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A well-known evolution: Multi-core SoC 

From System-on-Chip…  to  …Multi-Core System-on-Chip  
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In embedded systems: ITRS 2009 
●  « SOC-Consumer Portable Drivers » 

 Performance * 1000 in 15 years 

 Power consumption objective 500 mW 

 PE = dedicated accelerators, 250 kG/64 Kbits 

 Same design effort 
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Two possible paths 
●  Homogeneous = replication of identical resources 

+ Programming simplicity  
+ Fault and variability-tolerance  
+ Flexibility 
- Area 
- Power consumption / performance 

●  Heterogeneous = each resource has its own dedicated 
function 
+ Area 
+ Power consumption / performance 
- Each resource is critical  
- Programming is more complex 
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●  Quiet evolution: mixing heterogeneous and homogeneous 
–  Communications are key: Network-on-Chip (NoC) 
–  Control distribution 

●  Revolution ? 
–  Dynamic adaptation through reconfiguration 
–  Distributing decisions 

Towards regular and adaptable architectures 
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●  Context 

●  MAGALI overview 

●  NoC, GALS and Low-Power 

●  Dynamic reconfiguration  

●  Distributed decisions 

●  Configuring & programming  

●  Conclusion 

Outline 
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An application starting point 

“Software Defined Radio” 
Femtocells 
MIMO 
(ICT projects Befemto & 
ARTIST4G) 

“Cognitive Radio” 
TERROP 
NEWCOM  
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●  Increasing complexity 

–  MIMO scheme 

–  Spectral efficiency increase 

=> 1 Tops needed in 2015 

●  Increasing flexibility 

–  Software Defined Radio, Cognitive Radio 

 more control, more configurations 

●  Strict constraints 

–  Hard real-time: frame = 1 ms 

–  Mastering computing latency mandatory 

(latency => memory => real estate => cost) 

–  Power consumption under 500 mW 

What are the problems?  

C.H. Van Berkel, 
“Multi-Core for 
Mobile Phones”, 
DATE’09 
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LETI’s NoC 

  2-D mesh based NoC 
  Support heterogeneous tiles: IP, memory blocs, programmable 
cores, reconfigurable hardware 
  Data-flow homogeneous programming model 
  Communication/Configuration (CC) controller 
  GALS implementation for advanced power management 

LCG 

GALS 

CC 

IP 

Power 

GALS interface 

Local Clock Generator 

Power Control 

Communication/Configuration 
controller 

IP Core 
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MAGALI Chip 

●  TRX_OFDM: 32-2048 FFT/iFFT, GI insertion, framing/deframing, power normalization 

●  DCM: Fully programmable memory cores for data storage and manipulation (32Kwords 32bits), 
Configuration server 

●  MEPHISTO: VLIW cores for complex matrices computation (8GMAC/s) 
●  BIT cores: Support for mapping / interleaving / puncturing (TX and RX) 

●  FEC decoders: reconfigurable channel decoders supporting LDPC, Viterbi and Turbo decoders 
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MAGALI Chip layout 

●  ST 65nm LP technologie, 5400µm x 5400µm, 30mm²  

●  Total power < 500mW 

●  NoC area (15 Routers + 20 GALS interfaces + NoC links) : 11% overall chip 
area 
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●  Context 

●  MAGALI overview 

●  NoC, GALS and Low-Power 

●  Dynamic reconfiguration  

●  Distributed decisions 

●  Configuring & programming  

●  Conclusion 

Outline 
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What is a NoC? 
●  “NoC is an interconnection structure for exchanging 

information on a chip between heterogeneous or 
homogeneous HW/SW resources” 
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Some history 

●  1980 to 2000 : Multiprocessors networking 

●  2000, Jantsch et Al. « NoC: an architecture for billion 
transistor area »  

●  2000 : A. Greiner et Al. « SPIN, a fat-tree topology for IP 
communications »  

