
ARTIST Summer School Europe 2011 1

Trust and Accountability in Social Systems

Peter Druschel

Lecture overview

  Today’s computer systems augment a wide range of
human activity, including cooperation among
individuals, organizations, businesses

  This lecture deals with some of the challenges and
opportunities that arise from this trend

  Specifically, we will talk about
  mechanisms to provide accountability
  how to leverage social connections to thwart

undesired behavior

2
ARTIST Summer School Europe 2011

3

Lecture overview
1.  Social Systems

  What are they?
  What is different about them?

2.  Accountability for distributed systems
  Why and what is accountability?
  How can we implement it?
  How well does it work?

3.  Leveraging social relationships
  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

4

Credits

Team members:
  Paarijaat Aditya
  Allen Clement
  Mainack Mondal
  Bimal Viswanath

Collaborators:
  Ioannis Avramopoulos, DT Labs/TU Berlin
  Krishna Gummadi, MPI-SWS
  Andreas Haeberlen, UPenn
  Petr Kuznetsov, DT Labs/TU Berlin
  Alan Mislove, Northeastern
  Ansley Post, Google
  Jennifer Rexford, Princeton
  Rodrigo Rodrigues, MPI-SWS

ARTIST Summer School Europe 2011

5

Social systems

Information system shared by autonomous users
 and organizations

 results depend on cooperation, good will
 vulnerable to misbehavior

Examples:
 Social production systems: Wikipedia, folksonomies,
mechanical turk, open source
 Communication and sharing systems: Social networks,
email, chat, (micro-)blogs
 Federated systems: Internet, WWW, …

ARTIST Summer School Europe 2011

6

Social systems: What’s different?

  Conventional systems: operating environment can be
modeled fully

  Adaptive systems engineering: operating environment
cannot be fully modeled a priori; system is able to learn
from experience with the environment

  Social systems: environment (users) adapts to the
system and may even play an adversarial role
  must consider incentives for participants
  must anticipate deviant behavior

ARTIST Summer School Europe 2011

7

Outline

1.  Social systems
2.  Accountability for distributed systems

  Why accountability?
  What is accountability?
  How can we implement it?
  How well does it work?
  Challenges and extensions

3.  Leveraging social relationships

ARTIST Summer School Europe 2011

8

Example: Botnets in the Internet

  Compromised computer targets different domain
  Admin A must localize fault, then convince admin B

that her machine is faulty

Domain A Domain B

Administrative domain

ARTIST Summer School Europe 2011

9

Example: Insider attack

  Mar 2002: UBS PaineWebber admin disrupts trade for days
to weeks

  Difficult to detect, defuse logical bombs

Administrative domain

ARTIST Summer School Europe 2011

10

Example: LAX airport outage

  Aug 2007: 17,000 passengers stranded at LAX
  Cause: intermittent fault of a network card

Admin

ARTIST Summer School Europe 2011

11

Focus: Byzantine faults

  Not all faults cause a node to stop
  The faulty node continues to operate, but its

behavior deviates from that of a correct node

  Examples:
  Hardware malfunction
  Misconfiguration
  Software error
  External security attack
  Intentional software modification

ARTIST Summer School Europe 2011

12

Why is detecting faults difficult?

  How to detect faults?
  How to identify the faulty node?
  How to convince others that a node is (not) faulty?

Incorrect
message

Responsible
admin

ARTIST Summer School Europe 2011

13

Learning from the 'offline' world
  Relies on accountability
  Example: Banks

  Record can be used to (manually) detect, identify and
convince

  Is accountability useful in distributed systems?
  Is it practical?

Requirement Solution

Commitment Signed receipts

Tamper-evident record Double-entry bookkeeping

Inspections Audits

ARTIST Summer School Europe 2011

14

What does accountability mean?

Accountability := tamper-evident record +
automated, reliable fault detection

ARTIST Summer School Europe 2011

15

Is accountability alone useful?

