behavioral Behavioral

(set of feasible

(set of feasible

» denotational operational

Physical Semantics:

Structural Implications 1/2

Electrical

Mech.

R L % domain domain
fric -
E(t) C) R_fric R
Kr, Keme
\ 1
\\
\ 1
| \ In 0J2
[N ;
N\
Structural I \ |
implication L_arm \ m
Out[Fe= == ! =>[{In
Electrical_Component Mechanical_Component
Inter-domain Rule #n
1 GY 1 R .
ElectricalPort OneJunctionf GY Onelunction2 MechanicalPort E!Iecm(_:al EE'_'TeCh dMeCh-
omain inter- omain
dom.) -
- == -~
_ - - mu out ! In out In T
—
- - R_fic R
Electrical_Sourc Motor Mechanical_Load
R_arm R \
. 7 1
Energy is 74 " W
N ‘A / / \ AN —-:1
E_“*MS 1 i \ \ In 0J2
conserved at o Jon o \ ‘
1 / \
/ H 1 ——6Y——~1 % \
I In o1 GY 0J2 Out \ I
L_arm \ m

couplings between
domains

‘7 Physical Semantics:
Structural Implications 2/2

(?
e O mu W -------------- R EEGREREEEES | | | |
Kr, Keme Out[@d— —=[{In
[Electrical_Source 1 | Mechanical_Load
——=JdIn Out[—
Collateral energy flow —
...other rules... T~
AN
o] J1 i Out \\\\
Heat energy ISR outi—
generated on 0NN w
dissipative m onl— —r
elements: creates | 1 1 |
addltlonal energy Electrical_Source |~ @in o Mechanical_Load
COUplIng Motor

Physical Semantics:

ehavioral Implications

[§1§

R L m

§ CW
Kr, Keme

=z

Rfric Input voltage

One Junction Rule

B Armature current

Rate of power
transfer between
components is
balanced

Rormi€s = Rapm* [

Lormies =Lapm* f3

GY: €s = fi *KT
GY:es = fo% Kgyr

R_fic R =
]
I
Ojl:e;—e;—e3— e, =0 :
L = & Denotgtlonal
Se:e; = E(t) behaVIOraI
semantics

0]2:95—86—67 =0
0]2:fs=fe=f7

Rivicies = Repic * fo

m:e; =mx fo

Physical S tics:
V" Onceing Work

= Extend metamodeling language and
metaprogrammable modeling tool (GME) with
generative constructs

= Make specification of generative modeling
constructs integrated with metamodeling

= Extend structural semantics and tools with
dynamic constructs

= Develop rule libraries for relevant cross-physical
domains

Overview

Vv

= Cyber-Physical Systems (CPS)
CPS and Domain Specific Modeling Languages
Model Integration Challenge

= Formal Semantics of DSMLs
Structural Semantics
Behavioral Semantics

* Practical Use of Formal Semantics
Addressing Horizontal Heterogeneity
—> Addressing Vertical Heterogeneity

= Summary

Vv

Integration Inside Abstraction
Layers: Composition

Plant Dynamics
Models (=

Controller
Models

Physical design

Software

Models

Architecture K=Y Component

Software

Code

Software desian

System
Architecture =
Models

Resource
Management
Models

System/Platform Design

Dynamics: B(?) =«,(B, (?),...,B,(1))
 Properties: stability, safety, performance
 Abstractions: continuous time, functions,

signals, flows,...

Software : B(i) =« (B, (i),..., B, (i)
» Properties: deadlock, invariants,
security,...
» Abstractions: logical-time, concurrency,
atomicity, ideal communication,..

Systems : B(t;)=x,(B, (t),.... B, (1))

* Properties: timing, power, security, fault
tolerance

» Abstractions: discrete-time, delays,
resources, scheduling,

Integration Across Abstraction
Layers: Much Unsolved Problems

Plant Dynamics
Models

=)

Controller
Models

Phxsical design

Controller dynamics is developed
without considering implementation
uncertainties (e.g. word length, clock
accuracy) optimizing performance.

7

Assumption: Effect igital implementation
canb lected

Software
Architecture
Models

Software
Component
Code

=

ftwar

~Z

Ef

V4

System
Architecture
Models

=

Resource
Management
Models

System/Platform Desian

n

Software architecture models are
developed without explicitly considering
systems platform characteristics, even
though key behavioral properties
depend on it.

Assumption: Eﬁec’%latform properties

canb lected

System-level architecture defines
implementation platform configuration.
Scheduling, network uncertainties, etc. are
introduce time variant delays that may
require re-verification of key properties on
all levels.