●  2001, Dally et Al. : « Route packets, not wires » 

●  2002, Benini and De Micheli: « NoC: a new SoC 
paradigm » 
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NoC research worldwide 
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Communication-Centric platform 
●  Concepts 

–  Architecture platform articulated around a Network-on-Chip 

–  Network-on-Chip with QoS for high throughput communications, 
low latency, deadlock or live-lock free, reliability   

–  Efficient implementation with GALS techniques 
●  Key element for power management and isolation of faulty elements 

–  Need for: 
●  Efficient programming model 

●  Associated tools: 
–  Development possible thanks to platform concept 
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SoC standard methodology 
SoC 
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Arch. 
Def. 

HW units 
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SoC communication-centric methodology 
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NoC topics 
●  NoC is in the heart of programming model 

–  What are the functions of a NoC ? 

●  Just an efficient interconnection medium 

●  Added Quality of Service 

●  Partial/full Support for programming model 

–  Communication protocol stack implemented 

●  NoC is in the heart of parallel and distributed computing  

–  New tools for application mapping are needed 

●  NoC is in the heart of implementation issues 

–  Globally Asynchronous, Locally Synchronous structures 

–  NoC is a potential weakness point for reliability, variability 
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NoC topics 
●  NoC is in the heart of power consumption issues 

–  NoC itself can be power hungry 

–  NoC can open new solutions for smart management of power for the 
whole structure 

●  NoC is a new paradigm shifting from IP re-use to platform re-use 

–  Need new design tools (exploration, construction) 

●  NoC arises new questions on classical topics 

–  Testability of the NoC itself, and its associated IPs 

–  Debug is a difficult issue : determinism is often required by industrials, 
but difficult to achieve…with GALS, parallel and distributed structures 
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NoC Protocol Stack 
Programming model of the  
NoC-based platform is essential.  
It can determine : 

•  Reconfiguration management 

• Task synchronization 

•  Power management  

•  Bandwidth allocation  

•  End-to-end flow control 

•  Protocol wrappers 

•  Packet routing 

•  GALS strategy 

O
S

I T
ra

ns
m

is
si

on
 le

ve
l 



- 22 - 

An example of NoC particularities: Topology 

Chordal ring Mesh 
Hypercube 

Omega 
Network 

Switches 
Configurations 
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Scalability and implementation 

●  Topology: Chordal ring 
●  Implementation:  

–  NODE 4*4 only  => 20 to 25 % area gain, < 5% performance 
gain compared to 5*5 needed for mesh 

–  Is it a good layout ? 

–  Long wires ? 
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Topology vs 2-D layout : scaling 
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Topology vs 2-D layout: 32 units case 
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Deleting the long wires ? 
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Final comparison mesh/chordal ring 
CHORDAL RING 

Diameter = N/4 (if all the wires) 
N = 16, D = 4 
N = 32, D = 8 
N = 64, D = 16 
N = 79, D = 20 

With layout view : 

Layout 1:1 with long lines 

If long lines deleted :  
Equivalent diameter = real diameter *2 
+ p*mean lines costs 

Else 
Equivalent diameter = real diameter + 
1*long line costs + p*mean line costs 
If cost ~ real distance : 
= real diameter *2 + p*mean lines costs 

MESH 

Diameter = 2*(SQRT(N)-1) 
N = 16, D = 6 
N = 32, D = 10 
N = 64, D = 14 
N = 79, D = 16 

With layout view : 

Layout 1:1 short lines only 

Equivalent diameter = real diameter 
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Implementation challenges 
●  Globally Asynchronous Locally Synchronous (GALS) architecture 

–  NoC is in the center of such issues 

●  Low-power schemes 
–  Communication is power-consuming  
–  NoC implementation influences low-power policies 

●  Test & Debug 
–  Mandatory for industrial acceptance 
–  Distributed systems induced by NoC are difficult to debug (lost of pure 

determinism in many cases) 