No, if faults are severe and irrecoverable
  need byzantine fault tolerance (different lecture)

Yes, for
  systems that provide „best-effort“ service
  systems that mask severe/irrecoverable faults
  systems that assume crash failures

Accountability
  reliably detects and localizes faults
  provides incentives to avoid faults
  builds trust, reputation

ARTIST Summer School Europe 2011

16

Butler Lampson on accountability

 "Don’t forget that in the real world, security depends
more on police than on locks, so detecting attacks,
recovering from them, and punishing the bad guys are
more important than prevention."

 -- Butler Lampson, "Computer Security in the Real World", ACSAC 2000

ARTIST Summer School Europe 2011

17

Outline

1.  Social systems
2.  Accountability for distributed systems

  Why accountability?
  What is accountability?
  How can we implement it?
  How well does it work?
  Challenges and extensions

3.  Leveraging social relationships

ARTIST Summer School Europe 2011

18

Ideal accountability

Whenever a node is faulty in any way, the
system generates a proof of misbehavior
against that node

  Fault := Node deviates from expected behavior
  Our goal is to automatically

  detect faults
  identify the faulty nodes
  convince others that a node is (or is not) faulty

  Can we build a system that provides the following
guarantee?

ARTIST Summer School Europe 2011

19

Can we detect all faults?

  Problem: Faults that
affect only a node's
internal state
  Would require online trusted

probes at each node

  Focus on observable faults:
  Faults that affect a correct node

  Can detect observable faults without requiring
trusted components

A

X

C

1001010110
0010110101
1100100100

0

ARTIST Summer School Europe 2011

20

Can we always get a proof?

  Problem: He-said-she-said
  Three possible causes:

  A never sent X
  B refuses to acknowledge X
  X was lost by the network

  Cannot get proof of misbehavior!
  Generalize to verifiable evidence:

  a proof of misbehavior, or
  a challenge that a faulty node cannot answer

  What if the challenged node does not respond?
  Does not prove a fault, but node is suspected until it responds

A

B

C

?

I sent X!

I never
received X!

?!

ARTIST Summer School Europe 2011

21

Practical accountability

  We propose the following requirement for an
accountable distributed system:

  This is useful
  Any (!) fault that affects a correct node is

eventually detected and linked to a faulty node

  It can be implemented in practice (as we will see)

Whenever a fault is observed by a correct node,
the system eventually generates verifiable
evidence against a faulty node

ARTIST Summer School Europe 2011

22

Outline

1.  Social systems
2.  Accountability for distributed systems

  Why accountability?
  What is accountability?
  How can we implement it?
  How well does it work?
  Challenges and extensions

3.  Leveraging social relationships

ARTIST Summer School Europe 2011

23

Adds accountability to a given system
  Implemented as a library
  Provides tamper-evident record
  Detects faults via state-machine replay

Assumptions:

An implementation: PeerReview

1.  Nodes can be modeled as deterministic state
machines

2.  Nodes have reference implementations of the
state machines

3.  Correct nodes can eventually communicate
4.  Nodes can sign messages

ARTIST Summer School Europe 2011

24

M

PeerReview from 10,000 feet
  All nodes keep logs of

their inputs & outputs
  Including all messages

  Each node has a set of
witnesses, which audit
the node periodically

  If the witnesses detect
misbehavior, they
  generate evidence
  make the evidence avai-

lable to other nodes

  Other nodes check evi-
dence, report fault

A's log

B's log

A

B

M

C
D

E

A's witnesses

M

A is
faulty

ARTIST Summer School Europe 2011

25

PeerReview detects tampering

A B

Message

Send(X)

Recv(Y)

Send(Z)

Recv(M)

H0

H1

H2

H3

H4

B's log

ACK

  What if a node modifies its
log entries?

  Log entries form a hash chain
  Inspired by secure histories

[Maniatis02]

  Hash is included with every
message authenticator
 ⇒ Node commits to its
 current state
 ⇒ Changes are evident

Hash(log)

Hash(log)

ARTIST Summer School Europe 2011

26

PeerReview detects omission
  What if a node omits

log entries?
  While inspecting A’s

log, A’s witnesses send
msg authenticators
signed by B to B’s
witnesses

  Thus, witnesses learn
about all messages
their node has ever
sent or acknowleged

  Omission of a message
from the log is a fault

A's log

A

B

A's witnesses

B's witnesses

MB

MB MB

MB
MB MB

ARTIST Summer School Europe 2011

27

PeerReview detects inconsistencies

  What if a node
  keeps multiple logs?
  forks its log?

