
ARTIST Summer School Europe 2011 1

Trust and Accountability in Social Systems

Peter Druschel

Lecture overview

  Today’s computer systems augment a wide range of
human activity, including cooperation among
individuals, organizations, businesses

  This lecture deals with some of the challenges and
opportunities that arise from this trend

  Specifically, we will talk about
  mechanisms to provide accountability
  how to leverage social connections to thwart

undesired behavior

2
ARTIST Summer School Europe 2011

3

Lecture overview
1.  Social Systems

  What are they?
  What is different about them?

2.  Accountability for distributed systems
  Why and what is accountability?
  How can we implement it?
  How well does it work?

3.  Leveraging social relationships
  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

4

Credits

Team members:
  Paarijaat Aditya
  Allen Clement
  Mainack Mondal
  Bimal Viswanath

Collaborators:
  Ioannis Avramopoulos, DT Labs/TU Berlin
  Krishna Gummadi, MPI-SWS
  Andreas Haeberlen, UPenn
  Petr Kuznetsov, DT Labs/TU Berlin
  Alan Mislove, Northeastern
  Ansley Post, Google
  Jennifer Rexford, Princeton
  Rodrigo Rodrigues, MPI-SWS

ARTIST Summer School Europe 2011

5

Social systems

Information system shared by autonomous users
 and organizations

 results depend on cooperation, good will
 vulnerable to misbehavior

Examples:
 Social production systems: Wikipedia, folksonomies,
mechanical turk, open source
 Communication and sharing systems: Social networks,
email, chat, (micro-)blogs
 Federated systems: Internet, WWW, …

ARTIST Summer School Europe 2011

6

Social systems: What’s different?

  Conventional systems: operating environment can be
modeled fully

  Adaptive systems engineering: operating environment
cannot be fully modeled a priori; system is able to learn
from experience with the environment

  Social systems: environment (users) adapts to the
system and may even play an adversarial role
  must consider incentives for participants
  must anticipate deviant behavior

ARTIST Summer School Europe 2011

7

Outline

1.  Social systems
2.  Accountability for distributed systems

  Why accountability?
  What is accountability?
  How can we implement it?
  How well does it work?
  Challenges and extensions

3.  Leveraging social relationships

ARTIST Summer School Europe 2011

8

Example: Botnets in the Internet

  Compromised computer targets different domain
  Admin A must localize fault, then convince admin B

that her machine is faulty

Domain A Domain B

Administrative domain

ARTIST Summer School Europe 2011

9

Example: Insider attack

  Mar 2002: UBS PaineWebber admin disrupts trade for days
to weeks

  Difficult to detect, defuse logical bombs

Administrative domain

ARTIST Summer School Europe 2011

10

Example: LAX airport outage

  Aug 2007: 17,000 passengers stranded at LAX
  Cause: intermittent fault of a network card

Admin

ARTIST Summer School Europe 2011

11

Focus: Byzantine faults

  Not all faults cause a node to stop
  The faulty node continues to operate, but its

behavior deviates from that of a correct node

  Examples:
  Hardware malfunction
  Misconfiguration
  Software error
  External security attack
  Intentional software modification

ARTIST Summer School Europe 2011

12

Why is detecting faults difficult?

  How to detect faults?
  How to identify the faulty node?
  How to convince others that a node is (not) faulty?

Incorrect
message

Responsible
admin

ARTIST Summer School Europe 2011

13

Learning from the 'offline' world
  Relies on accountability
  Example: Banks

  Record can be used to (manually) detect, identify and
convince

  Is accountability useful in distributed systems?
  Is it practical?

Requirement Solution

Commitment Signed receipts

Tamper-evident record Double-entry bookkeeping

Inspections Audits

ARTIST Summer School Europe 2011

14

What does accountability mean?

Accountability := tamper-evident record +
automated, reliable fault detection

ARTIST Summer School Europe 2011

15

Is accountability alone useful?

