Automatic Programming Revisited
Part Il: Synthesizer Algorithms

Rastislav Bodik

University of California, Berkeley

Outline of Part Il

Synthesizer algorithms

Future directions:
— concurrency
— domain-specific synthesis (dynamic programming)

Other partial program synthesizers

What’s between compilers and synthesizers?

>

.| Synthesizers
3 Autobayes,
U I []]
- FRTW, Spiral - Hand-optimized code
y \ when a domain theory is
c \ lacking, code is handwritten
] \
g
= S
= Compilers ™~--______________
Q OpenCL, NESL
>
domain-specific general purpose

Our approach: help programmers auto-write code
without (us or them) having to invent a domain theory

Automating code writing

manug |

'l‘.ra ns ,o ose

l. /orouem

\'4

/ L\

ke B N sl

code

gﬁ

Codegen / SPea'al\'ie('

Sfin-H\.esiS 2.0

‘ran s,oo:e
|

' [
SKETCH|

SN
(78 %8

SKETCH: just two constructs

spec:

sketch:
U]

result:

(o8 8

int foo (int

}

return Xx

int bar (int

}

return Xx

int bar (int

}

return Xx

X)

{

+ X,

X)

<<

X)

<<

implements foo {
2
??;

implements foo {
1;

It’s synthesis from partial programs

correctness criterion —
synthesizer =~ —> completion

partial program ——

o> R €

v
complete program

The price SKETCH pays for generality

What are the limitations behind the magic?

Sketch doesn’t produce a proof of correctness:

SKETCH checks correctness of the synthesized program on
all inputs of up to certain size. The program could be
incorrect on larger inputs. This check is up to programmer.

Scalability:

Some programs are too hard to synthesize. We propose to
use refinement, which provides modularity and breaks the
synthesis task into smaller problems.

Counterexample-Guided Inductive Synthesis
(CEGIS)

How it works

Step 1: Turn holes into control inputs

Step 2: Translate spec and sketch to boolean functions
Step 3: Formulate synthesis as generalized SAT

Step 4: Solve with counterexample guided search
Step 5: Plug controls into the sketch

Making the candidate space explicit

A sketch syntactically describes a set of candidate programs.
— The ?? operator is modeled as a special input, called control:

int f(int x) { int f(int x, int cl, c2) {
L2 L 2? L — . €l .. c2 .

} }
What about recursion?
— calls are unrolled (inlined) => distinct ?? in each invocation

= unbounded number of 22 in principle

— but we want to synthesize bounded programs, so unroll until you
found a correct program or run out of time

10

How it works

Step 1: Turn holes into control inputs

Step 2: Translate spec and sketch to boolean functions
Step 3: Formulate synthesis as generalized SAT

Step 4: Solve with counterexample guided search
Step 5: Plug controls into the sketch

11

Must first create a bounded program

Bounded program:
— executes in bounded number of steps

One way to bound a program:
— bound the size of the input, and
— work with programs that always terminate

12

Ex : bit population count.

int pop (bit[W] x) {
int count = 0;
for(int 1=0; i<W; i++)
if (x[1i])
count++;
return count;

X

count

one Lofofo]1]

count T[]

f

count LL[T[]

count [T [T1]

Al
g

F(x) =

w

count [T [T]

By

13

How it works

Step 1: Turn holes into control inputs

Step 2: Translate spec and sketch to boolean functions
Step 3: Formulate synthesis as generalized SAT

Step 4: Solve with counterexample guided search
Step 5: Plug controls into the sketch

14

Putting together sketch and spec

15

Sketch synthesis is constraint satisfaction

Synthesis reduces to solving this satisfiability problem
— synthesized program is determined by ¢

dc. V x spec(x) = sketch(x,)

Quantifier alternation is challenging. Ourideais to
turn to inductive synthesis

16

How it works

Step 1: Turn holes into control inputs

Step 2: Translate spec and skretch to boolean functions
Step 3: Formulate synthesis as generalized SAT

Step 4: Solve with counterexample guided search

Step 5: Plug controls into the sketch

17

Inductive Synthesis

Synthesize a program from a set of input-output observations

Some history
— Algorithmic debugging (Shapiro 1982)
— Inductive logic programming (Muggleton 1991)
— Programming by example (e.g. Lau 2001)

Three big issues
— Convergence: How do you know your solution generalizes?
— Suitable observations: Where to obtain them?

— Efficiency: Computing a candidate correct on a few observations is
still hard

18

CounterExample —Guided Inductive Synthesis

The CEGIS algorithm:

candidate implementation

succeed —

Inductive Synthesizer

compute candidate
implementation from
concrete inputs.

fail

A

I
verifier/checker /@

A

observation set E

add

a (bounded) counterexample input

Inductive synthesis step implemented with a SAT solver

19

CEGIS: Summary

Inductive synthesizer could be adversarial
— so we constrain it to space of candidates described by the sketch

Finding convergence (is resulting program correct?)