  Witnesses check
whether all msg
authenticators form a
single hash chain

  Two authenticators
not connected by a log
segment indicate a
fault

H3
'

Read X

H4
'

Not found

Read Z

OK

Create X

H0

H1

H2

H3

H4

OK

"View #1" "View #2"

ARTIST Summer School Europe 2011

28

Module B

PeerReview detects faults

  How to recognize faults?
  Assumption:

  Nodes can be modeled as
deterministic state
machines

  To audit a node, witness
  Fetches signed log
  Replays inputs to a

trusted copy of the state
machine

  Checks outputs against
the log

Module A
Module B

=?

Log Network

Input

Output

St
at

e
m

ac
hi

ne

if ≠

Module A

ARTIST Summer School Europe 2011

29

PeerReview guarantees
1)   Observable faults will be detected

2)   Good nodes cannot be accused

  Formal analysis in [TR MPI-SWS-2007-003]
 see also [Haeberlen&Kuznetsov, OPODIS‘09]

 If node commits a fault + has a correct witness,
 then witness obtains

  a proof of misbehavior (PoM), or
  a challenge that the faulty node cannot answer

 If node is correct
  there can never be a PoM, and
  it can answer any challenge

ARTIST Summer School Europe 2011

30

PeerReview is widely applicable
  App #1: NFS server in the Linux kernel

  Many small, latency-sensitive requests
  Tampering with files
  Lost updates

  App #2: Overlay multicast
  Transfers large volume of data

  Freeloading
  Tampering with content

  App #3: P2P email
  Complex, large, decentralized

  Denial of service
  Attacks on DHT routing

  More information in [Haeberlen et al., SOSP’07]

  Metadata corruption
  Incorrect access control

  Censorship

ARTIST Summer School Europe 2011

31

Outline

1.  Social systems
2.  Accountability for distributed systems

  Why accountability?
  What is accountability?
  How can we implement it?
  How well does it work?
  Challenges and extensions

3.  Leveraging social relationships

ARTIST Summer School Europe 2011

32

How much does PeerReview cost?

  Log storage
  10 – 100 GByte per month, depending on application

  Message signatures
  Message latency (e.g. 1.5ms RTT with RSA-1024)
  CPU overhead (embarrassingly parallel)

  Log/authenticator transfer, replay overhead
  Depends on # witnesses
  Can be deferred to exploit bursty/diurnal load

patterns

ARTIST Summer School Europe 2011

33

P2p email, dedicated witnesses

  Dominant cost depends on
number of witnesses W
  O(W2) component

Baseline 1 2 3 4 5

100

80

60

40

20

0

Av
g

tr
af

fic
 (

Kb
ps

/n
od

e)

Number of witnesses

Baseline traffic

Signatures
and ACKs

Checking logs

W dedicated
witnesses

ARTIST Summer School Europe 2011

34

P2p email, mutual auditing

  Small probability of error is inevitable
  Example: Replication

  Can use this to optimize PeerReview
  Accept that an instance of a fault is found only

with high probability
  Asymptotic complexity: O(N2) → O(log N)

Small random
sample of peers

chosen as witnesses

Node

ARTIST Summer School Europe 2011

35

PeerReview is scalable

  Assumption: up to 10% of nodes can be faulty
  Probabilistic guarantees provide scalability

  Example: email system scales to over 10,000 nodes
with P=0.999999

DSL/cable
upstream

Email system
w/o accountability

O((log N)2)

O(log N)

Email system
+ PeerReview
(P=0.999999)

Email system + PeerReview
(P=1.0)

System size (nodes)

Av
g

tra
ffi

c
(K

bp
s/

no
de

)

ARTIST Summer School Europe 2011

36

PeerReview summary
  Accountability is a new approach to handling

faults in distributed systems
  detects faults
  identifies the faulty nodes
  produces evidence

  PeerReview: A library and system that
provides accountability
  Offers provable guarantees and is widely

applicable

Details in [Haeberlen et al., SOSP ‘07]