●  Tools 
–  Mandatory for NoC-based architecture design 

●  Other challenges : 
–  Optical NoC, 3-D implementation 
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GALS Architectures 
●  With technology shrinks 

–  Timing closure & Clock tree synthesis 
problems, even when using 
Physical Synthesis 

–  Reliability issues 
–  Communication Power Consumption 

(due to long wire loads) 

●  Globally Asynchronous 

Locally Synchronous (GALS) architecture 
–  IPs are synchronous islands 

–  System communications are asynchronous 
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Metastability issue (1) 
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Metastability issue (2) 

Dout 

Clk 1 

Din 

Clk 2 

Din 

Clk 2 

Dout2 

Multiple flip-flop 
Can “solve” the problem  
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Boundary Synchronization (mesochronous) 

Locally-Synchronous 
Island 

Clk(n) 

 Low area overhead  
 Power consumption 
"   Verification 
"   Throughput 
"   Latency 

R. Dobkin, R. Ginosar, C. Sotiriu, Data Synchronization Issues in GALS SoCs, 
Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems, 
pp. 170-179, Crete, Greece, 19 - 23 April 2004.  

T. Bjerregaard, S. Mahadevan, R. Grøndahl Olsen and J. Sparsø, An OCP Compliant 
Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip, 
Proceedings of the International Symposium on System-on-Chip (SoC'05), pp. 171-174, 
2005. 

Clk(n-1) 

Adaptation 
Layer 

Adaptation 
Layer 

Clk(n+1) 
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Bi-synchronous Gray FIFO based 

Locally-Synchronous 
Island 

clk 

Port 
Controller 

aclk 

Port 
Controller 

aclk 

 Simple solution,  
 no additional cells 
 high throughput 
"   area cost 
"   power consumption 

T. Chelcea, S. Nowick, Low-latency asynchronous FIFO's using token rings, Proceedings 
of International Symposium on Advanced Research in Asynchronous Circuits and Systems, 
pp. 210-220, April 2000. 

A. Chakraborty, M. Greenstreet, Efficient Self-Timed Interfaces for Crossing Clock 
Domains, Proceedings of 9th International Symposium on Asynchronous Circuits and 
Systems (ASYNC'2003), pp. 78-88, Vancouver, Canada, 2003. 

E. Beigne, P. Vivet, Design of On-chip and Off-chip Interfaces for a GALS NoC 
Architecture, Proceedings of 12th IEEE International Symposium on Asynchronous 
Circuits and Systems (ASYNC'06),  Grenoble, France, pp. 172-181, March 2006. 
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Pausable (or stretchable) clocks 
 Low area overhead  
 Low consumption 
 Adaptable to DFS 
"   Need local clock 
generator & specialized 
cells 
"   Throughput lowered 

K. Yun, R. Donohue, Pausible Clocking: A first step toward heterogeneous systems, Proceedings of 
International Conference on Computer Design (ICCD), October 1996. 

J. Muttersbach, T. Villiger, W. Fichtner: "Practical Design of Globally-Asynchronous Locally-Synchronous 
Systems", Proceedings of the Sixth International Symposium on Advanced Research in Asynchronous 
Circuits and Systems, ASYNC'2000, Eilat, Israel, pp. 52-59, April 2-6, 2000. 
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GALS interfaces: conclusion 
●  Mesochronous is simple BUT limited 
●  Pausable Clock has intrinsic defaults for industrialization 
●  GALS FIFO are the best way. Gray code is not optimal => other 

code 

●  Ex: 65 nm, MAGALI chip - Johnson Code 
–  500 Mhz 
–  0.014 mm2 
–  10 µW leakage 
–  3 pJ/flit 
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Asynchronous NoC nodes and links 
●  5x5 network router, mesh topology 

●  Delay Insensitivity 

●  High Robustness to process variations and external conditions 

–  temperatures, voltage drop… 
●  Natural enabler for Dynamic Voltage Scaling 

–  no need for clock frequency scaling during transitions 

QDI 4-rail pipeline stage 
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Async. Node Architecture & Performance 