‘7 Dealing With Leaky Abstractions

= |eaky abstractions are caused by lack of

composability across system layers.
Consequences:

Intractable interactions
unpredictable system level behavior
full-system verification does not scale

= Solution: simplification strategies

Decoupling: Use design concepts that
decouple systems layers for selected
properties

Cross-layer Abstractions: Develop methods that can
handle effects of cross-layer interactions

Example for Decoupling:
Passive Dynamics

Goals:

Physical models “
- Effect of “leaky abstraction”:

. loss of stability due to
implementation implementation-induced time
' delays (networks, schedulers)

.+ Passivity of dynamics

. Abstract Model . decouples stability from

' | time varying delays

: .+ Compositional verification of
. time safety: implementation | essential dynamic properties
’ ' — stability

: , — safety

B Real-time Model e Hugely decreased verification
complexity

* Hugely increased flexibility

4-------

time robustness

‘7 Passivity-based Designh and
Modeling Lanquages 1/4

Modeling Language

Semantics:

Heterogeneous |
Abstractions Structural | Structural constraints are

Physical
(struct. and behav.
constraints)

denotational operational

Fix for stability:
 Passivity-based

Behavioral

Behavioral
(set of feasible

(set of feasible

design ehavia
=S | T e+ V(x(8) = V(x(8,))
y=h(x,u).1 %iforall t,> t, and the input u(t) e U [Antsaklis ‘2008]

Passivity-based Design and
Modeling Languages 2/4

Constrain modeling language with constructs below:

LP_DS/@S |

l / £ o\ 7 oe\ N\ a . upk(l)] upI)Sk(j)
= —>_b| DO (1) + Taek (7)) 3 — 2 | IPDS_ M|—p
\ &l

l) - vpk(i) ’ .
Vet (7) = —=(b0ap1(J) — Te1(3)) <+ PUS M
‘ V' 20 i ‘ - |

Bil form: ; : Passive down-sampler and
llinear transform: : Passive up-sampler

power and wave vars.

u p2 (I) u nDS2 (]) l‘l?_ (]

PDS M|z |

’ ,vz(i) Vp/)sz(j) Vz(j)
PUSZZM z P

- Bilinear transform (b) - Delays [Kottenstette'2011]
* Power and Wave variables * Power junction
» Passive down- and up-sampler » Passive dynamical

(PUS, PDS) system

‘7 Passivity-based Design and
Modeling Languages 3/4

Constrain modeling language with composition constraints below:

negative feedback interconnection
of two passive systems is passive

u
¢
— > G, |
l+ , parallel interconnection of two passive
u

??—» systems is still passive
+
L .| G |

Extensive research in the VU/ND/UMD NSF project toward
correct-by-construction design environments (where correct-
by-construction means what the term suggest)

V Passivity-based Designh and
Modeling Lanquages 4/4
Constrain modeling language behavior with these constraints (for LTI)

 For LTl passive systems, we can always assume quadratic storage
function

1
Vi(x) = EXTPX where P =P >0.
« For continuous-time system this leads to the following LMI

ATP+PA PB-CT 0
<<
B'P—-C -—-D-D"

* In discrete-time the LMI becomes the following

ATPA-P A'PB-C! 0
<
B'PA-C B'PB-D-D'

[Antsaklis 2008]

V Summary

= Penetration of networking and computing in
engineered systems forces a grand convergence
across engineering disciplines.

= Signs of this convergence presents new
opportunities and challenges for formal methods
research:

New foundation for model integration — emergence of
metaprogrammable tool suites and multi-modeling

Embedding physical semantics in modeling languages
= Model-based design facilitates a necessary

convergence among software, system, control
and network engineering

References @

- Jackson, E., Sztipanovits, J.: ‘Formalizing the Structural Semantics of
Domain-Specific Modeling Languages,”
Journal of Software and Systems Modeling pp. 451-478, September 2009
- Jackson, Thibodeaux, Porter, Sztipanovits: “Semantics of Domain-Specific Modeling Languages,”

in P. Mosterman, G. Nicolescu: Model-Based Design of Heterogeneous Embedded Systems. Pp.
437-486, CRC Press, November 24, 2009

- Ethan K. Jackson, Wolfram Schulte, and Janos Sztipanovits: The Power of Rich Syntax for Model-
based Development, MSR Technical Report, 2009

- Kai Chen, Janos Sztipanovits, Sandeep Neema: “Compositional Specification of Behavioral
Semantics,” in Design, Automation, and Test in Europe: The Most Influential Papers of 10 Years
DATE, Rudy Lauwereins and Jan Madsen (Eds), Springer 2008

- Nicholas Kottenstette, Joe Hall, Xenofon Koutsoukos, Panos Antsaklis, and Janos Sztipanovits,
"Digital Control of Multiple Discrete Passive Plants Over Networks", International Journal of
Systems, Control and Communications (IJSCC), Special Issue on Progress in Networked Control
Systems. (Accepted for publication)

- Xenofon Koutsoukos, Nicholas Kottenstette, Joe Hall, Emeka Eiysi, Heath Leblanc, Joseph Porter
and Janos Sztipanovits, “A Passivity Approach for Model-Based Compositional Design of
Networked Control Systems”, ACM Transactions on Computational Logic . (Accepted for
publication)

- Heath LeBlanc, Emeka Eyisi, Nicholas Kottenstette, Xenofon Koutsoukos, and Janos
Sztipanovits. "A Passivity-Based Approach to Deployment in Multi-Agent Networks", 7th
International Conference on Informatics in Control, Automation, and Robotics (ICINCO 2010).
Funchal, Madeira, June 15-18, 2010. (Best Student Paper Award)

