
- 1 -

http://www.artist-embedded.org/

- 2 -

A well-known evolution: Multi-core SoC

From System-on-Chip… to …Multi-Core System-on-Chip

Processor Memory

UART

Audio

SIM Keyboard

USB

Bluetooth

Display

Camera

GPIO UART

Audio

SIM Keyboard

USB

Bluetooth

Display

Camera

GPIO

Processor Memory

Processor Processor

Processor Memory

Processor Processor

Processor Processor Processor Processor

Processor

Processor

Processor

Fr
om

 IT
R

S
 2

00
9

[w
w

w
.it

rs
.n

et
]

- 3 -

In embedded systems: ITRS 2009
●  « SOC-Consumer Portable Drivers »

 Performance * 1000 in 15 years

 Power consumption objective 500 mW

 PE = dedicated accelerators, 250 kG/64 Kbits

 Same design effort

Main
Prc

Main
Prc

Main
Prc

Main
Prc

Main
Memory

Peripherals

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE

PE PE

Function A

Function B

Function C

Function D

Function E

Software View

Architecture

- 4 -

Two possible paths
●  Homogeneous = replication of identical resources

+ Programming simplicity
+ Fault and variability-tolerance
+ Flexibility
- Area
- Power consumption / performance

●  Heterogeneous = each resource has its own dedicated
function
+ Area
+ Power consumption / performance
- Each resource is critical
- Programming is more complex

- 5 -

●  Quiet evolution: mixing heterogeneous and homogeneous
–  Communications are key: Network-on-Chip (NoC)
–  Control distribution

●  Revolution ?
–  Dynamic adaptation through reconfiguration
–  Distributing decisions

Towards regular and adaptable architectures

- 6 -

●  Context

●  MAGALI overview

●  NoC, GALS and Low-Power

●  Dynamic reconfiguration

●  Distributed decisions

●  Configuring & programming

●  Conclusion

Outline

- 7 -

An application starting point

“Software Defined Radio”
Femtocells
MIMO
(ICT projects Befemto &
ARTIST4G)

“Cognitive Radio”
TERROP
NEWCOM

- 8 -

●  Increasing complexity

–  MIMO scheme

–  Spectral efficiency increase

=> 1 Tops needed in 2015

●  Increasing flexibility

–  Software Defined Radio, Cognitive Radio

 more control, more configurations

●  Strict constraints

–  Hard real-time: frame = 1 ms

–  Mastering computing latency mandatory

(latency => memory => real estate => cost)

–  Power consumption under 500 mW

What are the problems?

C.H. Van Berkel,
“Multi-Core for
Mobile Phones”,
DATE’09

- 9 -

LETI’s NoC

  2-D mesh based NoC
  Support heterogeneous tiles: IP, memory blocs, programmable
cores, reconfigurable hardware
  Data-flow homogeneous programming model
  Communication/Configuration (CC) controller
  GALS implementation for advanced power management

LCG

GALS

CC

IP

Power

GALS interface

Local Clock Generator

Power Control

Communication/Configuration
controller

IP Core

- 10 -

MAGALI Chip

●  TRX_OFDM: 32-2048 FFT/iFFT, GI insertion, framing/deframing, power normalization

●  DCM: Fully programmable memory cores for data storage and manipulation (32Kwords 32bits),
Configuration server

●  MEPHISTO: VLIW cores for complex matrices computation (8GMAC/s)
●  BIT cores: Support for mapping / interleaving / puncturing (TX and RX)

●  FEC decoders: reconfigurable channel decoders supporting LDPC, Viterbi and Turbo decoders

- 11 -

MAGALI Chip layout

●  ST 65nm LP technologie, 5400µm x 5400µm, 30mm²

●  Total power < 500mW

●  NoC area (15 Routers + 20 GALS interfaces + NoC links) : 11% overall chip
area

- 12 -

●  Context

●  MAGALI overview

●  NoC, GALS and Low-Power

●  Dynamic reconfiguration

●  Distributed decisions

●  Configuring & programming

●  Conclusion

Outline

- 13 -

What is a NoC?
●  “NoC is an interconnection structure for exchanging

information on a chip between heterogeneous or
homogeneous HW/SW resources”

- 14 -

Some history

●  1980 to 2000 : Multiprocessors networking

●  2000, Jantsch et Al. « NoC: an architecture for billion
transistor area »

