

Kim G. Larsen CISS – Aalborg University DENMARK

•

Embedded Systems

Tasks: Computation times Deadlines Dependencies Arrival patterns uncertainties

Scheduling Principles (OS) EDF, FPS, RMS, DVS, ...

Resources Execution platform PE, Memory Networks Drivers uncertainties

ARTIST Summer School Europe, 2011

Kim Guldstrand Larsen [2]

Model checking is fixpoint iteration without dynamic abstraction and using set union to collect states.

Ion Emersion

100

More information at http://www.uppaal.com

Copyright 1995-2006 by Uppsala University and Aalborg University. All rights reserved

UPPAAL 4.0.2 (rev. 2491), August 2006.

Timi

Abstract Interpretation is fixpoint iteration with dynamic abstraction using lattice join to combine abstract states.

なか見!検索

ŧd.

Program Analysis and Compilation, Theory and Practice

Principles of Program Analysis

24-

ARTIST Summer School Europe, 2011

Kim Guldstrand Larsen [3]

Sc

 $\backslash /$

UPPSALA

Overview

- Timed Automata Model Checking
- Scheduling
 - Task Graph Scheduling
- Schedulability Analysis
 - Single Processor
 - Multi Processor
- WCET Analysis
- Performance Analysis
 - Statistical Model Checking

Kim Larsen [5]

Timed Automata

Train Crossing

Timed Automata [Train]

Finite State Control
+ Real Valued Clocks

ARTIST Summer School Europe, 2011

Timed Automata [Gate]

Finite State Control + Real Valued Clocks + Discrete Variables

=

ARTIST Summer School Europe, 2011

Logical Specifications

- Validation Properties
 - Possibly: E<> P
- Safety Properties
 - Invariant: A[] P
 - Pos. Inv.: E[] P
- Liveness Properties
 - Eventually: A<> P
 - Leadsto: $P \rightarrow Q$
- Bounded Liveness
 - Leads to within: $P \rightarrow_{\cdot t} Q$

The expressions *P* and *Q* must be type safe, side effect free, and evaluate to a boolean.

Only references to integer variables, constants, clocks, locations are allowed (and arrays of these).

Scheduling

Resources and Tasks

ARTIST Summer School Europe, 2011

ARTIST Summer School Europe, 2011

Experimental Results

name	#tasks	#chains	# machines	optimal	TA
001	437	125	4	1178	1182
000	452	43	20	537	537
018	730	175	10	700	704
074	1007	66	12	891	894
021	1145	88	20	605	612
228	1187	293	8	1570	1574
071	1193	124	20	629	634
271	1348	127	12	1163	1164
237	1566	152	12	1340	1342
231	1664	101	16	t.o.	1137
235	1782	218	16	t.o.	1150
233	1980	207	19	1118	1121
294	2014	141	17	1257	1261
295	2168	965	18	1318	1322
292	2333	318	3	8009	8009
298	2399	303	10	2471	2473

Symbolic A* Branch-&-Bound 60 sec

Abdeddaïm, Kerbaa, Maler

Task Graph Scheduling – Revisited

Task Graph Scheduling – Revisited

Task Graph Scheduling – Revisited

Optimal Infinite Scheduling

Kim Larsen [22]

Optimal Infinite Scheduling

ARTIST Summer School Europe, 2011

Kim Larsen [23]

Optimal Infinite Scheduling

Mean Pay-Off Optimality

Discount Optimality $\lambda < 1$: discounting factor

Soundness of Corner Point Abstraction

Lemma

Let Z be a (bounded, closed) zone and let f be a (well-defined) function over Z defined by:

$$f: (t_1, \ldots, t_n) \mapsto \frac{a_1 t_1 + \cdots + a_n t_n + a}{c_1 t_1 + \cdots + c_n t_n + d}$$

then $\inf_Z f$ is obtained at a corner-point of Z (with integer coefficients).

Lemma Let Z be a (bounded, closed) zone and let f be a function over Z defined by:

$$f: (t_1, \ldots, t_n) \mapsto a_1 \lambda^{t_1} + \cdots + a_n \lambda^{t_n} + a$$

Kim Larsen [27]

then $\inf_Z f$ is obtained at a corner-point of Z (with integer coefficients).

ARTIST Summer School Europe, 2011

Multiple Objective Scheduling

Consuming & Harvesting Energy

Maximize throughput while respecting: 0 • E • MAX

ARTIST Summer School Europe, 2011

Kim Larsen [29]

Energy Constrains

- Energy is not only consumed but may also be regained
- The aim is to continously satisfy some energy constriants

Kim Larsen [30]

Results (early)

Bouyer, Fahrenberg, Larsen, Markey, Srba: FORMATS 2008

Kim Larsen [31]

Untimed		games	existential problem	universal problem	
	L	$\in UP \cap coUP$ P-h	$\in P$	$\in P$	
	L+W	$ \in NP \cap coNP \\ P-h $	$\in P$	$\in P$	
	L+U	EXPTIME-c	∈ PSPACE NP-h	$\in P$	

ClockgamesexistentiLemuniversal problemL? $\in P$ heger Point Abstraction SufficeL+W? $\in P$ $\in P$ L+Uundecidable??

