Automatic Programming Revisited
Part I: Puzzles and Oracles

Rastislav Bodik

University of California, Berkeley

Once you understand how to write a program, get
someone else to write it. Alan Perlis, Epigram #27

The Exascale Programming Challenge

/

[
|
l\

. I\

-\-

7S

/
L
75

\,
B

| / / / | / |
EA] SaY Sa) Sa) Say =Say =a
T\ | V|| V| (| V-] -y
B = ' ' ' ' -

\ ¥\

I/ l \

- - i.,\ ' !\ i._\ -

[Lo

i, e, e e
I ! / I

— — — —

! [L ! [L - - [Lo ! 7S

- s - .7~ / ! / / - fi
1L 1 L (75 (75 1L 1 L

The Exascale Programming Challenge

More levels of hierarchy

Accelerators everywhere

The revenge of Ahmdal’s Law

Programmers will be swamped in design choices

The Exascale Programming Opportunity

I

/

/
|

/
K ' i
,, %

| | | | | | |

I\ I -\ I h\ I h\ I n\ I h\ I h\ I
W W
i A A y A A

/

1
B
Iy, / / / I/

ol

/

/ I/ /
BN BN
k... \h, \.,

/

e

/

1\
o
Lo

/ / /

Wy) Wy By W
I ! / I

— — —d —

/ /Lo / /Lo / /L / [Lo / [Lo

| | J/SSy iy y/asy (R Y |
F= = [Z= 7= F=

How can CPU cycles help in programming?

The SKETCH Language

tryitat bit.ly/sketch-language

SKETCH: just two constructs

spec: int foo (int x) {
return x + X;
}
sketch: int bar (int x) implements foo {
return x << ??;
}
result: int bar (int x) implements foo {

return x << 1;

}

SKETCH is synthesis from partial programs

X+ X

. .
correctness criterion > SKETCH

: —> completion
, synthesizer
partial program —— X << 1

X<<??

No need for a domain theory. No rules needed to rewrite
X+x into 2*x into x<<1

Demo 1: division of a polynomial

int spec (int x) {
return x*x*x-19*x+30;

#define Root {| ?? | -?? |}

int sketch (int x) implements spec {
return (x - Root) * (x - Root) * (x - Root);

}

Note: Sketch divides polynomials slowly but it knows nothing
about finding roots of polynomials. This generality enables it to
do synthesis of arbitrary programs.

Example: Silver Medal in a SKETCH contest

4X4-matrix transpose, the specification:

int[16] trans(int[16] M) {
int[16] T = ©;
for (int 1 = 9; 1 < 4; i++)
for (int j = 0; j < 4; j++)
T[4 * 1 + j] = M[4 * j + 1];
return T;

¥

Implementation idea: parallelize with SIMD

10

Intel shufps SIMD instruction

SHUFP (shuffle parallel scalars) instruction

X1

~-.
~
~~o
~e
~~.
~~o
~.
~
~~o
~e

return

X2

-
-
pes
-
el
s
-
-
-
-
e
-

11

The SIMD matrix transpose, sketched

int[16] trans_sse(int[16] M) implements trans {
int[16] S =0, T = 0;
repeat (??) S[??::4]
repeat (??) T[??::4]

shufps(M[??::4], M[??::4], ??);
shufps(S[??::4], S[??::4], ??);

return T;

}

int[16] trans_sse(int[16] M) implements trans { // synthesized code
S[4::4] = shufps(M[6::4], M[2::4], 11001000b);
S[0::4] = shufps(M[11::4], M[6::4], 1001011eb);

S[12::4] = shufps(M[0::4], M[2::4], 10001101b);

S[8::4] = shufps(M[8::4], M[12::4], 11010111b);

T[4::4] = shufps(S[11::41. ST1::41. 10111106b):

T[12::4] = shufps(S[3 From the contestant email:

T[8::4] = shufps(S[4 Over the summer, I spent about 1/2
T[0::4] = shufps(S[1 a day manually figuring 1t out.

} Synthesis time: 30 minutes.

Demo 2: 4x4 matrix transpose

pragma options "--bnd-unroll-amnt 6 --bnd-inbits 3 --bnd-cbits 6";

int[16] transpose(int[16] mx){
int x, y;
for(x = 0; X < 4; X++)
for(y = 0; y <= X; y++)
mx[4*x+y] = mx[4*y+Xx];
return mx;

generator int[4] shufps(int[4] xmml, int[4] xmm2, bit[8] imm8){ /* automatically rewritten */
int[4] ret;

ret[@] = xmml[(int)imm8[0::2]];
ret[1] = xmml[(int)imm8[2::2]];
ret[2] = xmm2[(int)imm8[4::2]];
ret[3] = xmm2[(int)imm8[6::2]];

return ret;

int[16] sse_transpose(int[16] mx) implements transpose {
int[16] po = ©O;
int[16] pl = ©;

// Find the extra insight (constraint) that this version communicates to the synthesizer.

int steps = ??;
loop(steps){ po[??::4]
loop(steps){ pl[??::4]
return pl;

shufps(mx[??::4], mx[??::4], ??); }
shufps(p@[??::4], po[??::4], ??); }

13

How can synthesis help?