●  2000 : A. Greiner et Al. « SPIN, a fat-tree topology for IP
communications »

●  2001, Dally et Al. : « Route packets, not wires »

●  2002, Benini and De Micheli: « NoC: a new SoC
paradigm »

- 15 -

NoC research worldwide

- 16 -

Communication-Centric platform
●  Concepts

–  Architecture platform articulated around a Network-on-Chip

–  Network-on-Chip with QoS for high throughput communications,
low latency, deadlock or live-lock free, reliability

–  Efficient implementation with GALS techniques
●  Key element for power management and isolation of faulty elements

–  Need for:
●  Efficient programming model

●  Associated tools:
–  Development possible thanks to platform concept

- 17 -

SoC standard methodology
SoC
Spec.

Arch.
Def.

HW units
Design

Com.
Design

SoC
Integration

Communication
re-definition

Software
def.,
tools
dev.

Application
mapping 1

T0

T0+6

T0+18
+n*x

T0+24
+n*x

T0+30
+n*x

- 18 -

SoC communication-centric methodology

SoC
spec.

Arch.
Def.

HW units
Design

Com.
Config.

SoC
Integration

Software
def.,
tools
adaptation

Application
mapping 1

Software
& tools
libraries

Com.
template

T0

T0+9

T0+18

T0+24

- 19 -

NoC topics
●  NoC is in the heart of programming model

–  What are the functions of a NoC ?

●  Just an efficient interconnection medium

●  Added Quality of Service

●  Partial/full Support for programming model

–  Communication protocol stack implemented

●  NoC is in the heart of parallel and distributed computing

–  New tools for application mapping are needed

●  NoC is in the heart of implementation issues

–  Globally Asynchronous, Locally Synchronous structures

–  NoC is a potential weakness point for reliability, variability

- 20 -

NoC topics
●  NoC is in the heart of power consumption issues

–  NoC itself can be power hungry

–  NoC can open new solutions for smart management of power for the
whole structure

●  NoC is a new paradigm shifting from IP re-use to platform re-use

–  Need new design tools (exploration, construction)

●  NoC arises new questions on classical topics

–  Testability of the NoC itself, and its associated IPs

–  Debug is a difficult issue : determinism is often required by industrials,
but difficult to achieve…with GALS, parallel and distributed structures

- 21 -

NoC Protocol Stack
Programming model of the
NoC-based platform is essential.
It can determine :

•  Reconfiguration management

• Task synchronization

•  Power management

•  Bandwidth allocation

•  End-to-end flow control

•  Protocol wrappers

•  Packet routing

•  GALS strategy

O
S

I T
ra

ns
m

is
si

on
 le

ve
l

- 22 -

An example of NoC particularities: Topology

Chordal ring Mesh
Hypercube

Omega
Network

Switches
Configurations

- 23 -

Scalability and implementation

●  Topology: Chordal ring
●  Implementation:

–  NODE 4*4 only => 20 to 25 % area gain, < 5% performance
gain compared to 5*5 needed for mesh

–  Is it a good layout ?

–  Long wires ?

- 24 -

Topology vs 2-D layout : scaling
0 1 2 3 4

5

6

7

8 9 10 11 12

13

15

14

0 1 2 3

4 5 6 7

8 9 10 11

12 13 15 14

0 1 2 3 4 5 6

7

8

9

10

11

12 13 15 14 16 17 18

23

22

21

20

19

0 1 2 3 4 5

12 13 14 15 16

11 10 9 8 7 6

23 22 21 20 19 18

17

16 nodes

Topology : 4*4

Layout 1:1

2 medium wires
1 long
1 cross

24 nodes

Topology : 6*4

Layout 3:2

2 medium wires
1 long
1 cross

OK

OK

- 25 -

Topology vs 2-D layout: 32 units case

0 1 2 3 4 5

16 17 18 19 20

15 14 13 12 11 10

31 30 29 28 27 26

21

Topologie : 8*4

Layout 2:1

2 average wires
1 long
1 cross

6 7

22

9 8

25 24

23

0 1 2 3 4 5

16 17 18 19 20 21

6 7

22 23

11 10

27 26

9 8

25 24

28 29 30 31

12 13 14 15

Topologie : 8*4

Layout 1:1

3 average wires
2 long wires
1 cross

NOK

OK, but
Long wires

New layout

- 26 -

Deleting the long wires ?