Results (new)

Fahrenberg, Juhl, Larsen, Legay, Srba: ICTAC 2011

Untimed. Multiple Weiahts

# weights	Bound	Existential	Universal	Game	
One	L	∈ P [4]	∈ P [4]	∈ UP ∩ coUP [4]	
	LW	∈ P [4]	∈ P [4]	$\in NP \cap coNP$ [4]	
	LU	NP-hard [4], \in PSPACE [4]	∈ P [4]	EXPTIME-complete [4]	
Fixed $(k > 1)$	L	NP-hard,	εP	EXPTIME-hard,	
		$\in k$ -EXPTIME [3]	(Remark 18)	$\in k$ -EXPTIME [3]	
		(Remark 17)		(Remark 19)	
	LW	NP-hard, \in PSPACE	εP	EXPTIME-complete	
		PSPACE-complete for $k \ge 4$	(Remark 18)	(Remark 21)	
		(Remark 20)			
	LU	PSPACE-complete	εP	EXPTIME-complete	
		(Remark 20)	(Remark 18)	(Remark 21)	
Arbitrary	L	EXPSPACE-complete	εP	EXPSPACE-hard (from EL)	
		(Theorem 9)	(Remark 18)	decidable [3]	
	LW	PSPACE-complete	εP	EXPTIME-complete	
		(Theorem 9)	(Remark 18)	(Remark 21)	
	LU	PSPACE-complete	εP	EXPTIME-complete	
		(Theorem 9)	(Remark 18)	(Remark 21)	

Kim Larsen [32]

5

"Experimental" Results

ARTIST Summer School Europe, 2011

"Experimental" Results

ARTIST Summer School Europe, 2011

Kim Larsen [34]

Schedulability Analysis

Task Scheduling utilization of CPU

Classical Scheduling Theory

41

Utilisation-Based Analysis

• A simple sufficient but not necessary schedulability test exists

$$U = \sum_{i=1}^{N} \frac{C_i}{T_i} \le N(2^{1/N} - 1)$$

 $U \le 0.69$ as $N \to \infty$

Where C is WCET and T is period

Response Time Equation

$$R_{i} = C_{i} + \sum_{j \in Jp(i)} \left[\frac{R_{i}}{T_{j}} \right] C_{j}$$

Where hp(i) is the set of tasks with priority higher than task *i*

Solve by forming a recurrence relationship:

$$w_i^{n+1} = C_i + \sum_{j \in hp(i)} \left[\frac{w_i^n}{T_j} \right] C_j$$

The set of values w_i^0 , w_i^1 , w_i^2 ,..., w_i^n ,... is monotonically non decreasing When $w_i^n = w_i^{n+1}$ the solution to the equation has been found, w_i^0 must not be greater that R_i (e.g. 0 or C_i) 42 <section-header><section-header><section-header><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

- ✓ Simple to perform
- Overly conservative
- Limited settings
- Single-processor

ARTIST Summer School Europe, 2011

Modeling Task

ARTIST Summer School Europe, 2011

Kim Larsen [38]

Modeling Scheduler

ARTIST Summer School Europe, 2011

Kim Larsen [39]

Modeling Queue

In UPPAAL 4.0 User Defined Function

Schedulability = Safety Property

Add :(Task0.Error or Task1.Error or ...)

ARTIST Summer School Europe, 2011

Kim Larsen [41]

Dealing with Resources

Kim Larsen [42]

Preemption – Stopwatches!

Multi-Processor

Handling realistic applications?

Timed Automata for a task

ARTIST Summer School Europe, 2011

Smart phone

ARTIST Summer School Europe, 2011

 Solar System, cold dust clouds and cores, star and galaxy formations, cataloging galaxies, gravitational lensing, cosmic microwave background, topology of the universe...