— we charge a checker with detecting convergence

Counterexamples make good empirical observations

— new counterexample covers a new ‘“corner case”

20

Convergence

Example: remove an element from a doubly linked list.

void remove(list 1, node n){
if (cond(l,n)) { assign(1l, n);
if (cond(l,n)) { assign(1l, n);
if (cond(1l,n)) { assign(1l, n);
if (cond(l,n)) { assign(1l, n);

N o

int N = 6;
void test(int p){
nodes[N] nodes;
list 1;
initialize(1l, nodes); //.. add N nodes to list
remove(l, nodes[p]);
checkList(nodes, 1, p);

Ex: Doubly Linked List Remove

void remove(list 1, node n)

{
if(n.prev != 1.head)
n.next.prev = n.prev;

if(n.prev != n.next)
n.prev.next = n.next;

Counterexamples

P=3

22

Ex: Doubly Linked List Remove

void remove(list 1, node n)

{
if(n.prev != null)
n.next.prev = n.prev;

if(1l.head == n)
l.head = n.next;

1.tail = 1.tail;

if(l.head!=n.next)
n.prev.next = n.next;

Counterexamples

P=3

pP=0

23

Ex: Doubly Linked List Remove

void remove(list 1, node n)

{
if(n.prev == null)
l.head = n.next;

if(n.next == null)
l.tail = n.prev;

if(n.next != 1l.head)
n.prev.next = n.next;

if(n.next != null)
n.next.prev = n.prev;

Counterexamples

p=3
p=0
p=5

Process takes < 1 second

24

Synthesis as generalized SAT

e The sketch synthesis problem is an instance of 2QBF:

dc. V x spec(x) = sketch(x, c)

e Counter-example driven solver:

| = {} S(x4, ¢)=F(x;) & ... & S(x,, ¢)=F(x,)
X = random() | ={ X, X5, ..., X, }

|

c = synthesizeForSomelnputs(l)
if ¢ = nil then exit(“*buggy sketch")

x = verifyForAlllnputs(c) // X: counter-example
while x != nil
return c

S(x, ¢) I= F(x) J

25

How it works

Step 1: Turn holes into control inputs
Step 2: Translate spec and sketch to boolean functions

Step 3: Formulate synthesis as generalized SAT
Step 4: Solve with counterexample guided search
Step 5: Plug controls into the sketch

26

Exhaustive search not scalable

Option o: Exploring all programs in the language
— for the concurrent list: space of about 103° candidates
— if each candidate tested in 1 CPU cycle: ~age of universe

Option 1: Reduce candidate space with a sketch
— concurrent list sketch: candidate space goes down to 109

— 1sec/validation ==>about 10-100 days (assuming that the
space contains 100-1000 correct candidates)

— but our spaces are sometimes 103°°

Option 2: Find a correct candidate with CEGIS
— concurrent list sketch: 1 minute (3 CEGIS iterations)

27

Number of counterexample vs. log(C)

C = size of candidate space = exp(bits of controls)

counterexamples

70

60

50

40

30

20

10

./

y=0.0848x + 3.2698
R*=0.744
*
/
* *
*

*
.0

/ .
.
. * .

100 200 300 400 500 600
log(C) 28

Number of counterexample vs. log(C)

C = size of candidate space = exp(bits of controls)

600

500

400

300

200

y = 0.0644x + 9.7299

R?=0.9457 7,

)

/.

e
e

log(C)

— |C | = 102400
o /
o
*
O T T T T T T T T 1
0 1000 2000 3000 4000 5000 6000 7000 8000 9000

29

Synthesis of Concurrent Programs

30

CEGIS for Concurrent Programs

-Seqrentral Concurrent

succeed

candidate implementation

ed

Inductive Synthesizer

Derive candidate
implementation from
concrete inputs.

fail

A

——

Automated Validation

SPIN

fail
counterexample ifrpat

A

observation set E

31

Synthesis of Dynamic Programming

32

Dynamic Programming

Compute O(2") algorithms in O(n*) time
Example: fib(n)

BN
HS @

33

Challenges in DP algorithm design

The divide problem: Suitable sub-problems often
not stated in the original problem. We may need to
invent different subproblems.

The conquer problem: Solve the problem from

subproblems by formulate new recurrences over
discovered subproblems.

Maximal Independent Sum (MIS)

Given an array of positive integers, find a non-

consecutive selection that returns the best sum

and return the best sum.