0 1 2 3 4 5 6

9

10

11

12

13

14 26

31

30

29

28

27

7 8

15

16 24 23 22 21 20 19 18 17

25

Topology : 8*4

Layout 1:1

4 average wires
1 wire crossing
Long lines deleted

Diameter = 16

Equivalent mesh diameter = 10

0 1 2 3 4 5

16 17 18 19 20 21

6 7

22 23

11 10

27 26

9 8

25 24

28 29 30 31

12 13 14 15

- 27 -

Final comparison mesh/chordal ring
CHORDAL RING

Diameter = N/4 (if all the wires)
N = 16, D = 4
N = 32, D = 8
N = 64, D = 16
N = 79, D = 20

With layout view :

Layout 1:1 with long lines

If long lines deleted :
Equivalent diameter = real diameter *2
+ p*mean lines costs

Else
Equivalent diameter = real diameter +
1*long line costs + p*mean line costs
If cost ~ real distance :
= real diameter *2 + p*mean lines costs

MESH

Diameter = 2*(SQRT(N)-1)
N = 16, D = 6
N = 32, D = 10
N = 64, D = 14
N = 79, D = 16

With layout view :

Layout 1:1 short lines only

Equivalent diameter = real diameter

- 28 -

Implementation challenges
●  Globally Asynchronous Locally Synchronous (GALS) architecture

–  NoC is in the center of such issues

●  Low-power schemes
–  Communication is power-consuming
–  NoC implementation influences low-power policies

●  Test & Debug
–  Mandatory for industrial acceptance
–  Distributed systems induced by NoC are difficult to debug (lost of pure

determinism in many cases)

●  Tools
–  Mandatory for NoC-based architecture design

●  Other challenges :
–  Optical NoC, 3-D implementation

- 29 -

GALS Architectures
●  With technology shrinks

–  Timing closure & Clock tree synthesis
problems, even when using
Physical Synthesis

–  Reliability issues
–  Communication Power Consumption

(due to long wire loads)

●  Globally Asynchronous

Locally Synchronous (GALS) architecture
–  IPs are synchronous islands

–  System communications are asynchronous

- 30 -

Metastability issue (1)

Dout

Clk 1

Din

Clk 2

Clk 1 Clk 2

Dout Din

- 31 -

Metastability issue (2)

Dout

Clk 1

Din

Clk 2

Din

Clk 2

Dout2

Multiple flip-flop
Can “solve” the problem

- 32 -

Boundary Synchronization (mesochronous)

Locally-Synchronous
Island

Clk(n)

 Low area overhead
 Power consumption
"   Verification
"   Throughput
"   Latency

R. Dobkin, R. Ginosar, C. Sotiriu, Data Synchronization Issues in GALS SoCs,
Proceedings of the 10th International Symposium on Asynchronous Circuits and Systems,
pp. 170-179, Crete, Greece, 19 - 23 April 2004.

T. Bjerregaard, S. Mahadevan, R. Grøndahl Olsen and J. Sparsø, An OCP Compliant
Network Adapter for GALS-based SoC Design Using the MANGO Network-on-Chip,
Proceedings of the International Symposium on System-on-Chip (SoC'05), pp. 171-174,
2005.

Clk(n-1)

Adaptation
Layer

Adaptation
Layer

Clk(n+1)

- 33 -

Bi-synchronous Gray FIFO based

Locally-Synchronous
Island

clk

Port
Controller

aclk

Port
Controller

aclk

 Simple solution,
 no additional cells
 high throughput
"   area cost
"   power consumption

T. Chelcea, S. Nowick, Low-latency asynchronous FIFO's using token rings, Proceedings
of International Symposium on Advanced Research in Asynchronous Circuits and Systems,
pp. 210-220, April 2000.

A. Chakraborty, M. Greenstreet, Efficient Self-Timed Interfaces for Crossing Clock
Domains, Proceedings of 9th International Symposium on Asynchronous Circuits and
Systems (ASYNC'2003), pp. 78-88, Vancouver, Canada, 2003.

E. Beigne, P. Vivet, Design of On-chip and Off-chip Interfaces for a GALS NoC
Architecture, Proceedings of 12th IEEE International Symposium on Asynchronous
Circuits and Systems (ASYNC'06), Grenoble, France, pp. 172-181, March 2006.