Terma: Develop software for Attitude and Orbit Control System

Herschel & Planck Satelites

Application software (ASW)

- built and tested by Terma:
- does attitude and orbit control, telecommanding, fault detection isolation and recovery.
- Basic software (BSW)
 - low level communication and scheduling periodic events.
- Real-time operating system (RTEMS)
 - Priority Ceiling for ASW,
 - Priority Inheritance for BSW
- Hardware
 - single processor, a few buses, sensors and act

Requirements:

Software tasks should be schedulable. CPU utilization should not exceed 50% load

Kim Larsen [49]

UPPAAL Model

Kim Larsen [50]

- One template for CPU scheduler:
 - maintains a queue of ready tasks
 - schedules tasks with highest priority in the queue
 - reschedule if higher priority task arrives to the queue
- One template per **each** ASW task.
- Two templates for BSW tasks: 1 plain, 1 using resource.
- One template for "idle" task to count CPU utilization.
- WCET is modeled by stopwatches and lower bound.
- WCRT is modeled by stopwatches.
- Deadline is enforced as guard on WCRT.
- System is schedulable if no deadline violated.
- CPU load is <u>used time</u> total time

Modeling in UPPAAL

ARTIST Summer School Europe, 2011

Kim Larsen [51]

Gantt Chart 1. cycle

Fig. 11. Gantt chart of a schedule from the first cycle: green means ready, blue means running, cyan means suspended, red means blocked. R stand for resources: CPU_R=0, Icb_R=1, Sgm_R=2, PmReq_R=3, Other_RCS=4, Other_SF1=5, Other_SF2=6.

Blocking & WCRT

		Specification		Blocking times		WCRT					
ID	Task	Period	WCET	Deadline	Terma	UPPAAL	Diff	Terma	UPPAAL	Diff	
1	RTEMS_RTC	10.000	0.013	1.000	0.035	0	0.035	0.050	0.013	0.037	
2	AswSync_SyncPulseIsr	250.000	0.070	1.000	0.035	0	0.035	0.120	0.083	0.037	
3	Hk_SamplerIsr	125.000	0.070	1.000	0.035	0	0.035	0.120	0.070	0.050	
4	SwCyc_CycStartIsr	250.000	0.200	1.000	0.035	0	0.035	0.320	0.103	0.217	
5	SwCyc_CycEndIsr	250.000	0.100	1.000	0.035	0	0.035	0.220	0.113	0.107	
6	Rt1553_Isr	15.625	0.070	1.000	0.035	0	0.035	0.290	0.173	0.117	
7	Bc1553_Isr	20.000	0.070	1.000	0.035	0	0.035	0.360	0.243	0.117	
8	Spw_Isr	39.000	0.070	2.000	0.035	0	0.035	0.430	0.313	0.117	
9	Obdh_Isr	250.000	0.070	2.000	0.035	0	0.035	0.500	0.383	0.117	
10	RtSdb_P_1	15.625	0.150	15.625	3.650	0	3.650	4.330	0.533	3.797	
11	RtSdb_P_2	125.000	0.400	15.625	3.650	0	3.650	4.870	0.933	3.937	
12	RtSdb_P_3	250.000	0.170	15.625	3.650	0	3.650	5.110	1.103	4.007	
14	FdirEvents	250.000	5.000	230.220	0.720	0	0.720	7.180	5.153	2.027	
15	NominalEvents_1	250.000	0.720	230.220	0.720	0	0.720	7.900	5.873	2.027	
16	MainCycle	250.000	0.400	230.220	0.720	0	0.720	8.370	6.273	2.097	
17	HkSampler_P_2	125.000	0.500	62.500	3.650	0	3.650	11.960	5.380	6.580	
18	HkSampler_P_1	250.000	6.000	62.500	3.650	0	3.650	18.460	11.615	6.845	
19	Acb_P	250.000	6.000	50.000	3.650	0	3.650	24.680	6.473	18.207	
20	IoCyc_P	250.000	3.000	50.000	3.650	0	3.650	27.820	9.473	18.347	
21	PrimaryF	250.000	34.050	<mark>59.600</mark>	5.770	0.966	4.804	65.470	54.115	11.355	
22	RCSControlF	250.000	4.070	239.600	12.120	0	12.120	76.040	53.994	22.046	
23	Obt_P	1000.000	1.100	100.000	9.630	0	9.630	74.720	2.503	72.217	
24	Hk_P	250.000	2.750	250.000	1.035	0	1.035	6.800	4.953	1.847	
25	StsMon_P	250.000	3.300	125.000	16.070	0.822	15.248	85.050	17.863	67.187	
26	TmGen_P	250.000	4.860	250.000	4.260	0	4.260	77.650	9.813	67.837	
27	Sgm_P	250.000	4.020	250.000	1.040	0	1.040	18.680	14.796	3.884	
28	TcRouter_P	250.000	0.500	250.000	1.035	0	1.035	19.310	11.896	7.414	
29	Cmd_P	250.000	14.000	250.000	26.110	1.262	24.848	114.920	94.346	20.574	N
30	NominalEvents_2	250.000	1.780	230.220	12.480	0	12.480	102.760	65.177	37.583	
31	SecondaryF_1	250.000	20.960	189.600	27.650	0	27.650	141.550	110.666	30.884	
32	SecondaryF_2	250.000	39.690	230.220	48.450	0	48.450	204.050	154.556	49.494	
33	Bkgnd_P	250.000	0.200	250.000	0.000	0	0.000	154.090	15.046	139.044	