●  Architecture 
–  Fully decentralized arbitration 
–  5 Input Controllers : flits routing 
–  5 Output Controllers : flits 

arbitration 
–  2 Virtual Channels 

Techno : CMOS 65nm 
Throughput: 550 Mflits/s – 17.6 Gb/s 
Leakage: 210 µA 
Energy: 30 pJ/flit 
Area 0.17 mm2 
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LETI’s NoC 

LCG 

GALS 

CC 

IP 

Power 

GALS interface 

Local Clock Generator 

Power Management 

Communication/Configuration 
controller 

IP Core 

●   2-D mesh based NoC 

●   Communication/Configuration (CC) controller 

●   Support heterogeneous tiles : IP, memories (MEM), programmable cores, 
reconfigurable hardware (RH) 

●   GALS implementation 

●   Tools for NoC-based design and exploitation 
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Low-Power & NoC 
●  Transmission lines 

●  Local DVFS 

●  Partial activation of 
routers 

●  Data coding 

●  Routing algorithms 

●  Topology choice 

●  Programming model 

●  Application 

Transistors 

System 

Power Gain 
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Local DVFS 
●  Always associated with GALS techniques 

●  Island partitioning 

–   NoC regions are at different voltages 

●  Each Unit with its local voltage/frequency  

U. Y. Ogras, R. Marculescu, P. Choudhary, D. Marculescu, “Voltage-Frequency Island Partitioning for GALS-
based Networks-on-Chip” Proceedings of DAC 2007, June 4–8, 2007, San Diego, California, USA 

E. Beigné, F. Clermidy, S. Miermont, P. Vivet, “Dynamic Voltage and Frequency Scaling Architecture for 
Units Integration within a GALS NoC”, Proceedings of the 2nd IEEE International Symposium on Networks-
on-Chip, NOCS’2008, New-Castle, UK, April 2008.  
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VDD Hopping : Principle 
●  Energy per operation scales with V² 
●  Use of  two PMOS power switches 

–  Vhigh, Vlow : a discrete DVS 
–  Switch between Vhigh and Vlow : 

●  Smooth and fast transitions (less than 100 ns) 
●  Programmable Duty Ratio 
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VDD-Hopping: distribution 

●  VDD-Hopping offers DVFS at IP level 
–  No need of inductor, capacitor, charge pump 
–  Fully integrable 
–  Low area (3% of IP area), 
–  High Power Efficiency (95%) 
–  Only requires two external supplies per IP : 

●  Vhigh (nominal voltage) & Vlow (set wrt. to logic & SRAMs constraints) 

LPM : Local Power Manager 
LCG : Local Clock Generator 
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VDD Hopping: clock management 
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Resource power control 

Local Clock Generator 

Comm. 
and Conf. 
Controller 

(CCC) 

Unit Clock 
320-790 MHz 

PMU 

Target frequency 

core clock Processing 
Core 

f1(X) 
f2(X) 
Idle low 

freq1 
freq2 Current 

function 

Asynchronous 
Router 
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Exploration of VDD-Hopping benefits 
●  VDD-Hopping power reduction capabilities : 

–  On-line dynamic slack time optimization : 30% gain wrt. static DVFS 

–  DVFS compared to On/Off mode : 45% gain 

–  Total chip budget : reduction from 340mW downto 160mW 

3GPP-LTE Application 
(MAGALI) 
SYSTEMC-TLM power 
simulation 
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●  Context 

●  MAGALI overview 

●  NoC, GALS and Low-Power 

●  Dynamic reconfiguration  

●  Distributed decisions 

●  Configuring & programming  

●  Conclusion 

Outline 
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Semi-distributed control 

PE PE DCM PE 

DCM PE HOST PE 

PE PE PE DCM 

●  Data-flow directed synchronization (fork, join, loop) through each 
PE associated CC 