No, if faults are severe and irrecoverable
  need byzantine fault tolerance (different lecture)

Yes, for
  systems that provide „best-effort“ service
  systems that mask severe/irrecoverable faults
  systems that assume crash failures

Accountability
  reliably detects and localizes faults
  provides incentives to avoid faults
  builds trust, reputation

ARTIST Summer School Europe 2011

16

Butler Lampson on accountability

 "Don’t forget that in the real world, security depends
more on police than on locks, so detecting attacks,
recovering from them, and punishing the bad guys are
more important than prevention."

 -- Butler Lampson, "Computer Security in the Real World", ACSAC 2000

ARTIST Summer School Europe 2011

17

Outline

1.  Social systems
2.  Accountability for distributed systems

  Why accountability?
  What is accountability?
  How can we implement it?
  How well does it work?
  Challenges and extensions

3.  Leveraging social relationships

ARTIST Summer School Europe 2011

18

Ideal accountability

Whenever a node is faulty in any way, the
system generates a proof of misbehavior
against that node

  Fault := Node deviates from expected behavior
  Our goal is to automatically

  detect faults
  identify the faulty nodes
  convince others that a node is (or is not) faulty

  Can we build a system that provides the following
guarantee?

ARTIST Summer School Europe 2011

19

Can we detect all faults?

  Problem: Faults that
affect only a node's
internal state
  Would require online trusted

probes at each node

  Focus on observable faults:
  Faults that affect a correct node

  Can detect observable faults without requiring
trusted components

A

X

C

1001010110
0010110101
1100100100

0

ARTIST Summer School Europe 2011

20

Can we always get a proof?

  Problem: He-said-she-said
  Three possible causes:

  A never sent X
  B refuses to acknowledge X
  X was lost by the network

  Cannot get proof of misbehavior!
  Generalize to verifiable evidence:

  a proof of misbehavior, or
  a challenge that a faulty node cannot answer

  What if the challenged node does not respond?
  Does not prove a fault, but node is suspected until it responds

A

B

C

?

I sent X!

I never
received X!

?!

ARTIST Summer School Europe 2011

21

Practical accountability

  We propose the following requirement for an
accountable distributed system:

  This is useful
  Any (!) fault that affects a correct node is

eventually detected and linked to a faulty node

  It can be implemented in practice (as we will see)

Whenever a fault is observed by a correct node,
the system eventually generates verifiable
evidence against a faulty node

ARTIST Summer School Europe 2011

22

Outline

1.  Social systems
2.  Accountability for distributed systems

  Why accountability?
  What is accountability?
  How can we implement it?
  How well does it work?
  Challenges and extensions

3.  Leveraging social relationships

ARTIST Summer School Europe 2011

23

Adds accountability to a given system
  Implemented as a library
  Provides tamper-evident record
  Detects faults via state-machine replay

Assumptions:

An implementation: PeerReview

1.  Nodes can be modeled as deterministic state
machines

2.  Nodes have reference implementations of the
state machines

3.  Correct nodes can eventually communicate
4.  Nodes can sign messages

ARTIST Summer School Europe 2011

24

M

PeerReview from 10,000 feet
  All nodes keep logs of

their inputs & outputs
  Including all messages

  Each node has a set of
witnesses, which audit
the node periodically

  If the witnesses detect
misbehavior, they
  generate evidence
  make the evidence avai-

lable to other nodes

  Other nodes check evi-
dence, report fault

A's log

B's log

A

B

M

C
D

E

A's witnesses

M

A is
faulty

ARTIST Summer School Europe 2011

25

PeerReview detects tampering

A B

Message

Send(X)

Recv(Y)

Send(Z)

Recv(M)

H0

H1

H2

H3

H4

B's log

ACK

  What if a node modifies its
log entries?

  Log entries form a hash chain
  Inspired by secure histories

[Maniatis02]

  Hash is included with every
message authenticator
 ⇒ Node commits to its
 current state
 ⇒ Changes are evident

Hash(log)

Hash(log)

ARTIST Summer School Europe 2011

26

PeerReview detects omission
  What if a node omits

log entries?
  While inspecting A’s

log, A’s witnesses send
msg authenticators
signed by B to B’s
witnesses

  Thus, witnesses learn
about all messages
their node has ever
sent or acknowleged

  Omission of a message
from the log is a fault

A's log

A

B

A's witnesses

B's witnesses

MB

MB MB

MB
MB MB

ARTIST Summer School Europe 2011

27

PeerReview detects inconsistencies

  What if a node
  keeps multiple logs?
  forks its log?