4 Marius Micusionis

Effort and Utilization

TERMA®

cycle	Uppaal resources			Herschel CPU utilization				
limit	CPU, s	Mem,KB	States, $\#$	Idle, μs	Used, μs	Global, μs	Sum, μs	Used, $\%$
1	465.2	60288	173456	91225	160015	250000	251240	0.640060
2	470.1	59536	174234	182380	318790	500000	501170	0.637580
3	461.0	58656	175228	273535	477705	750000	751240	0.636940
4	474.5	58792	176266	363590	636480	1000000	1000070	0.636480
6	474.6	58796	178432	545900	955270	1500000	1501170	0.636847
8	912.3	58856	352365	727110	1272960	2000000	2000070	0.636480
13	507.7	58796	186091	1181855	2069385	3250000	3251240	0.636734
16	1759.0	58728	704551	1454220	2545850	4000000	4000070	0.636463
26	541.9	58112	200364	2363640	4137530	6500000	6501170	0.636543
32	3484.0	75520	1408943	2908370	5091700	8000000	8000070	0.636463
39	583.5	74568	214657	3545425	6205745	9750000	9751170	0.636487
64	7030.0	91776	2817704	5816740	10183330	16000000	16000070	0.636458
78	652.2	74768	257582	7089680	12411420	19500000	19501100	0.636483
128	14149.4	141448	5635227	11633480	20366590	32000000	32000070	0.636456
156	789.4	91204	343402	14178260	24821740	39000000	39000000	0.636455
256	23219.4	224440	11270279	23266890	40733180	64000000	64000070	0.636456
312	1824.6	124892	686788	28356520	49643480	78000000	78000000	0.636455
512	49202.2	390428	22540388	46533780	81466290	128000000	128000070	0.636455
624	3734.7	207728	1373560	56713040	99286960	156000000	156000000	0.636455

5

ARTIST Summer School Europe, 2011

Page 54

TERMA Case Conclusion

- Schedulability analysis using UPPAAL:
 - Reusable and customizable task templates.
 - Blocking times and WCRTs can be derived from the model.
 - WCRTs of all tasks are more optimistic than in RTA.
 - There are very few blocking times and they are short.
 - PrimaryF meets deadline (59.6ms) with WCRT=54.1ms (65.5ms in RTA).
 - Herschel event mode is schedulable.
- UPPAAL verification for schedulability:
 - can be scaled using sweep-line method,
 - takes up to 2min to verify schedulability of 32 task system,
 - takes up to 8min to find all WCRTs and CPU utilization.
- In addition, it is possible to:
 - simulate the system model and examine details,
 - render a Gantt chart, validate and inspect visually.

TERMA Case Follow-Up

WCET Analysis METAMOC: Modular Execution Time Analysis using MOdel Checking

with Andreas Dalsgaard Mads Christian Olesen Martin Toft René Rydhof Hansen

WCET: Worst Case Execution Time

ARTIST Summer School Europe, 2011

METAMOC

S

Kim Larsen [59]

Overview of METAMOC

Kim Larsen [60]

Value analysis in METAMOC

- Memory addresses needed for cache hit/miss predictions
- Registers used as base and offset for memory accesses
- Overapproximate possible register values
- METAMOC uses Weighted Push-Down Systems (WPDSs) for an inter-procedural, control-flow sensitive value analysis¹
- Weighted Automata Library (WALi) utilised

¹T. Reps, A. Lal, N. Kidd. *Program Analysis using Weighted Push-Down Systems*. In *FSTTCS 2007*, vol. 4855 of *LNCS*, pp. 23–51.

ARTIST Summer School Europe, 2011

Modeling in METAMOC

Overview of the ARM9 automata

Kim Larsen [62]

Modeling in UPPAAL

<u>F</u> ile <u>E</u> dit <u>V</u> i	ew <u>T</u> ools <u>O</u> ptions <u>H</u> elp	
	<u>F</u> ile <u>E</u> dit <u>V</u> iew <u>T</u> ools <u>O</u> ptions <u>H</u> elp	
Dra		
Project	Editor Simulator Verifier	
፦ 칣 FetchS ፦ 칣 Decod	Overview	
າ 🖏 Execut	sup: cyclecounter	
- 🖏 DataCa		
າ 🖏 MainMi	Insert	
⊷ 🖏 mainTe	Remove	
🗆 🗋 System	Comments	
	query	=
	sup: cyclecounter cyclecounter <= 13729	_
	Comment OK	
	A.#	
	Status	
	Established direct connection to local server.	
	(Academic) UPPAAL version 4.1.3 (rev. 4410), September 2009 server.	
•	Disconnected.	LID_ADDRESS,
	Established direct connection to local server.	
	producinity of Front version 4.1.5 (rev. 4410), September 2003 - Server.	0,000,000
		Ress,
		· · · · · · · · · · · · · · · · · · ·