Examples:

mis(
mis(

4,2,1,4

i]
1,3,2,4

vv

35

Synthesizer Work-flow

D.P.
algorithm

36

Exponential Specification for MIS

The user can define a specification as an clean
exponential algorithm:

mis(A):
best = 0
forall selections:
if legal(selection):
best = max(best, eval(selection, A))
return best

37

Sketch = “shape” of the algorithm

def linear mis(A):
tmpl = array()
tmp2 = array()
tmpl[@] = initializel()
tmp2[0] = initialize2()
for 1 from 1 to n:

tmpl = propl(tmpl[i-1],tmp2[i-1],A[i-1])
tmp2 = prop2(tmpl[i-1],tmp2[i-1],A[i-1])

return term(tmpl[n],tmp2[n])

38

Synthesize propagation functions

def prop (x,y,z)
switch

case
case
case
case

case

0:

(?2?)

return X

1: return y
2:
3: return unary(prop(X,y,z))

return z

: return binary(prop(x,y,z),

prop(X,y,z))

39

MIS: The synthesized algorithm

linear mis(A):
tmpl = array()

tmp2 = array()
tmpl[O] = ©
tmp2[0] = ©

for 1 from 1 to n:
tmpl[i] = tmp2[i-1] + A[i-1]
tmp2[i] = max(tmpl[i-1],tmp2[i-1])
return max(tmpl[n],tmp2[n])

40

Our DP Synthesizer

General: Synthesizes algorithms expressible as a kth
order recurrence, ie, a value depends on at most k
previous values.

Programmer-accessible: The user does not need to
understand synthesizer internals.

Extensible: Solve more than kth order recurrences
problems by composing instances of the synthesizer.

41

A guy walks into a Google Interview ...

Given an array of integers A=[a1, a2, ..., an|,
return B=[b1, b2, ..., bn]
such that: bi=a1+... +an-ai

Time complexity must be O(n)

Can’t use subtraction

42

Google Interview Problem: Solution

puzzle(A): template2(A,B):
B = templatel(A) tmp2 = array()
C = template2(A,B) tmp2[n-1] = ©
D = template3(A,B,C) for i from 1 to n-1:
return D tmp2[n-1i-1]
= tmp2[n-1i]+A[n-1i]

sk Q‘('C,H

templatel(A):
tmpl = array() template3(A,B,C):
tmpl[0] = © tmp3 = array()
for i from 1 to n-1: for 1 from @ to n-1:
tmpl[i] = tmp[i-1]+A[n-1] tmp3[i] = B[i] + C[i]

return tmpl return tmp3

43

alLisp

[Andre, Bhaskara, Russell, ... 2002]

aLisp: learning with partial programs

Problem:
— implementing Al game opponents (state explosion)
— ML can’t efficiently learn how agent should behave
— programmers take months to implement a decent player

Solution:
— programmer supplies a skeleton of the intelligent agent
— ML fills in the details based on a reward function

Synthesizer:
— hierarchical reinforcement learning

45

What’s in the partial program?

Strategic decisions, for example:

first train a few peasant

then, send them to collect resources (wood, gold)

when enough wood, reassign peasants to build barracks
when barracks done, train footmen

better to attack with groups of footmen rather than send
a footman to attack as soon as he is trained

[from Bhaskara et al [JCAI 2005]

46

Fragment from the aLisp program

(defun single-peasant-top ()

———————————

(action ’get-wood)
(call nav *home-base-loc*)
(action ’dropoff))

(defun nav (1)
(loop until (at-pos 1) do

(action 4choose§’(N S E W Rest)))))

-“Tm- this.x > 1l.x then go West
check for conflicts

47

It’s synthesis from partial programs

correctness criterion —
synthesizer =~ —> completion

partial program ——

o> R €

v
complete program

48

SKETCH

ref implementation —>

sketch —

SAT-based
inductive
synthesizer

—> hole values

49

alisp

reward function —

aLisp partial program —

hierarchical
reinforcement
learning

learnt choice
—>

functions

50

First problem with partial programming

Where does specification of correctness come from?
Can it be developed faster than the program itself?

Unit tests (input,output pairs) sometimes suffice.

Next two projects go in the direction of saying even less.

51

SMARTedit*

[Lau, Wolfman, Domingos, Weld 2000]

SMARTedit*

Problem:
— creation of editor macros by non-programmers

Solution:
— user demonstrates the steps of the desired macro
— she repeats until the learnt macro is unambiguous

— unambiguous = all plausible macros transform the
provided input file in the same way

Solver:
— version space algebra

53

An editing task: EndNote to BibTex

%0 Journal Article

%14575

%A ARichard C. Waters

%T The Programmer's Apprentice: A Session with KBEmacs
%J IEEE Trans. Softw. Eng.