  Witnesses check
whether all msg
authenticators form a
single hash chain

  Two authenticators
not connected by a log
segment indicate a
fault

H3
'

Read X

H4
'

Not found

Read Z

OK

Create X

H0

H1

H2

H3

H4

OK

"View #1" "View #2"

ARTIST Summer School Europe 2011

28

Module B

PeerReview detects faults

  How to recognize faults?
  Assumption:

  Nodes can be modeled as
deterministic state
machines

  To audit a node, witness
  Fetches signed log
  Replays inputs to a

trusted copy of the state
machine

  Checks outputs against
the log

Module A
Module B

=?

Log Network

Input

Output

St
at

e
m

ac
hi

ne

if ≠

Module A

ARTIST Summer School Europe 2011

29

PeerReview guarantees
1)   Observable faults will be detected

2)   Good nodes cannot be accused

  Formal analysis in [TR MPI-SWS-2007-003]
 see also [Haeberlen&Kuznetsov, OPODIS‘09]

 If node commits a fault + has a correct witness,
 then witness obtains

  a proof of misbehavior (PoM), or
  a challenge that the faulty node cannot answer

 If node is correct
  there can never be a PoM, and
  it can answer any challenge

ARTIST Summer School Europe 2011

30

PeerReview is widely applicable
  App #1: NFS server in the Linux kernel

  Many small, latency-sensitive requests
  Tampering with files
  Lost updates

  App #2: Overlay multicast
  Transfers large volume of data

  Freeloading
  Tampering with content

  App #3: P2P email
  Complex, large, decentralized

  Denial of service
  Attacks on DHT routing

  More information in [Haeberlen et al., SOSP’07]

  Metadata corruption
  Incorrect access control

  Censorship

ARTIST Summer School Europe 2011

31

Outline

1.  Social systems
2.  Accountability for distributed systems

  Why accountability?
  What is accountability?
  How can we implement it?
  How well does it work?
  Challenges and extensions

3.  Leveraging social relationships

ARTIST Summer School Europe 2011

32

How much does PeerReview cost?

  Log storage
  10 – 100 GByte per month, depending on application

  Message signatures
  Message latency (e.g. 1.5ms RTT with RSA-1024)
  CPU overhead (embarrassingly parallel)

  Log/authenticator transfer, replay overhead
  Depends on # witnesses
  Can be deferred to exploit bursty/diurnal load

patterns

ARTIST Summer School Europe 2011

33

P2p email, dedicated witnesses

  Dominant cost depends on
number of witnesses W
  O(W2) component

Baseline 1 2 3 4 5

100

80

60

40

20

0

Av
g

tr
af

fic
 (

Kb
ps

/n
od

e)

Number of witnesses

Baseline traffic

Signatures
and ACKs

Checking logs

W dedicated
witnesses

ARTIST Summer School Europe 2011

34

P2p email, mutual auditing

  Small probability of error is inevitable
  Example: Replication

  Can use this to optimize PeerReview
  Accept that an instance of a fault is found only

with high probability
  Asymptotic complexity: O(N2) → O(log N)

Small random
sample of peers

chosen as witnesses

Node

ARTIST Summer School Europe 2011

35

PeerReview is scalable

  Assumption: up to 10% of nodes can be faulty
  Probabilistic guarantees provide scalability

  Example: email system scales to over 10,000 nodes
with P=0.999999

DSL/cable
upstream

Email system
w/o accountability

O((log N)2)

O(log N)

Email system
+ PeerReview
(P=0.999999)

Email system + PeerReview
(P=1.0)

System size (nodes)

Av
g

tra
ffi

c
(K

bp
s/

no
de

)

ARTIST Summer School Europe 2011

36

PeerReview summary
  Accountability is a new approach to handling

faults in distributed systems
  detects faults
  identifies the faulty nodes
  produces evidence

  PeerReview: A library and system that
provides accountability
  Offers provable guarantees and is widely

applicable

Details in [Haeberlen et al., SOSP ‘07]