ARTIST Summer School Europe, 2011

Kim Larsen [63]

55

GUI for METAMOC

fibcall.o - WCET Analyser						
<u>File ⊻iew H</u> elp						
	Hardware Platform:					
ARM920T V Preferences			;			
./embed_verify fibcall.o models/pipeline_arm9tdmi.xml 32 512 8 WRITE_THROUGH NO_ WRITE_ALLOCATE FIFO 32 512 8 WRITE_BACK WRITE_ALLOCATE FIFO 33 && exit WCET for fibcall.o is 605 cycles					DUGH NO_	
exit				Cache se	ttings _	
				Block size:	32	
L I I	rdwara Blatform	Editor		Cache lines:	512	
				Cache sets:	8	
atforms	Name:	ARM920T		Write Miss:	No Write Allocate	\sim
RM9201 RM922T	Objdump:	arm-angstrom-linux-gnu	ieabi-c	Write Hit:	Write Through	~
RM940T	Pipeline:	ARM9TDMI	~	Replacement policy:	FIFO	~
	Main Mernory:	mainmemory.xml	33		<mark>, 4</mark> ок	
	Instruction Cache:	32:512:8:WT:NWA:FIFO	×			
	Data Cache:	32:512:8:WB:WA:FIFO	×		<mark>↓</mark> Ок	
- Add		Apply 🔀 🔇	lose			J

http://metamoc.martintoft.dk

LI

5

ARTIST Summer School Europe, 2011

Kim Larsen [64]

Status

- Started out with ARM9 support
 - Five stage pipeline, instruction cache, data caches, simple main memory
- Now
 - ... support for ARM7, ARM9 and ATMEL AVR 8-bit

Kim Larsen [65]

... with modest effort

Experiments

- Evaluation using WCET benchmark programs from Mälardalen Real-Time Research Centre²
 - Applicability
 - Performance
- Discarded a number of programs
 - Floating point operations handled by software routines

Kim Larsen [66]

- Dynamic jumps
- Some programs do not compile
- 21 programs for ARM and 19 programs for AVR
- Manually annotated loop bounds

Experiments / Future

ARM9, 21 benchmarks	
Analysable without caches	21
Analysable with instruction cache	20
Unanalysable, state space explosion	1
Analysable with data and instruction cach	ie 20
Unanalysable, state space explosion	1
Manual modification of e.g. data cache siz	ze 4

ATMEL AVR 8-bit, 19 benchmarks				
Analysable	16			
Unanalysable, state space explosion	3			

Relative improvement in WCET for ARM9.

Analysis times in minutes for AVR and ARM9.

Kim Larsen [67]

TetaJ

- Constructing UPPAAL models
- TetaJ Control Flow Graphs (TCFGs)
 - Forms the interface for model construction
 - Achieves reusability:
 - Java Bytecode to TCFG
 - AVR to TCFG
- CFG analyses are applied yielding annotated TCFGs
 - Loop detection
 - Condition optimisation
 - Progress measures in UPPAAL
- TCFGs are transformed to models
- The models are combined to one model
- UPPAAL conducts the WCET analysis on the final model

Kim Larsen [68]

Evaluation of TetaJ

PERFORMANCE					
Optimisation	Analysis time	States explored	Max memory usage		
No optimisations	14h 51m 17s	41,854,143	3,905 MB		
Only progress measures	4d 12h 7m 8s	408,223,029	589 MB		
Only state space reduction	13h 33m 21s	41,854,143	2,426 MB		
Only condition optimisation	1m 16s	53,732	294 MB		
Only template reduction	4h 46m 41s	41 854 143	3 851 MB		

All	Algorithm	Measured WCET	TetaJ WCET	Pessimism
	Iterative fibonacci	46,642 clock cycles	46,933 clock cycles	0.6%
	Factorial	39,726 clock cycles	40,939 clock clycles	3.1%
	Reverse ordering	64,436 clock cycles	81,919 clock cycles	27.1%
	Bubble sort	907,103 clock cycles	2,270,401 clock cycles	150.3%
	Binary Search	54,430 clock cycles	99,301 clock cycles	82.4%
	Insertion Sort	849,353 clock cycles	3,740,769 clock cycles	440.4%
	ACCURACY			