●  Complex data and flow mixing performed in DCM  

●  If more complex control => host control  

DCM = Data and 
Configuration 
Memory 

J. Martin et al., “A 
Microprogrammable 
Memory Controller for 
High‑Performance 
Dataflow Applications”, 
ESSCIRC’09 

CC = Communi-
cation & 
Configuration 
controller 

F(x) 
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Communication scheme 

OCC ICC CORE 

Resource 

ICC ICC ICC OCC OCC OCC 

50   <= Prod. 1 
150 <= Prod. 2 

Producer Consumer 

200 <= T1  
T1   <= 100 

50 => Cons. 1  
50 => Cons. 2 

Configuration Tasks Context 

P1 

P2 C2 

C1 
R 
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µProgrammed data synchronization 
C 

D 

B 

A 

ICC0 +30 data 

+75 data 

Send 30 

Send 60 

Send 15 

OCC0 

OCC0 

Recv 10 
Recv 20 

Recv 15 
ICC1 

ICC0 

45 → 10 

15 → 15 

x2 
x3 

Send 20 
OCC0 

Send 15 

OCC1 

Recv 20 
Recv 15 

-35 data 

CORE 

CORE 

CORE 

CORE 

Mnemonic, operand(s) Description 
RC  c s Request configuration 
RCL c s Request configuration + Loop pointer 
LL  n Go back to stored loop position. Loop n times 
GL  n Go back to first instruction. Loop n times 
LLi r Go back to stored loop position. Loop number in register r 
GLi r Go back to first instruction. Loop number in register r 
STOP End of micro-program 
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Dynamic reconfiguration 

PE PE DCM PE 

DCM PE HOST PE 

PE PE PE DCM 

●  PE configurations are stored in DCM memories 
●  When a PE has to run a configuration not loaded => ask to 

associated DCM 

●  Configurations can be modified online by the host  

F. Clermidy et al. “A 
Communication and 
Configuration Controller 
for NoC based 
Reconfigurable Data Flow 
Architecture”, NOCS'09 
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Self-configuration protocol 

Configuration 
Server Resource 

CFM 

Cfg.Mem 
DCM 

Config. 
Memory 

Destination 
base  
address 

Source 
base  

address 

REQ_MOVE 
@s    , @d 

MOVE 
@d 
Data Word 1 
… 
Data Word N 

@s @d 

Cfg. 2 
Cfg. 3 Configuration 

Versus slots 
descriptors 

Cfg. 1 slot 1 
slot 1 
slot 2 

slot 1 
slot 2 

config 1 
empty 
config 2 
config 3 

REQ_MOVE
@s+1, @d+l 

MOVE 
@d+l 
Data Word 1 
… 
Data Word N 

Cfg. 1 Cfg. 2 Cfg. 3 

* N 
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Some results: reconfiguration time 
●  3GPP-LTE : RT-constraints 1 ms 

–  4 configuration phases  
–  Most configuration time hidden by computation time  

=> 4 µs reconfiguration time 
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●  Context 

●  MAGALI overview 
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●  Dynamic reconfiguration  

●  Distributed decisions 

●  Configuring & programming  

●  Conclusion 

Outline 
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Why distributing decisions? 

●  Number of cores is increasing => central decision is slow 

●  Process variations 

●  Increasing flexibility demand (applicationS) 

●  Individual optimization required 
–  Power 
–  Variability  

–  Thermal 
–  Real-time (reducing buffering needs) 

●  And at run-time!  
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Options? 

●  Design-time optimization 
–  Greedy algorithm, tabu search, simulated annealing, Genetic algorithms, Linear 

model optimization 

⇒  Processing requirement is too high for run-time usage 

●  Run-time optimization 
–  Convex optimization, Non-linear lagrange optimization, Integer linear 

programming, Off-line exploration + on-line manager 

⇒  Centralized method: scalability of processing and 
communication? 