ARTIST Summer School Europe 2011

37

Outline

1.  Social systems
2.  Accountability for distributed systems

  Why accountability?
  What is accountability?
  How can we implement it?
  How well does it work?
  Challenges and extensions

3.  Leveraging social relationships

ARTIST Summer School Europe 2011

38

Challenges

  Tension between accountability and privacy
  PeerReview (PR) requires disclosure to witnesses
  Zero-knowledge proofs instead?
  Accountable randomness [Backes et. al., NDSS‘09]

  Fault detection
  PR uses state-machine replay for fault detection
  Can‘t detect deterministic software bugs
  Different implementations of underspecified protocols

may diverge
  Protocol specification or abstract model instead?

ARTIST Summer School Europe 2011

39

Challenges (cont‘d)

  Message signatures
  PR assumes a public-key infrastructure
  Web-of-trust (physical network, social network)

instead?

  Partial deployment
  Accountability zones, gateways?

  PR requires source code modifications
  To enable deterministic replay
  Accountable virtual machines instead?

ARTIST Summer School Europe 2011

NetReview

  Accountability applied to inter-domain routing
  Fault detection based on a specification of the

routing protocol and policy
  Web-of-trust-based certificates
  Auditing limited to peering partners
  Partial deployment: accountability zones

Details in [Haeberlen et. al., NSDI’09]

40
ARTIST Summer School Europe 2011

41

Accountable virtual machines (AVM)

  Make unmodified binary VMs accountable
  VMM provides deterministic logging/replay

  Details in [Haeberlen et al., OSDI 2010]

Accountable VMM

AVM VM

Log

Unmodified binary

Packets Authenticator

ARTIST Summer School Europe 2011

42

Related Work

  Accountability [Lampson ’00, Yumerefendi&Chase ’05, Yemerefendi
et al. ’07, Argyraki et al. ’07, Michalakis et al. ‘07]

  Practical byzantine fault tolerance [Castro&Liskov ‘00,
Ramasamy ‘07]

  General fault detection [Kihlstrom et al. ’07, Doudou et al. ’99,
Malkhi&Reiter ‘97]

  Intrusion detection, reputation systems [Denning ’87, Ko et
al. ’94, Kamvar et al. ‘03]

  Trusted computing [Garfinkel et al. ’02]
  Fault-specific defenses [Cox&Noble ‘03, Waldman&Mazieres ’03]
  Tamper-evident logs [Schneier&Kelsey ’98, Maniatis&Baker ‘02]

ARTIST Summer School Europe 2011

43

Conclusion

  Byzantine faults in distributed systems are real

  Accountability is a new approach to handling faults
  detects observable faults
  identifies the faulty node
  produces verifiable evidence

  Practical implementations exist

ARTIST Summer School Europe 2011

44

Outline

1.  Social systems
2.  Accountability for distributed systems
3.  Leveraging social relationships

  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

45

Sybil attacks
  Fundamental problem in systems with weak user ids

  Social networks, eBay, gmail, p2p, etc.

  An individual who controls several identities
  Can shed bad reputations (whitewashing)
  Can manipulate reputation/history via fake transactions
  Can manipulate voting
  Can circumvent per-user limits

  Can undermine fault model

  Examples:
  Content vote tampering on YouTube, Digg
  eBay fraud

ARTIST Summer School Europe 2011

46

Sybil defense approaches

Link user accounts to a more-or-less hard to obtain resource

1.  Certification from trusted authorities
  E.g., passport, social security number, credit card
  May remove ability to use pseudonyms, official/private ids

2.  Require work or money
  Vulnerable to “rich” attackers
  E.g., deep pocket attackers, botnets, rented cloud computing

resources
3.  Leverage social links

All may increase barriers to sign-up!
ARTIST Summer School Europe 2011

Two approaches to social network
based Sybil defense

  Sybil detection: Identify Sybil nodes and block them

  Sybil tolerance: Limit the impact of Sybil nodes

47 ARTIST Summer School Europe 2011

SybilGuard [SIGCOMM’06]

SybilLimit [Oakland S&P ’08]

SybilInfer [NDSS’08]

MOBID [INFOCOM’10]