ARTIST Summer School Europe 2011

37

Outline

1.  Social systems
2.  Accountability for distributed systems

  Why accountability?
  What is accountability?
  How can we implement it?
  How well does it work?
  Challenges and extensions

3.  Leveraging social relationships

ARTIST Summer School Europe 2011

38

Challenges

  Tension between accountability and privacy
  PeerReview (PR) requires disclosure to witnesses
  Zero-knowledge proofs instead?
  Accountable randomness [Backes et. al., NDSS‘09]

  Fault detection
  PR uses state-machine replay for fault detection
  Can‘t detect deterministic software bugs
  Different implementations of underspecified protocols

may diverge
  Protocol specification or abstract model instead?

ARTIST Summer School Europe 2011

39

Challenges (cont‘d)

  Message signatures
  PR assumes a public-key infrastructure
  Web-of-trust (physical network, social network)

instead?

  Partial deployment
  Accountability zones, gateways?

  PR requires source code modifications
  To enable deterministic replay
  Accountable virtual machines instead?

ARTIST Summer School Europe 2011

NetReview

  Accountability applied to inter-domain routing
  Fault detection based on a specification of the

routing protocol and policy
  Web-of-trust-based certificates
  Auditing limited to peering partners
  Partial deployment: accountability zones

Details in [Haeberlen et. al., NSDI’09]

40
ARTIST Summer School Europe 2011

41

Accountable virtual machines (AVM)

  Make unmodified binary VMs accountable
  VMM provides deterministic logging/replay

  Details in [Haeberlen et al., OSDI 2010]

Accountable VMM

AVM VM

Log

Unmodified binary

Packets Authenticator

ARTIST Summer School Europe 2011

42

Related Work

  Accountability [Lampson ’00, Yumerefendi&Chase ’05, Yemerefendi
et al. ’07, Argyraki et al. ’07, Michalakis et al. ‘07]

  Practical byzantine fault tolerance [Castro&Liskov ‘00,
Ramasamy ‘07]

  General fault detection [Kihlstrom et al. ’07, Doudou et al. ’99,
Malkhi&Reiter ‘97]

  Intrusion detection, reputation systems [Denning ’87, Ko et
al. ’94, Kamvar et al. ‘03]

  Trusted computing [Garfinkel et al. ’02]
  Fault-specific defenses [Cox&Noble ‘03, Waldman&Mazieres ’03]
  Tamper-evident logs [Schneier&Kelsey ’98, Maniatis&Baker ‘02]

ARTIST Summer School Europe 2011

43

Conclusion

  Byzantine faults in distributed systems are real

  Accountability is a new approach to handling faults
  detects observable faults
  identifies the faulty node
  produces verifiable evidence

  Practical implementations exist

ARTIST Summer School Europe 2011

44

Outline

1.  Social systems
2.  Accountability for distributed systems
3.  Leveraging social relationships

  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

45

Sybil attacks
  Fundamental problem in systems with weak user ids

  Social networks, eBay, gmail, p2p, etc.

  An individual who controls several identities
  Can shed bad reputations (whitewashing)
  Can manipulate reputation/history via fake transactions
  Can manipulate voting
  Can circumvent per-user limits

  Can undermine fault model

  Examples:
  Content vote tampering on YouTube, Digg
  eBay fraud

ARTIST Summer School Europe 2011

46

Sybil defense approaches

Link user accounts to a more-or-less hard to obtain resource

1.  Certification from trusted authorities
  E.g., passport, social security number, credit card
  May remove ability to use pseudonyms, official/private ids

2.  Require work or money
  Vulnerable to “rich” attackers
  E.g., deep pocket attackers, botnets, rented cloud computing

resources
3.  Leverage social links

All may increase barriers to sign-up!
ARTIST Summer School Europe 2011

Two approaches to social network
based Sybil defense

  Sybil detection: Identify Sybil nodes and block them

  Sybil tolerance: Limit the impact of Sybil nodes

47 ARTIST Summer School Europe 2011

SybilGuard [SIGCOMM’06]

SybilLimit [Oakland S&P ’08]

SybilInfer [NDSS’08]

MOBID [INFOCOM’10]

GateKeeper [INFOCOM’11]