@article{4575,
author = {Waters, Richard C.},

title = {The Programmer's Apprentice: A Session with KBEmacs},
journal = {IEEE Trans. Softw. Eng.},
volume = {11}, number = {11}, year = {1985},

%@ 0098-5589 > issn = {0098-5589},

v pages = {1296--1320},

N 11 doi = {http://dx.doi.org/10.1109/TSE.1985.231880},

%P 12961320 publisher = {IEEE Press}, address = {Piscataway, NJ, USA},
%D 1985

%R http://dx.doi.org/10.1109/TSE.1985.231880
%1 IEEE Press

Demonstration = sequence of program states:

1) cursor in (0,0) buffer = “%9 . clipboard =
2) cursor in . buffer = “%0 ..” clipboard = “”
3) ..

Desired macro:
move(to after string “%A)

54

Version space = space of candidate macros

Version space expressed in SKETCH (almost):

#define location {| wordOffset(??) | rowCol(??,??)

repeat ?? times {
switch(??) {

0:

1:
2
3

¥

| prefix(“??”) | . |}
move(location)
insert({]| “??” | indent(2?,”??”) |}))
cut()
copy ()

55

Version Space for SMARTedit

Program
>
Action
M DeleteSel Location
, Paste
‘ Cut CharDisjunct
[nsert Copy Select ‘ !

Location RowCol

U Delete 1 WordOffset

/R : CharOffset
ConstStr StrNumStr IndentStr Location 1 A
>
ConstStr Location Search

LinearInt Row Column

Number l><1 Location Left /\Z .
/\%, ‘ ConstStr - u/S\e U U
&/ U v‘,’c_COI?SlSl) ng/ﬂ ‘”' - |
. . 2 Indent RelRow RelCol
LinearInt Linearint l AbsCol ‘
1 Linearint v Linearint 56

Constint Constint

SMARTedit*

demonstration(s) —

macro template —

version space
algebra

set of macro
—>
parameters

e > completed macro(s) DE—

v

input file —>|

run the macro

—> processed file

57

Prospector

[Mandelin, Bodik, Kimelman 2005]

Software reuse: the reality

Using Eclipse 2.1, parse a Java file into an AST

IFile file = ...
|CompilationUnit cu = JavaCore.createCompilationUnitFrom(file);
ASTNode node = AST.parseCompilationUnit(cu, false);

Productivity < 1 LOC/hour Why so low?

1. follow expected design? two levels of file handlers
2. class member browsers? two unknown classes used

3. grep for ASTNode? parser returns subclass of ASTNode

59

Prospector

Problem:
APIs have 100K methods. How to code with the API?

Solution:
Observation 1: many reuse problems can be described with
a have-one-want-one query g=(h,w), where h,w are static
types, eg ASTNode.
Observation 2: most queries can be answered with a
jungloid, a chain of single-parameter “calls”. Multi-
parameter calls can be decomposed into jungloids.

Synthesizer:
Jungloid is a path in a directed graph of types+methods.

Observation 3: shortest path more likely the desired one

60

Integrating synthesis with IDEs

e How do we present jungloid synthesis to programmers?
e Integrate with IDE “code completion”

IEditorPart reditors / have types

public void parse (IFile| file) {
ASTNode|ast =

want type

Queries: (IFile, ASTNode)
(IEditorPart, ASTNode)

Are these two also about partial programs:

correctness criterion —
synthesizer =~ —> completion

partial program ——

o> R €

v
complete program

62

SMARTedit*

demonstration(s) —

macro template —

version space
algebra

set of macro
—>
parameters

e > completed macro(s) DE—

v

input file —>|

run the macro

—> processed file

63

Prospector

have,want query —

jungloid template + APl —

shortest path
search

ranked
jungloids

user selection

desired
jungloid

64

Turn partial synthesis around?

correctness criterion —

partial program ——

synthesizer

—* completion

correctness check —

angelic partial program ——

synthesizer

__angelic
demonstration

demonstrations —

partial program «——

synthesizer

—* completion

65

Synthesis with partial programs

Partial programs can communicate programmer insight

Once you understand how to write a program,
get someone else to write it. Alan Perlis, Epigram #27

Suitable synthesis algorithm completes the mechanics.

End-user programming, APIl-level coding are also
decomposable into partial program and completion.

66

Acknowledgements

UC Berkeley

Gilad Arnold Casey Rodarmor
Shaon Barman Prof. Koushik Sen
Prof. Ras Bodik Prof. Sanjit Seshia
Prof. Bob Brayton Lexin Shan

Joel Galenson Saurabh Srivastava
Sagar Jain Liviu Tancau

Chris Jones Nicholas Tung
Evan Pu

MIT

Prof. Armando Solar-Lezama
Rishabh Singh

Kuat Yesenov

Jean Yung

Zhiley Xu

IBM

Satish Chandra
Kemal Ebcioglu
Rodric Rabbah
Vijay Saraswat

Vivek Sarkar
67