- 34 -

Pausable (or stretchable) clocks
 Low area overhead
 Low consumption
 Adaptable to DFS
"   Need local clock
generator & specialized
cells
"   Throughput lowered

K. Yun, R. Donohue, Pausible Clocking: A first step toward heterogeneous systems, Proceedings of
International Conference on Computer Design (ICCD), October 1996.

J. Muttersbach, T. Villiger, W. Fichtner: "Practical Design of Globally-Asynchronous Locally-Synchronous
Systems", Proceedings of the Sixth International Symposium on Advanced Research in Asynchronous
Circuits and Systems, ASYNC'2000, Eilat, Israel, pp. 52-59, April 2-6, 2000.

- 35 -

GALS interfaces: conclusion
●  Mesochronous is simple BUT limited
●  Pausable Clock has intrinsic defaults for industrialization
●  GALS FIFO are the best way. Gray code is not optimal => other

code

●  Ex: 65 nm, MAGALI chip - Johnson Code
–  500 Mhz
–  0.014 mm2
–  10 µW leakage
–  3 pJ/flit

- 36 -

Asynchronous NoC nodes and links
●  5x5 network router, mesh topology

●  Delay Insensitivity

●  High Robustness to process variations and external conditions

–  temperatures, voltage drop…
●  Natural enabler for Dynamic Voltage Scaling

–  no need for clock frequency scaling during transitions

QDI 4-rail pipeline stage

- 37 -

Async. Node Architecture & Performance

●  Architecture
–  Fully decentralized arbitration
–  5 Input Controllers : flits routing
–  5 Output Controllers : flits

arbitration
–  2 Virtual Channels

Techno : CMOS 65nm
Throughput: 550 Mflits/s – 17.6 Gb/s
Leakage: 210 µA
Energy: 30 pJ/flit
Area 0.17 mm2

- 38 -

LETI’s NoC

LCG

GALS

CC

IP

Power

GALS interface

Local Clock Generator

Power Management

Communication/Configuration
controller

IP Core

●  2-D mesh based NoC

●  Communication/Configuration (CC) controller

●  Support heterogeneous tiles : IP, memories (MEM), programmable cores,
reconfigurable hardware (RH)

●  GALS implementation

●  Tools for NoC-based design and exploitation

- 39 -

Low-Power & NoC
●  Transmission lines

●  Local DVFS

●  Partial activation of
routers

●  Data coding

●  Routing algorithms

●  Topology choice

●  Programming model

●  Application

Transistors

System

Power Gain

- 40 -

Local DVFS
●  Always associated with GALS techniques

●  Island partitioning

–  NoC regions are at different voltages

●  Each Unit with its local voltage/frequency

U. Y. Ogras, R. Marculescu, P. Choudhary, D. Marculescu, “Voltage-Frequency Island Partitioning for GALS-
based Networks-on-Chip” Proceedings of DAC 2007, June 4–8, 2007, San Diego, California, USA

E. Beigné, F. Clermidy, S. Miermont, P. Vivet, “Dynamic Voltage and Frequency Scaling Architecture for
Units Integration within a GALS NoC”, Proceedings of the 2nd IEEE International Symposium on Networks-
on-Chip, NOCS’2008, New-Castle, UK, April 2008.

- 41 -

VDD Hopping : Principle
●  Energy per operation scales with V²
●  Use of two PMOS power switches

–  Vhigh, Vlow : a discrete DVS
–  Switch between Vhigh and Vlow :

●  Smooth and fast transitions (less than 100 ns)
●  Programmable Duty Ratio

- 42 -

VDD-Hopping: distribution

●  VDD-Hopping offers DVFS at IP level
–  No need of inductor, capacitor, charge pump
–  Fully integrable
–  Low area (3% of IP area),
–  High Power Efficiency (95%)
–  Only requires two external supplies per IP :

●  Vhigh (nominal voltage) & Vlow (set wrt. to logic & SRAMs constraints)

LPM : Local Power Manager
LCG : Local Clock Generator

- 43 -

VDD Hopping: clock management

- 44 -

Resource power control

Local Clock Generator

Comm.
and Conf.
Controller

(CCC)

Unit Clock
320-790 MHz

PMU

Target frequency

core clock Processing
Core

f1(X)
f2(X)
Idle low

freq1
freq2 Current

function

Asynchronous
Router

- 45 -

Exploration of VDD-Hopping benefits
●  VDD-Hopping power reduction capabilities :