In this example, our programmer possessed enough
knowledge to actually write the program himself.

The synthesizer saved him from tedious details, like a
compiler.

Note we did not have to teach that compiler any
SIMD optimizations, as is usually necessary.

In the next example, the synthesizer will help us find
the program (actually, a solution to a puzzle). We

could not solve the problem without the synthesizer.
14

The Hat Game

There are n players in aroom. Someone will soon come by and
put hats [abeled 0 to n-1 on each of their heads. There may be
multiple hats with the same number.

Once the hats are in place, the players cannot communicate.
Each player must then guess which hat is on their head. A
player can see everyone else’s hat, but not their own.

The challenge is for the group to come up with a strategy such
that at least one person correctly guesses their own hat.

Assume the group knows n before they strategize.

15

Finding a winning strategy for n=2

There are only 16 strategies to consider.

We can find a winning one manually.

Color of hat the | What player PO | What player P1
player can see will guess will guess

0 0) 1

1] 0

@@ @

Finding a winning strategy for n=3

There are now 7,625,597,484,987 possible strategies.

We gave up on finding a winning one manually.

Colors of hats
the player sees

What player
PO will guess

What player
P1 will guess

What player
P2 will guess

0,0

0,1

0,2

1,0

1,1

1,2

2,0

2,1

2,2

17

The synthesis correctness condition (n=3)

po strategy(pl hat, p2 hat) : int {
p® : int[3][3] = { ??(0,1,2), ??(0,1,2) .. }
return p@[pl hat][p2 hat];

forall (i, j, k) from i, j, k in [0,2]
assert i = po_strategy(j, k)
or j = pl_strategy(i, k)
or k = p2_strategy(i, j)

Computing a winning strategy for n=3

We asked an oracle to compute a winning strategy.

There are 10,752 of them.

Colors of hats | What player | What player What player
the player sees | PO will guess | P1 will guess | P2 will guess

0,0 0 1 2

0,1 1 0 1

0,2 2 2 0

1,0 1 2 0

1,1 2 1 2

1,2 0 0 1

2,0 2 1 0

2,1 0 0 2

2,2 1 2 1

19

The Hat Game, Revisited

Now assume that the players do not know the total number of
players, n, or their own id, k, until the hats are placed.

Their winning strategy thus must be a function f(k, n, hats).
Our goal is to devise such a function f. This is our “program”.

We (humans) will observe the (oracle’s) winning strategies for
n=3 and generalize them for arbitrary n.

20

Generalizing from n=3 to arbitrary n.

Here is one of the 10,752 winning strategies.

Sad

y, the algorithmic pattern is not visible.

Colors of hats | What player | What player What player
the player sees | PO will guess | P1 will guess | P2 will guess

0,0 0 1 2

0,1 1 0 1

0,2 2 2 0

1,0 1 2 0

1,1 2 1 2

1,2 0 0 1

2,0 2 1 0

2,1 0 0 2

2,2 1 2 1

21

ldea 1: Interact with the oracle

Fix a strategy for Po and ask what P1 and P2 strategies
yield a winning group strategy. There are 8 of them.

Colors of hats | What player | What player What player
the player sees | PO will guess | P1 will guess | P2 will guess

0,0 0
0,1
0,2
1,0
1,1
1,2
2,0
2,1
2,2

= OIN|IOIN|—~|N|—-

22

Coordination between oracles

One oracle’s choice can affect the value of another

— Some coordination is required
— In hat game, coordination occurred within a substrategy

Independence is the lack of coordination
— In hat game, independence existed across substrategies

The oracles can exhibit unintended coordination

23

ldea 2: Mine oracle’s alternative solutions

It turns out that a winning strategy can be composed
from any combination of smaller strategies.

Colors of hats | What player | What player What player
the player sees | PO will guess | P1 will guess | P2 will guess

0,0 0 1 2
0,1 1 0 1
0,2 2 2 0

ldea 3: Ask the system to synthesize f

We tell the system “synthesize f that uses +,-and % ”’

f(k,n,hats) = “a program with +,-,%,sum”

and the system produces the function

f(k,n,hats) = (k - 1 - sum(hats)) % n

which is a winning strategy parametricin k, n.

25

Summary

Ask oracle to compute all strategies (programs) for n=3

Interact with the oracle by constraining it and observing
what solutions remain.

Decompose the solutions to see if a strategy can be
composed from smaller strategies.

Synthesize the function that is the parametric strategy.