GateKeeper [INFOCOM’11]

Reputation systems
[Levien, USENIX Sec’98],
[Cheng, P2PECON’05],

[Ziegler, Inf. Sys.Front.’05]

Ostra [Mislove, NSDI’08]

SumUp [Tran, NSDI’09]

Bazaar [Post, NSDI’11]

Genie [Mondal, SIGCOMM’11
poster]

Links in social networks

Assumption: Links take some effort to form and maintain
E.g.: Good users only accept links from users they recognize

Non-Sybil
Region

Sybil
Region

Attacker is limited by his ability to form
social links to real users

Sybil identities

48
ARTIST Summer School Europe 2011

Non-Sybil
Region

Sybil
Region

  All schemes work in a similar manner [Viswanath et al.,
SIGCOMM10]

  Effectively, they detect communities
  Nodes within a trusted node’s community presumed good
  Other nodes presumed to be Sybils

49
49

Trusted node

Understanding Sybil detection

ARTIST Summer School Europe 2011

Limitations of Sybil detection

  Detectors assume social networks are fast mixing
  Lots of evidence that many social networks have small fringe communities
 [Leskovec 2008], [Dell’Amico 2009]
  Sybil clouds and small communities may be indistinguishable
 using the graph structure alone

50

Trusted
Node

Trusted
Node

ARTIST Summer School Europe 2011

Sybil tolerance

  Does not seek to identify Sybils
  Instead, limits the impact of Sybils on relevant

system properties
  Examples:

  Limit the amount of spam in an email system
  Limit fraud in an online marketplace
  Limit large-scale data aggregation in OSNs

  Users get no benefit from using multiple ids
  Unlike Sybil detection, requires application-specific

information

51 ARTIST Summer School Europe 2011

52

Outline

1.  Social systems
2.  Accountability for distributed systems
3.  Leveraging social relationships

  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

Credit network [DeFigueiredo,
CEC’05], [Ghosh, WINE’07]

53

2

B A

  Decentralized payment infrastructure (no common currency)
  Nodes form a directed graph
  Edge (u,v) with weight n means

  u trusts v for up to n units of credit, or
  u owes v n units of credit.

C

3

0 0

ARTIST Summer School Europe 2011

Credit network: Purchases

54

->2

2

B A

Node w can purchase goods or services worth n credits from
u if every edge along a path u -> w has a weight >= n

->1

C

3 ->2 ->1 ->1

0 ->2 ->1 0

->0

ARTIST Summer School Europe 2011

What about intermediate node B?
Its has lost two credits with C and gained two credits with A!

Credit network: Liquidity

55

  Intermediate nodes of a transaction are unaffected if the
graph is richly connected

  Can use credit on a different path
  Under certain conditions, no significant loss of liquidity

compared to a centralized payment infrastructure
[Dandekar, EC’11]

ARTIST Summer School Europe 2011

Credit networks: Sybil tolerance

56

2

B A

  Credit available to a Sybil attacker is limited by edges
shared with real users

  Independently of how many ids the attacker controls!

C

3

0 0

A’’

A’’’

A’’’’

A’

ARTIST Summer School Europe 2011

Sybil-tolerant systems based on credit
networks: Approach

57e

1.  Construct a credit network based on a social network
  Credit network inherits SN’s rich connectivity
  Edges shared with real users limited by social capital

2.  Map the desired Sybil-tolerant system property to an
equilibrium (“trade balance ± ε”) or a max-flow in the
credit network, using
  Initial per-link credit assignment
  Per-transaction payments
  Credit adjustment

ARTIST Summer School Europe 2011

Example: P2p fair exchange

  Goal: Prevent freeloading in a p2p content
sharing network

  Strawman solution: Trusted centralized account
  Account keeps balance for every node:

 balance = initial credit + upload – download

  Prone to Sybil attacks
Attacker can boost balance by reporting fictitious

uploads among Sybils

58 ARTIST Summer School Europe 2011

Sybil-tolerant p2p fair exchange
  Peers connected by a social network (SN)
  Downloader pays uploader 1 credit/block

  using a credit path connecting them in the SN
  A node can download at most as much as it uploads
  Same holds for each connected component