–  On-line dynamic slack time optimization : 30% gain wrt. static DVFS

–  DVFS compared to On/Off mode : 45% gain

–  Total chip budget : reduction from 340mW downto 160mW

3GPP-LTE Application
(MAGALI)
SYSTEMC-TLM power
simulation

- 46 -

●  Context

●  MAGALI overview

●  NoC, GALS and Low-Power

●  Dynamic reconfiguration

●  Distributed decisions

●  Configuring & programming

●  Conclusion

Outline

- 47 -

Semi-distributed control

PE PE DCM PE

DCM PE HOST PE

PE PE PE DCM

●  Data-flow directed synchronization (fork, join, loop) through each
PE associated CC

●  Complex data and flow mixing performed in DCM

●  If more complex control => host control

DCM = Data and
Configuration
Memory

J. Martin et al., “A
Microprogrammable
Memory Controller for
High‑Performance
Dataflow Applications”,
ESSCIRC’09

CC = Communi-
cation &
Configuration
controller

F(x)

- 48 -

Communication scheme

OCC ICC CORE

Resource

ICC ICC ICC OCC OCC OCC

50 <= Prod. 1
150 <= Prod. 2

Producer Consumer

200 <= T1
T1 <= 100

50 => Cons. 1
50 => Cons. 2

Configuration Tasks Context

P1

P2 C2

C1
R

- 49 -

µProgrammed data synchronization
C

D

B

A

ICC0 +30 data

+75 data

Send 30

Send 60

Send 15

OCC0

OCC0

Recv 10
Recv 20

Recv 15
ICC1

ICC0

45 → 10

15 → 15

x2
x3

Send 20
OCC0

Send 15

OCC1

Recv 20
Recv 15

-35 data

CORE

CORE

CORE

CORE

Mnemonic, operand(s) Description
RC c s Request configuration
RCL c s Request configuration + Loop pointer
LL n Go back to stored loop position. Loop n times
GL n Go back to first instruction. Loop n times
LLi r Go back to stored loop position. Loop number in register r
GLi r Go back to first instruction. Loop number in register r
STOP End of micro-program

- 50 -

Dynamic reconfiguration

PE PE DCM PE

DCM PE HOST PE

PE PE PE DCM

●  PE configurations are stored in DCM memories
●  When a PE has to run a configuration not loaded => ask to

associated DCM

●  Configurations can be modified online by the host

F. Clermidy et al. “A
Communication and
Configuration Controller
for NoC based
Reconfigurable Data Flow
Architecture”, NOCS'09

- 51 -

Self-configuration protocol

Configuration
Server Resource

CFM

Cfg.Mem
DCM

Config.
Memory

Destination
base
address

Source
base

address

REQ_MOVE
@s , @d

MOVE
@d
Data Word 1
…
Data Word N

@s @d

Cfg. 2
Cfg. 3 Configuration

Versus slots
descriptors

Cfg. 1 slot 1
slot 1
slot 2

slot 1
slot 2

config 1
empty
config 2
config 3

REQ_MOVE
@s+1, @d+l

MOVE
@d+l
Data Word 1
…
Data Word N

Cfg. 1 Cfg. 2 Cfg. 3

* N

- 52 -

Some results: reconfiguration time
●  3GPP-LTE : RT-constraints 1 ms

–  4 configuration phases
–  Most configuration time hidden by computation time

=> 4 µs reconfiguration time

- 53 -

●  Context

●  MAGALI overview

●  NoC, GALS and Low-Power

●  Dynamic reconfiguration

●  Distributed decisions

●  Configuring & programming

●  Conclusion

Outline

- 54 -

Why distributing decisions?

●  Number of cores is increasing => central decision is slow

●  Process variations

●  Increasing flexibility demand (applicationS)

●  Individual optimization required
–  Power
–  Variability

–  Thermal
–  Real-time (reducing buffering needs)

●  And at run-time!

- 55 -

Options?

●  Design-time optimization
–  Greedy algorithm, tabu search, simulated annealing, Genetic algorithms, Linear

model optimization

⇒  Processing requirement is too high for run-time usage

●  Run-time optimization
–  Convex optimization, Non-linear lagrange optimization, Integer linear

programming, Off-line exploration + on-line manager

⇒  Centralized method: scalability of processing and
communication?