=> So? Distributing centralized methods or optimizing distributed 
algorithms?  
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Distributed Scheme: Game Theory 
●  Game Theory models: 

–  Players 

–  Interacting through actions 

–  Makes decisions (distributed & parallel) 

–  Maximizing individual gain (Objective Function) 

–  Solution: nobody can unilaterally improve his gain (Nash Equilibrium) 
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Game Theory in MP-SoC 
●  Game Theory  MP-SoC 

–  Players  PE 

–  Actions  PE parameters (e.g.: frequency) 

–  Decision making  actuators in PE (e.g.: DVFS) 

–  Individual gain  objective function per PE (e.g.: performance, power) 

–  Solution: Nash Equilibrium  objective function maximization 

PE-1 PE-2 

PE-3 PE-4 

DVFS set 

DVFS set 

DVFS set 

DVFS set 

Perfor-
mance 

Power 

Perfor-
mance 

Power 

Perfor-
mance 

Power 

Perfor-
mance 

Power 

●  So... what do we need? 

–  Distributed Objective Function 

–  Local Maximization Algorithm 
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Applicative + Technological 

Technological 

Thermal management example 

T1 

T2 

T4 

T3 
T5 

T6 

IN 

OUT 

Synchronization  Frequency 

PE-1 PE-2 PE-3 

PE-4 PE-5 PE-6 

Temperature  Frequency 

PE-1 PE-2 PE-3 

PE-4 PE-5 PE-6 

T1 T2 

T4 

T3 

T5 T6 

Applicative 

How do we set Frequencies 

to optimize Synchronization + 

Temperature? 
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Temperature optimization 

Different trade-offs between application latency and temperature 

Best latency Best temperature 
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Convergence & Scalability 
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Convergence does not explode 
with the number of processors! 

99.7% 

95% 

68% 

300000 scenarios 

Synthetic applications 

10 freq. 100Mhz-200Mhz 
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Optimality study 

Optimization [%] 
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●  Comparison with Matlab Minimax function 

●  8000 random scenarios 

●  Optimization average @ 89% 
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     Reactivity time of the controller is about 5ms 
    Throughput degradation: 0.17% 

Criteria µprog MIPS HW Matlab model HW Optimized 
model 

Frequency  [MHz] 400 25 100 

Performance overhead 

[Game cycle duration] 
2420 461 752 

Area overhead  (mm2) 0.122  0.061 0.014 

Com.overhead (clk cycles) 58 7 7 

Implementation (65nm) 

●  Local Decision Maker (LDM) 
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Power Management using Consensus 
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0.05 

0.1 

0.15 

0.2 

0.25 

0.3 

Algorithm iterations 

en
er

gy
 c

on
su

m
pt

io
n 

[m
J]

 

energy consumption 
minimal energy consumption 

80% 87% 

Mode 1: Rb = 1 
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Mode 3: Rb=2 
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Modifying latency constraints on-line 
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Outline 
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Programming Steps 

SoC 
spec. 

Com.
def. 

HW units 
Design  

Com. 
Config. 

SoC 
Integration  

Software 
def.,   
tools 
adaptation 

Com. 
mapping 

Software 
& tools 
libraries 

Com. 
template 
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NS-2 Modeling 

●  NS-2 components adaptation 

●  Network design 
–  2D-mesh, packet-switching 

●  Units + Network Interface design   
–  Network Interface: use of Agent  

 component for modeling the protocol 

–  Generic processing units: 
dataflows modeling 
(Application component ) 

–  Configuration parameters 

NAM 
view 

Application 

Agent 

Nodes, Links, 
Classifiers 

Network 

Network Interface 

Processing Units 
NS-2 / NoC Relationships 
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Results 
●  Applicative throughput 