ARTIST Summer School Europe, 2011

Conclusion

- Schedulability Analysis
 - TIMES tool [TACAS 2002]
 - Multitasking applications under OSEK [RTS 2008]
 - CREOL Modular schedulability [FSEN09]
 - SARTS Java byte code on FPGA [JTRES08]
 - Schedulability Analysis Using UPPAAL 4.1 [Model-Based

Design for ES, CRC Press 2010]

 ARTS: MPSoC Schedulability [Model-Based Design for ES, CRC Press 2010]

- Worst Case Execution Time Analysis
 - METAMOC [WCET10,NSF11]
 - Combining AI & MC for Timing Analysis of MultiCore [Yi et al, RTSS10]
 - WCET analysis of Multicore using UPPAAL [Petterson et al]

sarts.boegholm.dk metamoc.martintoft.dk tetaj.dk

Kim Larsen [70]

Performance Analysis using Statistical Model Checking

Collaborators:

Peter Bulychev, Alexandre David Axel Legay, Marius Mikucionis Wang Zheng Jonas van Vliet, Danny Poulsen

> CAV 2011, PDMC 2011, FORMATS 2011

UPPAAL

UPPAAL SMC

The Hammer Game

ARTIST Summer School Europe, 2011

Stochastic Semantics of TA

Stochastic Semantics of Timed Automata

Delay Density Function ${}^{1}_{s}$: **R! R** Output Probability Function ${}^{\circ}_{s}$: ${}^{\circ}_{o}$! [0,1]

- ¹_s uniform on [d_{min}, d_{max}]
- °_s uniform over enabled outputs

Kim Larsen [76]

Stochastic Semantics of Timed Automata

Composition = Race between components for outputting

C' = = 2

ARTIST Summer School Europe, 2011

C' = = 4

Kim Larsen [77]

Stochastic Semantics of Timed Automata

ARTIST Summer School Europe, 2011

Kim Larsen [78]

Logical Properties

$$\psi ::= \mathbb{P}(\diamondsuit_{C \leq c} \varphi) \sim p \mid \mathbb{P}(\Box_{C \leq c} \varphi) \sim p$$

$$(A|B|T) \models \mathbb{P}(\diamondsuit_{C \le 6}T_3) = 0.75$$
$$(A|B|T) \models \mathbb{P}(\diamondsuit_{t \le 2}T_3) = 0.75$$

$$\mathcal{A} \models \mathbb{P}(\diamondsuit_{C \leq c} \varphi) \sim p \quad \text{iff} \quad \mathbb{P}_{\mathcal{A}^*} \Big(\bigcup_{\sigma \in \Sigma^*} \pi(s_0, \sigma o_{\varphi}) \Big) \sim p$$

ARTIST Summer School Europe, 2011

Kim Larsen [79]

5

SMC Algorithms in UPPAAL

ARTIST Summer School Europe, 2011

Kim Larsen [80]