26

Beyond synthesis of constants

Sometimes the insight is “I want to complete the hole with an of
particular syntactic form.”

— Array index expressions: A[?2?¥i+??*j+??]
— Polynomial of degree 2: ??*x*x + ??*x + ??

— Initialize alookup table: int strategy[N] = {??,??,??,??}

27

Angelic Programming

28

What's your memory of Red-Black Tree?

left_rotate(Tree T, node x) {
node y;
y = X->right;
/* Turn y's left sub-tree into x's right sub-tree */
x->right = y->left;
if (y->left != NULL)
y->left->parent = x;
/* y's new parent was x's parent */
v->parent = x->parent;
set the parent to point to y instead of x */
irst see whether we're at the root */
(x->parent == NULL) T->root = y;
if (x == (x->parent)->left)
A B B ¢ /* x was on the left of its parent */
! X->parent->left = y;
else
/* x must have been on the right */
x->parent->right = y;
/* Finally, put x on y's left */
y->left = x;
X->parent = vy;

}

http://www.cs.auckland.ac.nz/software/AlgAnim/red_black.html

Jim Demmel's napkin

30

Programmers often think with examples

They often design algorithms by devising and studying
examples demonstrating steps of algorithm at hand.

If only the programmer could ask for a demonstration
of the desired algorithm!

The demonstration (a trace) reveals the insight.

We create demonstration with an executable oracle.

31

Angelic choice

Angelic nondeterminism.
Oracle makes an angelic (clairvoyant) choice.

I'1(S) evaluates to a value chosen from set S such that
the execution terminates without violating an assertion

32

Angelic Programming

Angelic construct: choose(vali, val2, ...)

— The oracle returns one of the parameters
— Choice is carefully made so that all assertions pass
— In the hat game, the oracle filled in the table

p9 : int[3][3] = {choose(0,1,2), choose(0,1,2) .. }
pl : int[3][3] = {choose(©0,1,2), choose(0,1,2) .. }
{choose(0,1,2), choose(0,1,2) .. }

p2 : int[3][3]

forall (i, j, k) from i in [0,2], j in [0,2], k in [0,2]
assert 1 = po[j][k] or j = p1[i][k] or k = p2[i][]]

33

Programming with oracles (DFS)

Design DFS traversal that does not use a stack.

Used in garbage collection: when out of memory, you
cannot ask for O(N) memory to mark reachable nodes

We want DFS that uses O(1) memory.

34

Depth-first search with explicit stack

vroot = new Node(g.root)
push(vroot); current = g.root

while (current != vroot) {
if (!current.visited) current.visited = true
if (current has unvisited children) {
current.idx := index of first unvisited child
child = current.children[current.idx]

push(current)

current = child
} else { Node
} current = pop() idx

children

35

Parasitic Stack

Borrows storage from its host (the graph)

accesses the host graph via pointers present in traversal code

A two-part interface:

stack: usual push and pop semantics
parasitic channel: for borrowing/returning storage

push(x, (node,,node,,..)) stack can (try to) borrow fields in node,

pop(node,, node,,...) value node, may be handy in returning storage

Parasitic stack expresses an optimization idea

But can DFS be modularized this way? Angels will tell us.
36

Replace regular stack with parasitic stack

vroot = new Node(root)
push(null); current = vroot

while (current != vroot) {
if (!current.visited) current.visited = true
if (current has unvisited children) {

current.idx := index of first unvisited child Node
child = current.children[current.idx] »
push(current, (current, child)) -
. children
current = child
} else { .
current = pop((current)) k////// \\
}
idx idx

children children

Angels perform deep global reasoning

Which location to borrow?
traversal must not need until it is returned
How to restore the value in the borrowed location?

the stack does not have enough locations to remember it

How to use the borrowed location?
it must implement a stack

Angels will clairvoyantly made these decisions for us

— in principle, human could set up this parasitic “wiring”,
too, but we failed without the help of the angels

38

. * ()
ParasiticStack.push

class ParasiticStack {
var e // allow ourselves one extra storage Llocatic

push(x, nodes) {
// borrow memory Location n.children[c]
n = choose(nodes)
¢ = choose(@ until n.children.length)

// value 1in the borrowed location; will need to be restored
v = n.children|c]

// we are holding 4 values but have only 2 memory Llocations
// select which 2 values to remember, and where
e, n.children[c] = angelicallyPermute(x, n, v, e)

39

ParasiticStack.pop

pop(values) {
// ask the angel which Llocation we borrowed at time of push
n = choose(e, values)
¢ = choose(® until n.children.length)

// v 1s the value stored in the borrowed Location
v = n.children|c]

// (1) select return value
// (2) restore value in the borrowed Location

// (3) update the extra location e
r, n.children[c], e = angelicallyPermute(n,v,e,values)

return r

40

Running the angelic program

8040 solutions synthesized

Chooses in push

Input: ° e
e Chooses in pop
n C r child S
“ Push | Push Pop |Push|Push| Pop Pop Pop
root| A B A C D A root
n C e child