–  Cumulate throughput for each resource 

–  Maximum value: 20 resources × 3,2Gbps (100MHz)  64Gbps 

–  Simulation: maximum throughput  20Gbps 

–  NoC is needed for such application 

Mean throughput 12,5Gbps 

Frame 1 Frame 2 
User Traffic  + Rx sampling 

Time (µs) 

G
lo

ba
l t

hr
ou

gh
pu

t (
G

bp
s)

 Cumulated Rx throughput for all resources 
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SystemC-TLM environment 
●  Generated from the IP-XACT Magillem tool 

●  Complete NoC SystemC/TLM Platform 

–  Based on SystemC 2.1 + TLM OSCI 2.0 draft + ST TLM devkit 

–  Include NoC nodes + CC controller 

●  IP integration within NoC ? 

–  A new IP derives from CC base classes 

–  User only need to implement computation and configuration IP functionnalities 
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NS-2 / SystemC Comparison 
●  Comparison NS-2 with SystemC model (behavioral) 

–  15 % differences. Due to switching mode modeling in NS2 

●  Simulation time: time needed to decode a 3GPP-LTE Frame 

0510152025406080100120140160180200220240LATENCE SYMBOLE DONNEE TXNuméro de symbole donnéeLatence (µs)SystemCNS2

11.522.533.5430354045505560657075LATENCE SYMBOLE PILOTE TXNuméro de symbole piloteLatence (µs)SystemCNS2

faster 
RTL Co-sim 

(25% RTL) 
Full TLM NS2 

17’25 1’50 5”14 1”47 
X 9.5 X 21.4 X 3.5 



- 71 - 

Programming Steps 
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NI automatic generation 

●  Communication & Configuration (CC) controller = NI + high 
level communication and configuration primitives 

●  Numerous parameters 

–  Fundamental 
●  Cores number 

●  Input/output flows 

–  Level of functionalities 
●  Context size 

●  Number of configuration 

–  Power management 
●  Global gated clock enable 
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CC Micro-Architecture and Design 
Configuration 

Communication 

QoS Debug 

Power 
Management 

(DVFS) 
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CC controller generation 

●  All CC blocs are IP-XACT compliant 

●  Magillem tool (MDS collaboration) 

–  Generator to create a CC: TGI interface 

# Parameter  = Value   ; # Range or values 
$unit_name = trx_ofdm ; 
$nb_cores       = 1       ; # 1 .. 4                    
$nb_fifo_in     = 2       ; # 1 .. 4 
$nb_fifo_out   = 2       ; # 1 .. 4 
$nb_cfg_icc    = 6       ; # 1 .. 2^nb_bits_slot_id    
$nb_cfg_occ   = 6       ; # 1 .. 2^nb_bits_slot_id 
$default_size_available_fifo_in[0]      = 16      ; # <2^16 (default 9)  
$nb_bits_size_available_fifo_in[0]      = 8       ; # 1 .. 16 (default 8)  
$nb_bits_size_released_fifo_in[0]       = 8       ; # 1 .. 16 (default 9) 
$default_size_available_fifo_in[1]      = 16      ; # 1 .. 16 (default 9) 
$nb_bits_size_available_fifo_in[1]      = 8       ; # 1 .. 16 (default 8) 
$nb_bits_size_released_fifo_in[1]       = 8       ; # 1 .. 16 (default 9) 
$nb_bits_size_available_fifo_out[0]     = 5       ; # 1 .. 16 (default 9) 
$nb_bits_size_available_fifo_out[1]     = 5       ; # 1 .. 16 (default 9) 
$core_name[0]    = trx_ofdm ; 
$core_binding_fifo_in[0]           = [0,1]   ;  
$core_binding_fifo_out[0]         = [0,1]   ;  
$nb_bits_core_status[0]             = 16      ; # 1 .. 32 
$core_cfg_begin[0]                    = 0       ; # 0 .. 2^nb_bits_core 
$nb_bits_core_addr[0]                = 10      ; # 1 .. 21 (default 8) 
$core_cfg_size[0]                       = 8       ; # 1 .. nb_bits_core_addr 
$nb_cfg_core[0]                         = 3       ; # 1 .. 2^nb_bits_slot_id 
$has_gc_en_core[0]                   = 1       ; # 0 1 
$nb_bist_elements[0]                 = 14      ; # user-def 
$scan_counter_width                  = 9      ; # user-def 
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Programming Steps 
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Platform model 