=> So? Distributing centralized methods or optimizing distributed
algorithms?

- 56 -

Distributed Scheme: Game Theory
●  Game Theory models:

–  Players

–  Interacting through actions

–  Makes decisions (distributed & parallel)

–  Maximizing individual gain (Objective Function)

–  Solution: nobody can unilaterally improve his gain (Nash Equilibrium)

- 57 -

Game Theory in MP-SoC
●  Game Theory  MP-SoC

–  Players  PE

–  Actions  PE parameters (e.g.: frequency)

–  Decision making  actuators in PE (e.g.: DVFS)

–  Individual gain  objective function per PE (e.g.: performance, power)

–  Solution: Nash Equilibrium  objective function maximization

PE-1 PE-2

PE-3 PE-4

DVFS set

DVFS set

DVFS set

DVFS set

Perfor-
mance

Power

Perfor-
mance

Power

Perfor-
mance

Power

Perfor-
mance

Power

●  So... what do we need?

–  Distributed Objective Function

–  Local Maximization Algorithm

- 58 -

Applicative + Technological

Technological

Thermal management example

T1

T2

T4

T3
T5

T6

IN

OUT

Synchronization  Frequency

PE-1 PE-2 PE-3

PE-4 PE-5 PE-6

Temperature  Frequency

PE-1 PE-2 PE-3

PE-4 PE-5 PE-6

T1 T2

T4

T3

T5 T6

Applicative

How do we set Frequencies

to optimize Synchronization +

Temperature?

- 59 -

Temperature optimization

Different trade-offs between application latency and temperature

Best latency Best temperature

- 60 -

Convergence & Scalability

Number of processors

C
on

ve
rg

en
ce

 [g
am

e
cy

cl
es

]

Average

Convergence does not explode
with the number of processors!

99.7%

95%

68%

300000 scenarios

Synthetic applications

10 freq. 100Mhz-200Mhz

- 61 -

Optimality study

Optimization [%]

N
um

be
r o

f s
im

ul
at

io
ns

●  Comparison with Matlab Minimax function

●  8000 random scenarios

●  Optimization average @ 89%

- 62 -

  Reactivity time of the controller is about 5ms
  Throughput degradation: 0.17%

Criteria µprog MIPS HW Matlab model HW Optimized
model

Frequency [MHz] 400 25 100

Performance overhead

[Game cycle duration]
2420 461 752

Area overhead (mm2) 0.122 0.061 0.014

Com.overhead (clk cycles) 58 7 7

Implementation (65nm)

●  Local Decision Maker (LDM)

- 63 -

Power Management using Consensus

0 100 200 300 400 500 600 0

0.05

0.1

0.15

0.2

0.25

0.3

Algorithm iterations

en
er

gy
 c

on
su

m
pt

io
n

[m
J]

energy consumption
minimal energy consumption

80% 87%

Mode 1: Rb = 1

Mode 5: Rb= 10

Mode 3: Rb=2

- 64 -

Modifying latency constraints on-line

- 65 -

●  Context

●  MAGALI overview

●  NoC, GALS and Low-Power

●  Dynamic reconfiguration

●  Distributed decisions

●  Configuring & programming

●  Conclusion

Outline

- 66 -

Programming Steps

SoC
spec.

Com.
def.

HW units
Design

Com.
Config.

SoC
Integration

Software
def.,
tools
adaptation

Com.
mapping

Software
& tools
libraries

Com.
template

- 67 -

NS-2 Modeling

●  NS-2 components adaptation

●  Network design
–  2D-mesh, packet-switching

●  Units + Network Interface design
–  Network Interface: use of Agent

 component for modeling the protocol

–  Generic processing units:
dataflows modeling
(Application component)

–  Configuration parameters

NAM
view

Application

Agent

Nodes, Links,
Classifiers

Network

Network Interface

Processing Units
NS-2 / NoC Relationships

- 68 -

Results
●  Applicative throughput

–  Cumulate throughput for each resource

–  Maximum value: 20 resources × 3,2Gbps (100MHz)  64Gbps

–  Simulation: maximum throughput  20Gbps

–  NoC is needed for such application

Mean throughput 12,5Gbps

Frame 1 Frame 2
User Traffic + Rx sampling

Time (µs)

G
lo

ba
l t

hr
ou

gh
pu

t (
G

bp
s)

 Cumulated Rx throughput for all resources

- 69 -

SystemC-TLM environment
●  Generated from the IP-XACT Magillem tool

●  Complete NoC SystemC/TLM Platform

–  Based on SystemC 2.1 + TLM OSCI 2.0 draft + ST TLM devkit

–  Include NoC nodes + CC controller

●  IP integration within NoC ?