Example of an undesirable trace

Undesirable traces meet the spec but do not

demonstrate a desirable algorithm

/| choose initial value for extra storage
e = choose(nodes)

push(..)

idx

children

A

n.children[c] = angelPermute(x,n,v,e) // e

42

Good and bad traces

Trace with strange behavior

/| choose initial value for extra storage 4)

e = Node(c) e is chosen only
< because e = Node(c)

/| call to push(x = Node(origin), nodes = {Nod_ In the initializer)
/| choose node whose child pointer will be borrowed
n = choose(nodes) // Node(a)
/| choose which child pointer will be borrowed
¢ = choose(® until n.children.length) // 1
/| choose how to set storage nodes
/| original values: Node(c), Node(c)
e, n.children[c] = angelicallyPermute(x, n, v, e)
// x = Node(origin), e = Node(c)

43

Removing coordination

Bad traces usually display unintended coordination

— In DFS, oracles coordinated across procedure boundaries
to produce bad traces

We can use the programmer’s understanding of
coordination to filter out undesired traces

Without coordination, we can break traces into
independent subtraces

44

Interactions in DFS

Push | Push| Pop |Push]Push] Pop Pop
vroot] A B A C D A

Pop
VIroot

Each box represents one oracle
— All red oracles are coordinating with each other
— All yellow oracles are coordinating with each other
— All white oracles are completely independent

45

Let's refine the angelic program

class ParasiticStack {
var e : Node
push(x, nodes) {
n = choose(nodes)
c = choose(® until n.children.length)
e, n.children[c] = angelicallyPermute(x,n,v,e)

}
pop(values) {

n = choose(e, values)

c = choose(® until n.children.length)

v = n.children[c]

r, n.children[c],e = angelicallyPermute(n,v,e,values)

return r

bl

46

First we observe what these angels do

class ParasiticStack {
var e : Node
push(x, nodes) {
n = choose(nodes)
c = choose(® until n.children.length)
e, n.children[c] = angelicallyPermute(x,n,v,e)

}
pop(values) {

n = choose(e, values)

c = choose(® until n.children.length)

v = n.children[c]

r, n.children[c],e = angelicallyPermute(n,v,e,values)

return r

bl

47

Refinement #1

class ParasiticStack {

var e : Node

push(x, nodes) {
n = choose(nodes)
c = choose(® until n.children.length)
e, n.children[c] = x, e

}

pop(values) {
n =e
c = choose(® until n.children.length)
v = n.children[c]
r, n.children[c],e = e, values[0], Vv
return r

bl

48

Refinement #1

class ParasiticStack {
var e : Node
push(x, nodes) {
n = choose(nodes)
c = choose(® until n.children.length)
e, n.children[c] = x, e

}

pop(values) {
n==e
c = choose(® until n.children.length)
v = n.children[c]
r, n.children[c],e = e, values[©@], v
return r

o}

49

Refinement #2

class ParasiticStack {

var e : Node

push(x, nodes) {
n = nodes[0]
c = choose(® until n.children.length)
e, n.children[c] = x, e

}

pop(values) {
n =e
c = choose(® until n.children.length)
v = n.children[c]
r, n.children[c],e = e, values[0O], Vv
return r

bl

50

Refinement #2

class ParasiticStack {
var e : Node
push(x, nodes) {
n = nodes[9]
c = choose(@ until n.children.length)
e, n.children[c] = x, e

}

pop(values) {
n=e
c = choose(@ until n.children.length)
v = n.children[c]
r, n.children[c],e = e, values[©@], v
return r

o}

51

Refinement #2

class ParasiticStack {

¥

var e : Node

push(x, nodes) { invariant: ¢ == n.idx

¥

n = nodes[9]
c = choose(@ until n.children.length)
e, n.children[c] = x, e

pop(values) {

}

n==e

c = choose(@ until n.children.length)
v = n.children[c]

r, n.children[c],e = e, values[@], v
return r

52

Final refinement

class ParasiticStack {
var e : Node

push(x, nodes) {
n = nodes[0]

e, n.children[n.idx] = x, e
}
pop(values) {

n = e

v = n.children[n.idx]
r, n.children[n.idx],e = e, values[@], v
return r

bl

53

Our results: what we synthesized

Concurrent Data Structures [PLDI 2008]
lock free lists and barriers

Stencils [PLDI 2007]
highly optimized matrix codes

Dynamic Programming Algorithms [OOPSLA 2011]
O(N) algorithms, including parallel ones

54

To be continued after lunch

How to implement the oracles (synthesis algorithms)
Hiding sketches from programmers

Similar synthesizers and the space of synthesis ideas

55