Queries in UPPAAL SMC

Queries in UPPAAL SMC

Analysis Tool: Plot Composer

00		Plot Compo	oser	_					_				1		
E-Confidence intervals													1		
Clopper-Pearson Confidence Intervals															
Wilson Score Intervals															
Wald Confidence Intervals	Strok	ke:	Area:		•										
▶ 📄 Frequency Histogram					~										
▼			Cumula	tive Pro	babilit	y Distrik	oution								
V 🚔 Jul 16, 2011 11:09:38 AM	1.00														
🕨 🔲 Probability Density Dist 🔴 🔿 🔿				Р	lot Com	poser									
Probability Density ε-C	ilson Score Intervals														
Probability Density Clop	ald Confidence Intervals	Data set: o	density												
Probability Distribution Final Figure 1 - Figure 2 - Figu	equency Histogram	Draws	Draws Color: Shane: A Stroke: Pars												
Probability ε-Confidency in Pr[<= 1	00](<> Train(4).Cross)	Diaw. C	Draw. Color. I Snape: V Stroke: Aréa: Bars V												
Probability Clopper-Pet The Jul 16	5, 2011 11:09:38 AM	▲▼ ^													
	obability Density Distribution		Cumulative Probability Distribution												
] density	0.032													
average	average	0.031													
Clopper-Rearson Config	obability Density ε-Confidence Intervals	0.030													
Wilson Score Intervals	obability Density Clopper-Pearson Cls	0.029	d s												
Wild Confidence Interv	obability Distribution	0.028													
Frequency Histogram	obability E-Confidence Intervals	0.026	·····												
$\mathbf{v} = \Pr[\langle \mathbf{v} = 100 \langle \mathbf{v} \rangle \text{ Train(5) Cros} = \mathbf{v} = \mathbf{v}$	mulative Brobability Distribution	0.025													
▼ ■ Iul 16, 2011 11:09:38 AM		0.024	n - 1 - 1												
Probability Density Dist	average	0.023													
Probability Density E-C	Confidence Intervals	0.022													
Probability Density Clop	opper-Pearson Confidence Intervals	0.021													
Probability Distribution	ilson Score Intervals	0.020													
Probability ε-Confidenc	ald Confidence Intervals	0.019					_								
🕨 📄 Probability Clopper-Pe: 🔹 🕨 🚞 Fr	equency Histogram	0.018													dancity
▼ 💼 Cumulative Probability I▼ 🚞 Pr[<= 1	00](<> Train(5).Cross)	≥0.017													density
📜 cumulative 🔍 🖬 Jul 16	5, 2011 11:09:38 AM	90.015													density
📄 average 🛛 🔻 💼 Pr	obability Density Distribution	20.014				L									density
► = ε-Confidence Intervals) density	0.013													density
Clopper-Pearson Config	average	0.012													
Wilson Score Intervals	obability Density ε-Confidence Intervals	0.011													
🕨 🖿 Wald Confidence Interva 💦 🕨 🤤 Pi	obability Density Clopper-Pearson Cls	0.010	Lhad	d i .						line i					
Frequency Histogram	obability Distribution	0.009													
Pr[<= 100](<> Train(0).Cros	obability E-Confidence Intervals	0.008					T-L								
Pr[<= 100](<> Train(1).Cros	upper limit	0.007		belo II		a. F. di							di la provi		
	lower limit	0.006				L.									
► = ε-Confidence Intervals	average	0.005													
🕨 🚞 Clopper-Pearson Confid 🛛 🖉 🖮 C	umulative Probability Distribution	0.004													
▶ 📄 Wilson Score Intervals	cumulative	0.003		•											
Wald Confidence Interva	average	0.001													
► • • • • • • • • • • • • • • • • • • •	Confidence Intervals	▲ 0													
	onner-Pearson Confidence Intervals	10	16 2	2 28	34	40	46 52	58 in time	64	70	76	82 /	88 94	100	
)) • •						run duration	in time							/

SMC in UPPAAL

- Constant Slope Timed Automata
 - Clocks may have different (integer) slope in different locations.
 - Branching edges with discrete probabilities (weights).
 - Beyond Priced TA, Energy TA. Equal LHA in (nonstochastic) expressive power.
 - Beyond DTMC, beyond CTMC (with multiple rewards)
- All features of UPPAAL supported
 - User defined functions and types
 - Expressions in guards, invariants, clock-rates, delayrates (rationals), and weights.
- New GUI for plot-composing and exporting.

Case Studies

FIREWIRE

Reply Distribution 0.88 0.80 0.72 0.64 0.56 density ≥0.48 cumulative iqe 0.40 ---- 99% bound ā0.32 0.24 0.16 0.08 4.0E3 2.0E4 3.6E4 5.2E4 6.8E4 time

BLUETOOTH

ARTIST Summer School Europe, 2011

Benchmarking Duration Probabilistic Automata

	Param.			1	Estir	n.		Hyp. Testing					
	n	k	m	Prism	Up_p	$\mathrm{U}p_d$	$\mathrm{U}p_{c}$	Prism	Up_p	$\mathrm{U}p_d$	$\mathrm{U}p_{c}$		
$\frac{n}{10}$	4	4	3	2.7	0.3	0.2	0.2	2.0	0.1	0.1	0.1		
10	6	6	3	7.7	0.6	0.5	0.4	3.9	0.2	0.2	0.3		
10	8	8	3	26.5	1.2	0.9	0.7	16.4	0.5	0.4	0.3		
10	204	40	20	>300				>300	35.5	26.2	20.7		
Fig 10	304	40	20	> 300				>300	61.2	41.8	33.2		
res^{20}	40	40	20	>300				>300	92.2	56.9	59.5		
$r_1 \frac{20}{20}$	40 2	20	20		> 30	0		>300	41.1	31.2	26.5		
20	403	30	20	>300				>300	68.8	46.7	46.1		
	40	55	40		>30	0		>	300		219.5		

IS

87

Lightweight Media Access Control

- Problem domain:
 - communication scheduling
- Targeted for:
 - self-configuring networks,
 - collision avoidance,
 - low power consumption
- Application domain:
 - wireless sensor networks

- Initialization (listen until a neighbor is heard)
- Waiting (delay a random amount of time frames)
- Discovery (wait for entire frame and note used slots)
- Active
 - choose free slot,
 - use it to transmit, including info about detected collisions
 - listen on other slots
 - fallback to Discovery if collision is detected
- Only neighbors can detect collision and tell the usernode that its slot is used by others

SMC of LMAC with 4 Nodes

LMAC with Parameterized Topology Distributed SMC

Collision probability in a 4 node network: sweep over all topologies. 32 core cluster: - 8xIntel Core2 2.66GHz CPU

Pr[time<=200] (<> col_count>0)

ARTIST Summer School Europe, 2011

Kim Larsen [91]

10-Node Ring

The first collision: happens before 1000tu

Collision counts after 1000tu

10-Node Chain

The first collision: happens before 800tu

Collision counts after 1000tu

- The first collisions can be as late as 800tu.
- It is very likely (>94%) that there will be 0 collisions.
- But if they happen, some are perpetual.