–  A new IP derives from CC base classes

–  User only need to implement computation and configuration IP functionnalities

- 70 -

NS-2 / SystemC Comparison
●  Comparison NS-2 with SystemC model (behavioral)

–  15 % differences. Due to switching mode modeling in NS2

●  Simulation time: time needed to decode a 3GPP-LTE Frame

0510152025406080100120140160180200220240LATENCE SYMBOLE DONNEE TXNuméro de symbole donnéeLatence (µs)SystemCNS2

11.522.533.5430354045505560657075LATENCE SYMBOLE PILOTE TXNuméro de symbole piloteLatence (µs)SystemCNS2

faster
RTL Co-sim

(25% RTL)
Full TLM NS2

17’25 1’50 5”14 1”47
X 9.5 X 21.4 X 3.5

- 71 -

Programming Steps

SoC
spec.

Com.
def.

HW units
Design

Com.
Config.

SoC
Integration

Software
def.,
tools
adaptation

Com.
mapping

Software
& tools
libraries

Com.
template

- 72 -

NI automatic generation

●  Communication & Configuration (CC) controller = NI + high
level communication and configuration primitives

●  Numerous parameters

–  Fundamental
●  Cores number

●  Input/output flows

–  Level of functionalities
●  Context size

●  Number of configuration

–  Power management
●  Global gated clock enable

- 73 -

CC Micro-Architecture and Design
Configuration

Communication

QoS Debug

Power
Management

(DVFS)

- 74 -

CC controller generation

●  All CC blocs are IP-XACT compliant

●  Magillem tool (MDS collaboration)

–  Generator to create a CC: TGI interface

Parameter = Value ; # Range or values
$unit_name = trx_ofdm ;
$nb_cores = 1 ; # 1 .. 4
$nb_fifo_in = 2 ; # 1 .. 4
$nb_fifo_out = 2 ; # 1 .. 4
$nb_cfg_icc = 6 ; # 1 .. 2^nb_bits_slot_id
$nb_cfg_occ = 6 ; # 1 .. 2^nb_bits_slot_id
$default_size_available_fifo_in[0] = 16 ; # <2^16 (default 9)
$nb_bits_size_available_fifo_in[0] = 8 ; # 1 .. 16 (default 8)
$nb_bits_size_released_fifo_in[0] = 8 ; # 1 .. 16 (default 9)
$default_size_available_fifo_in[1] = 16 ; # 1 .. 16 (default 9)
$nb_bits_size_available_fifo_in[1] = 8 ; # 1 .. 16 (default 8)
$nb_bits_size_released_fifo_in[1] = 8 ; # 1 .. 16 (default 9)
$nb_bits_size_available_fifo_out[0] = 5 ; # 1 .. 16 (default 9)
$nb_bits_size_available_fifo_out[1] = 5 ; # 1 .. 16 (default 9)
$core_name[0] = trx_ofdm ;
$core_binding_fifo_in[0] = [0,1] ;
$core_binding_fifo_out[0] = [0,1] ;
$nb_bits_core_status[0] = 16 ; # 1 .. 32
$core_cfg_begin[0] = 0 ; # 0 .. 2^nb_bits_core
$nb_bits_core_addr[0] = 10 ; # 1 .. 21 (default 8)
$core_cfg_size[0] = 8 ; # 1 .. nb_bits_core_addr
$nb_cfg_core[0] = 3 ; # 1 .. 2^nb_bits_slot_id
$has_gc_en_core[0] = 1 ; # 0 1
$nb_bist_elements[0] = 14 ; # user-def
$scan_counter_width = 9 ; # user-def

- 75 -

Programming Steps

SoC
spec.

Com.
def.

HW units
Design

Com.
Config.