Reputation systems
[Levien, USENIX Sec’98],
[Cheng, P2PECON’05],

[Ziegler, Inf. Sys.Front.’05]

Ostra [Mislove, NSDI’08]

SumUp [Tran, NSDI’09]

Bazaar [Post, NSDI’11]

Genie [Mondal, SIGCOMM’11
poster]

Links in social networks

Assumption: Links take some effort to form and maintain
E.g.: Good users only accept links from users they recognize

Non-Sybil
Region

Sybil
Region

Attacker is limited by his ability to form
social links to real users

Sybil identities

48
ARTIST Summer School Europe 2011

Non-Sybil
Region

Sybil
Region

  All schemes work in a similar manner [Viswanath et al.,
SIGCOMM10]

  Effectively, they detect communities
  Nodes within a trusted node’s community presumed good
  Other nodes presumed to be Sybils

49
49

Trusted node

Understanding Sybil detection

ARTIST Summer School Europe 2011

Limitations of Sybil detection

  Detectors assume social networks are fast mixing
  Lots of evidence that many social networks have small fringe communities
 [Leskovec 2008], [Dell’Amico 2009]
  Sybil clouds and small communities may be indistinguishable
 using the graph structure alone

50

Trusted
Node

Trusted
Node

ARTIST Summer School Europe 2011

Sybil tolerance

  Does not seek to identify Sybils
  Instead, limits the impact of Sybils on relevant

system properties
  Examples:

  Limit the amount of spam in an email system
  Limit fraud in an online marketplace
  Limit large-scale data aggregation in OSNs

  Users get no benefit from using multiple ids
  Unlike Sybil detection, requires application-specific

information

51 ARTIST Summer School Europe 2011

52

Outline

1.  Social systems
2.  Accountability for distributed systems
3.  Leveraging social relationships

  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

Credit network [DeFigueiredo,
CEC’05], [Ghosh, WINE’07]

53

2

B A

  Decentralized payment infrastructure (no common currency)
  Nodes form a directed graph
  Edge (u,v) with weight n means

  u trusts v for up to n units of credit, or
  u owes v n units of credit.

C

3

0 0

ARTIST Summer School Europe 2011

Credit network: Purchases

54

->2

2

B A

Node w can purchase goods or services worth n credits from
u if every edge along a path u -> w has a weight >= n

->1

C

3 ->2 ->1 ->1

0 ->2 ->1 0

->0

ARTIST Summer School Europe 2011

What about intermediate node B?
Its has lost two credits with C and gained two credits with A!

Credit network: Liquidity

55

  Intermediate nodes of a transaction are unaffected if the
graph is richly connected

  Can use credit on a different path
  Under certain conditions, no significant loss of liquidity

compared to a centralized payment infrastructure
[Dandekar, EC’11]

ARTIST Summer School Europe 2011

Credit networks: Sybil tolerance

56

2

B A

  Credit available to a Sybil attacker is limited by edges
shared with real users

  Independently of how many ids the attacker controls!

C

3

0 0

A’’

A’’’

A’’’’

A’

ARTIST Summer School Europe 2011

Sybil-tolerant systems based on credit
networks: Approach

57e

1.  Construct a credit network based on a social network
  Credit network inherits SN’s rich connectivity
  Edges shared with real users limited by social capital

2.  Map the desired Sybil-tolerant system property to an
equilibrium (“trade balance ± ε”) or a max-flow in the
credit network, using
  Initial per-link credit assignment
  Per-transaction payments
  Credit adjustment

ARTIST Summer School Europe 2011

Example: P2p fair exchange

  Goal: Prevent freeloading in a p2p content
sharing network

  Strawman solution: Trusted centralized account
  Account keeps balance for every node:

 balance = initial credit + upload – download

  Prone to Sybil attacks
Attacker can boost balance by reporting fictitious

uploads among Sybils

58 ARTIST Summer School Europe 2011

Sybil-tolerant p2p fair exchange
  Peers connected by a social network (SN)
  Downloader pays uploader 1 credit/block

  using a credit path connecting them in the SN
  A node can download at most as much as it uploads
  Same holds for each connected component