Collision counts after 2000tu: the numbers are doubled, there's gap of zeros – collision count is diverging

Kim Larsen [93]

10-Node Star

Collision counts after 1000tu

The first collision: happens before 500tu

Collision counts after 2000tu: the numbers are doubled – perpetual collisions

- The first collisions happen before **500**tu.
- It is unlikely (8.2%) that
 - there will be 0 collisions.
- And if they happen, they are perpetual.

Kim Larsen [94]

ARTIST Summer School Europe, 2011

10-Node Random Topologies Distributed SMC

Histogram of P

www.uppaal.{org,com}

Figure 1: UPPAAL on screen

UPPAAL is an integrated tool environment for modeling, validation and verification of real-time systems modeled as networks of timed automata, extended with data types (bounded integers, arrays, etc.).

The tool is developed in collaboration between the <u>Department of Information</u> <u>Technology</u> at Uppsala University, Sweden and the <u>Department of Computer</u> <u>Science</u> at Aalborg University in Denmark.

Download

News: The current official release is UPPAAL 4.0.13 (Sep 27, 2010). Compared to version 3, the 4.0 release is the result of over 2.5 years of additional development, and many new features and improvements are introduced (see also

this <u>release note</u> and the web help section <u>new features</u>). To support models created in previous versions of UPPAAL, version 4.0 can convert most old models directly from the GUI (alternatively it can be run in 3.4 compatibility mode by defining the environment variable UPPAAL_OLD_SYNTAX, see also item 2 of the <u>FAQ</u>).

Since Feb 26 2008, we also distribute a development snapshot of the forthcoming UPPAAL 4.2. The current development snapshot version is 4.1.4 released Jul 11, 2011.

The UPPAAL tool is free for non-commercial applications in academia <u>only</u>. For commercial applications a commercial license is required. Please see the <u>Download</u> section for

DESIGN VERIFICATION FOR EMBEDDED SYSTEMS

Our world-leading and internationally acclaimed model-checking tool UPPAAL is now available for commercial use!

ARTIST Summer School Europe, 2011

Kim Larsen [96]

Quasimodo

WP5 Additional Case Studies

- Self-Balancing Scooter (CHESS)
 - Highlevel control-modes modeled by engineers (UPPAAL)
 - Schedulability (UPPAAL)
- Adaptive scheduling of data paths (OCE)
 - Synthesis of optimal data path (CORA)
- Rapid Input-Output Packet Switch (ASML)
 - Simulation and verificatoin ofworst-case latencies (POOSL, UPPAAL)

Quasimodo, ESWEEK, Scottsdale, October 24, 2010

Page 7

ARTIST Summer School Europe, 2011 97

ICT-FP7-STREP-214755 / QUASIMODO Page 2 of 2

Quasimodo Industrial Handbook To be published by Springer

1. Introduction by Prince March	
and the second by Brian Nielsen, Jan Tretmans, and Kim Larsen	
2. Modelling Real-Time Systems using User 11	
3 More Feature 1 and String Uppaal by Frits Vaandrager	18
5. More reatures in UPPAAL by Alexandre David and Kim G. Laws	
4. Industrial Application of Uppeak The Adv	49
Mathijs Schuts, Feng Zhu, Faranak Heidarian and Frits Vaandrager	
5. Design of a Sage Real-Time Embedded System in Uppaal: The Self- Balancing Scooter Case by Bert Bos, Jiansheng Xing, Teun van Kuppeveld, and Marcel Verhoef	//
6. An Introduction 9	5
exandre David, Arne Skou, and Kim Larsen	
7. Schedulability Applysize i and 107	7
Software Case by Marius Mikucionis, Brian Nielsen, Kim Larson	
New: Time and Cost Optimal Salada up)
Patricia Boyer and Kim G. Larsen	
8. An Introduction to Automatica 133	
ers by Jean-Francois Raskin, Franck Cassez, Pierre-Algin Providential Control-	
Lanopa, 232 Whe Adum Keynier, Kim Larsen 133	

Thank You !

Thanks for your attention!

Kim Larsen [99]

Please do not hesitate to contact me: kgl@cs.aau.dk

ARTIST Summer School Europe, 2011