SoC
Integration

Software
def.,
tools
adaptation

Com.
mapping

Software
& tools
libraries

Com.
template

- 76 -

Platform model

NoC programming general scheme

SME
(RAM)

rotor

rotor rx_ofdm

rx_ofdm chan_est

equal

dmap

rx_fht

SME
(RAM)

Application Model

Simulation

Fichiers de

configuration
Configuration

files

End

Platform
XML model

topology

functions

SME
(RAM)

rotor

rotor rx_ofdm

rx_ofdm chan_est

equal

dmap

rx_fht

SME
(RAM)

Application

Semi-automatic Mapping

dmap

rotor
rx

ofdm
rx
fht

chan
est

equal

SME
SME

(RAM)

rotor

rotor rx_ofdm

rx_ofdm chan_est

equal

dmap

rx_fht

SME
(RAM)

Debug

Optimization

- 77 -

Programming choices rational

●  Limited Memory
–  Off-line computing of communications
–  On-line full programming

●  Numerous parameters for one application
–  But few local adaptations

●  Fast Reconfiguration

=> Off-line computing with On-line adaptation

- 78 -

Mapping and configuration manipulation

●  Bottom up view
–  SW libraries for programming the communications, the HW IP,

…, at several levels.

⇒  Communication and configuration APIs (F2 APIs)

●  Top down view
–  High-level models
–  Tools for mapping the application on the hardware

⇒  Communication compiler (Comc)

- 79 -

F2 APIs : layered architecture

Registers Network:
(f2_write_packet, …)

Paths Memory sharing
with local SME HAL

Send
data

Send
config.

Send
credits

Enable
task

Request
session

… NOC protocol

NI
configurations

SME
configurations

Core
configurations Configurations

ITM AMR LPM CFM IDM … NI configurations

MEP RX bit TX bit … Core configurations

+ +

+

+

- 80 -

F2 APIs : description of the register map
●  Macros generated from IP-XACT

●  Example for the NI (partial):

/* Definitions for block ITM_CONFIG */
#define ITM_CONFIG_OFFSET 0x00
#define ITM_CONFIG_RANGE 2

 /* Definitions for register CONFIG_1 */
 #define ITM_CONFIG_CONFIG_1_OFFSET 0x00

 /* Definitions for register field CHANNEL */
 #define ITM_CONFIG_CONFIG_1_CHANNEL_OFFSET 31
 #define ITM_CONFIG_CONFIG_1_CHANNEL_SIZE 1
 #define ITM_CONFIG_CONFIG_1_CHANNEL_SET(_val_) \

 SET_VAL(_val_,ITM_CONFIG_CONFIG_1_CHANNEL)

 /* Definitions for register field SOURCE_ID */
 #define ITM_CONFIG_CONFIG_1_SOURCE_ID_OFFSET 18
 #define ITM_CONFIG_CONFIG_1_SOURCE_ID_SIZE 7
 #define ITM_CONFIG_CONFIG_1_SOURCE_ID_SET(_val_) \

 SET_VAL(_val_,ITM_CONFIG_CONFIG_1_SOURCE_ID)

 /* Definitions for register field PATH_TO_TARGET */
 #define ITM_CONFIG_CONFIG_1_PATH_TO_TARGET_OFFSET 0
 #define ITM_CONFIG_CONFIG_1_PATH_TO_TARGET_SIZE 18
 #define ITM_CONFIG_CONFIG_1_PATH_TO_TARGET_SET(_val_) \

 SET_VAL(_val_,ITM_CONFIG_CONFIG_1_PATH_TO_TARGET)

- 81 -

Comc : goals
●  Ease the tasks of the SW developer, by using a functional

description of the data flow

●  Hide the complexity due to the architectural concepts

●  Allow to describe parameterized configurations

- 82 -

Communication mapping workflow

Binary

Configurations

Compilation & Link

dmap

rotor
rx

ofdm
rx
fht

chan
est

equal

SME
SME

(RAM)

rotor

rotor rx_ofdm

rx_ofdm chan_est

equal

dmap

rx_fht

SME
(RAM)

SME
(RAM)

rotor

rotor rx_ofdm

rx_ofdm chan_est

equal

dmap

rx_fht

SME
(RAM)

Data flow description

C

Code

Hardware Platform

Application

- 83 -

Conclusion

●  NoC-Based embedded system is a paradigm shift
–  Communication-centric scheme
–  Large choices and optimization possibilities
–  Implementation (GALS, Low-Power)

●  Scalability leads smartness to go to lower levels
–  Control
–  Reconfiguration
–  Decisions

●  Programmability of heterogeneous platforms is key

- 84 -

Thank you