NoC programming general scheme 
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Programming choices rational 

●  Limited Memory 
–  Off-line computing of communications 
–  On-line full programming 

●  Numerous parameters for one application 
–  But few local adaptations 

●  Fast Reconfiguration 

=> Off-line computing with On-line adaptation 
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Mapping and configuration manipulation 

●  Bottom up view 
–  SW libraries for programming the communications, the HW IP, 

…, at several levels. 

⇒   Communication and configuration APIs   (F2 APIs) 

●  Top down view 
–  High-level models 
–  Tools for mapping the application on the hardware 

⇒   Communication compiler (Comc) 
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F2 APIs : layered architecture 

Registers Network: 
(f2_write_packet, …) 

Paths Memory sharing 
with local SME HAL 

Send 
data 

Send 
config. 

Send 
credits 

Enable 
task 

Request 
session 

… NOC protocol 

NI 
configurations 

SME 
configurations 

Core 
configurations Configurations 

ITM AMR LPM CFM IDM … NI configurations 

MEP RX bit TX bit … Core configurations 

+ + 

+ 

+ 
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F2 APIs : description of the register map 
●  Macros generated from IP-XACT 

●  Example for the NI (partial): 

/* Definitions for block ITM_CONFIG */ 
#define ITM_CONFIG_OFFSET    0x00 
#define ITM_CONFIG_RANGE    2 

   /* Definitions for register CONFIG_1 */ 
   #define ITM_CONFIG_CONFIG_1_OFFSET    0x00 

      /* Definitions for register field CHANNEL */ 
      #define ITM_CONFIG_CONFIG_1_CHANNEL_OFFSET   31 
      #define ITM_CONFIG_CONFIG_1_CHANNEL_SIZE   1 
      #define ITM_CONFIG_CONFIG_1_CHANNEL_SET(_val_)  \ 

 SET_VAL(_val_,ITM_CONFIG_CONFIG_1_CHANNEL) 

      /* Definitions for register field SOURCE_ID */ 
      #define ITM_CONFIG_CONFIG_1_SOURCE_ID_OFFSET   18 
      #define ITM_CONFIG_CONFIG_1_SOURCE_ID_SIZE   7 
      #define ITM_CONFIG_CONFIG_1_SOURCE_ID_SET(_val_)  \ 

 SET_VAL(_val_,ITM_CONFIG_CONFIG_1_SOURCE_ID) 

      /* Definitions for register field PATH_TO_TARGET */ 
      #define ITM_CONFIG_CONFIG_1_PATH_TO_TARGET_OFFSET  0 
      #define ITM_CONFIG_CONFIG_1_PATH_TO_TARGET_SIZE   18 
      #define ITM_CONFIG_CONFIG_1_PATH_TO_TARGET_SET(_val_)  \ 

 SET_VAL(_val_,ITM_CONFIG_CONFIG_1_PATH_TO_TARGET) 
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Comc : goals 
●  Ease the tasks of the SW developer, by using a functional 

description of the data flow 

●  Hide the complexity due to the architectural concepts 

●  Allow to describe parameterized configurations 
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Communication mapping workflow 
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Conclusion 

●  NoC-Based embedded system is a paradigm shift 
–  Communication-centric scheme 
–  Large choices and optimization possibilities 
–  Implementation (GALS, Low-Power) 

●  Scalability leads smartness to go to lower levels 
–  Control 
–  Reconfiguration 
–  Decisions 

●  Programmability of heterogeneous platforms is key 
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Thank you 