  including a component of Sybil nodes

59

Trade balance enforced
along each edge cut

ARTIST Summer School Europe 2011

Questions

  How do we get started?
  Friends grant each other some initial credit

  What about temporary “trade imbalances” ?
  Initial credit provides a buffer

  How much initial credit is needed?
  Can be determined experimentally
  Increase until most nodes get what they want most

of the time

60 ARTIST Summer School Europe 2011

Limiting initial credit

How do we prevent abuse of the initial credit?
  Limited problem, it is difficult to make new friends
  In addition, can require initiator to grant initial credit,

while acceptor grants no initial credit

61

n > 0

B (accepts A as new friend) A

0

ARTIST Summer School Europe 2011

Effects of defection

  What is the damage when a (group of) node(s) defects?
  Size of edge cut times initial credit granted to defectors

62

 Edge cut

ARTIST Summer School Europe 2011

Defectors

Denial of service

  Can a (group of) node(s) deny service to unrelated
good nodes?

  By exhausting credit along a cut between good nodes!
  Yes, but the attacker must control an edge cut larger

than the victim’s cut to the rest of the network

63

 Edge cut
ARTIST Summer School Europe 2011

Attacker

Potential for credit DoS:
SNs with modularity < .6

64

  3000 randomly selected pairs of users
  Only low-degree nodes are vulnerable

ARTIST Summer School Europe 2011

Potential for credit DoS:
SNs with modularity > .6

65

  3000 randomly selected pairs of users
  Nodes with degree < 50 are vulnerable

ARTIST Summer School Europe 2011

66

Outline

1.  Social systems
2.  Accountability for distributed systems
3.  Leveraging social relationships

  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

67

Ostra [Mislove NSDI’08]:
Thwarting unwanted communication

  Email spam
  Search-engine spam
  Mislabeled content on sharing sites
  Unwanted invitations in Skype, IM systems

  Existing solutions expensive
  Costly arms race
  Content filtering for rich media?

ARTIST Summer School Europe 2011

68

Ostra: Assumptions

  Users form a social network, e.g.,
  People who appear in each other’s contact list
  People who have ever exchanged email

  Receivers classify content
  Explicit (Junk button)
  Implicit (Deletion, lack of response)

ARTIST Summer School Europe 2011

69

Ostra: Mechanism
  Network:

  Directed link pair between prior correspondents
  Link weight is balance of spam from either side
  Initial condition: Per-link credit of 3 both ways

  Equilibrium:
 rate of spam received ≈ rate of spam sent along each cut

  Transaction: unwanted communication received
 unwanted communication incurs a charge of 1 credit from
sender to receiver

  Credit adjustment:
 Credit balances decay at constant rate (e.g., 10%/day)

ARTIST Summer School Europe 2011

70

Ostra: Results
  Rate of spam a (group of) nodes can send is

proportional to number of links they have:
 (decay * #links) + rate of received spam

  Evaluated on real social network and email traffic
data

  Rate of spam with 20% attackers is
 4 msgs/user/week (Initial credit of 3; 10%
decay per day)

  1.3% of messages are delayed by a few
hours

ARTIST Summer School Europe 2011

71

Outline

1.  Social systems
2.  Accountability for distributed systems
3.  Leveraging social relationships

  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

72

Bazaar [Mislove NSDI’11]:
Limiting auction fraud

  Online marketplaces suffer from fraud
  Ebay, Overstock, uBid, Amazon Marketplace
  User identities and reputations are subject to

  Whitewashing
  Collusion

  Significant damage
  Recent convict defrauded US$ 717k from 5000

eBay users using > 250 eBay accounts

ARTIST Summer School Europe 2011

73

Bazaar: Mechanism
  Network:

  Undirected link between pairs of users who have transacted
  Link weight is balance of values of transactions with + and –

feedback
  Initial condition: OSN friends trust each other with initial

amount; or, value of amount placed in escrow
  Condition:

 Value of new transaction must not exceed max-flow between
seller and buyer

  Transaction: (k = transaction value)
  + feedback: increase path weights by k
  - feedback: decrease path weights by k
  Neutral feedback: no change

ARTIST Summer School Europe 2011

74

Bazaar: Results
  90-day UK eBay trace, over 3M users

  Over 8M transactions with buyer feedback

  Would have flagged GBP 164k worth of negative
feedback transactions (36% of transactions with
negative feedback)

  False positive rate of less than 5% (transactions
flagged by Bazaar that resulted in positive
feedback)

ARTIST Summer School Europe 2011

75

Outline

1.  Social systems
2.  Accountability for distributed systems
3.  Leveraging social relationships

  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

76

Genie:
Limiting OSN crawls

  OSN users and operators wish to limit data
aggregation by crawlers
  Users wish to limit their exposure
  Operators wish to protect their data assets

  Existing rate-limiting techniques are vulnerable to
Sybil attack

  E.g.: Someone crawled over 100k public Facebook
user profiles and shared them via BitTorrent

ARTIST Summer School Europe 2011

77

Genie: Mechanism
  Network:

  Directed link pair between OSN friends
  Link weight is balance of views from either side
  Initial condition: Link requestor grants acceptor 1 credit

  Equilibrium:
  Number of views from either side of a cut is roughly

balanced
  Transaction: Viewer views viewee’s profile

  Viewer->Viewee -1; Viewee->Viewer +1
  One-hop views are free

  Credit Adjustment:
  Link credit is rebalanced at a rate of 5 views / week

ARTIST Summer School Europe 2011

78

Genie: Results
2-week trace of profile views from a sample of the
Renren OSN (705k links, 33k nodes – 0.02% of nodes)

50 attack edges

100 attack edges
ARTIST Summer School Europe 2011

Other Sybil tolerant applications
using trust networks

  SumUp [Tran et al. NSDI’09]
  Sybil-tolerant voting

  [Levien USENIX Sec’98], [Cheng P2PECON’05],
[Ziegler Inf. Sys. Frontiers’05]
  Reputation systems

79 ARTIST Summer School Europe 2011

Challenges

Credit networks enable Sybil-tolerant system properties
  Systems can use weak identities
  Users can use multiple pseudonyms
But…

  Mechanism design is application-specific
  Need to understand scope of possible applications
  Systematic design of solutions
  Need to understand social network structure

80 ARTIST Summer School Europe 2011

Challenges

  Need to understand how social network and credit
network shape each other dynamically (social
dynamics)

  Social pressure shapes the network
  Credit network incentivizes users to chose wisely who

they wish to associate with
  Drop a friend whose requests have repeatedly caused

me to lose liquidity

81 ARTIST Summer School Europe 2011

Conclusion

  Effectiveness of Sybil detection on real social
networks remains unclear

  Sybil tolerance instead seeks to make a
system’s properties of interest robust to Sybils

  Credit networks provide a general model for
Sybil tolerant systems

  Current point solutions cannot easily be
generalized

  Need to understand the social dynamics

82 ARTIST Summer School Europe 2011

83

Max Planck Institute for Software
Systems (MPI-SWS)

  Government-funded basic research institute, since 2005
  Combines best of academia and research lab

  Academic freedom, doctoral students and post-docs
  Generous funding and excellent facilities

  Up to 18 (currently 11) faculty members / groups
  Highly international, working language is English
  Graduate school
  Opportunities for outstanding doctoral students and post-

docs; also, positions for visiting faculty
http://www.mpi-sws.org

ARTIST Summer School Europe 2011

MPI-SWS Faculty

  Umut Acar (CMU 2005): Programming Systems
  Björn Brandenburg (UNC 2011): Real-time Systems
  Paul Francis (UCL 1994): Internet architecture, privacy
  Derek Dreyer (CMU 2005): Programming Languages
  Peter Druschel (Arizona 1994): Distributed Systems
  Deepak Garg (CMU 2009): Security and Privacy
  Krishna Gummadi (UW 2005): Social networks/systems
  Rupak Majumdar (Berkeley 2003): Software Verification
  Ruzica Piskac (EPFL 2011): Automated Reasoning
  Rodrigo Rodrigues (MIT 2005): Dependable Systems
  Viktor Vafeiadis (Cambridge 2010): Logic, Verification

84
ARTIST Summer School Europe 2011

85

Thanks for your attention!

ARTIST Summer School Europe 2011