  including a component of Sybil nodes

59

Trade balance enforced
along each edge cut

ARTIST Summer School Europe 2011

Questions

  How do we get started?
  Friends grant each other some initial credit

  What about temporary “trade imbalances” ?
  Initial credit provides a buffer

  How much initial credit is needed?
  Can be determined experimentally
  Increase until most nodes get what they want most

of the time

60 ARTIST Summer School Europe 2011

Limiting initial credit

How do we prevent abuse of the initial credit?
  Limited problem, it is difficult to make new friends
  In addition, can require initiator to grant initial credit,

while acceptor grants no initial credit

61

n > 0

B (accepts A as new friend) A

0

ARTIST Summer School Europe 2011

Effects of defection

  What is the damage when a (group of) node(s) defects?
  Size of edge cut times initial credit granted to defectors

62

 Edge cut

ARTIST Summer School Europe 2011

Defectors

Denial of service

  Can a (group of) node(s) deny service to unrelated
good nodes?

  By exhausting credit along a cut between good nodes!
  Yes, but the attacker must control an edge cut larger

than the victim’s cut to the rest of the network

63

 Edge cut
ARTIST Summer School Europe 2011

Attacker

Potential for credit DoS:
SNs with modularity < .6

64

  3000 randomly selected pairs of users
  Only low-degree nodes are vulnerable

ARTIST Summer School Europe 2011

Potential for credit DoS:
SNs with modularity > .6

65

  3000 randomly selected pairs of users
  Nodes with degree < 50 are vulnerable

ARTIST Summer School Europe 2011

66

Outline

1.  Social systems
2.  Accountability for distributed systems
3.  Leveraging social relationships

  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

67

Ostra [Mislove NSDI’08]:
Thwarting unwanted communication

  Email spam
  Search-engine spam
  Mislabeled content on sharing sites
  Unwanted invitations in Skype, IM systems

  Existing solutions expensive
  Costly arms race
  Content filtering for rich media?

ARTIST Summer School Europe 2011

68

Ostra: Assumptions

  Users form a social network, e.g.,
  People who appear in each other’s contact list
  People who have ever exchanged email

  Receivers classify content
  Explicit (Junk button)
  Implicit (Deletion, lack of response)

ARTIST Summer School Europe 2011

69

Ostra: Mechanism
  Network:

  Directed link pair between prior correspondents
  Link weight is balance of spam from either side
  Initial condition: Per-link credit of 3 both ways

  Equilibrium:
 rate of spam received ≈ rate of spam sent along each cut

  Transaction: unwanted communication received
 unwanted communication incurs a charge of 1 credit from
sender to receiver

  Credit adjustment:
 Credit balances decay at constant rate (e.g., 10%/day)

ARTIST Summer School Europe 2011

70

Ostra: Results
  Rate of spam a (group of) nodes can send is

proportional to number of links they have:
 (decay * #links) + rate of received spam

  Evaluated on real social network and email traffic
data

  Rate of spam with 20% attackers is
 4 msgs/user/week (Initial credit of 3; 10%
decay per day)

  1.3% of messages are delayed by a few
hours

ARTIST Summer School Europe 2011

71

Outline

1.  Social systems
2.  Accountability for distributed systems
3.  Leveraging social relationships

  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

72

Bazaar [Mislove NSDI’11]:
Limiting auction fraud

  Online marketplaces suffer from fraud
  Ebay, Overstock, uBid, Amazon Marketplace
  User identities and reputations are subject to

  Whitewashing
  Collusion

  Significant damage
  Recent convict defrauded US$ 717k from 5000

eBay users using > 250 eBay accounts

ARTIST Summer School Europe 2011

73

Bazaar: Mechanism
  Network:

  Undirected link between pairs of users who have transacted
  Link weight is balance of values of transactions with + and –

feedback
  Initial condition: OSN friends trust each other with initial

amount; or, value of amount placed in escrow
  Condition:

 Value of new transaction must not exceed max-flow between
seller and buyer

  Transaction: (k = transaction value)
  + feedback: increase path weights by k
  - feedback: decrease path weights by k
  Neutral feedback: no change

ARTIST Summer School Europe 2011

74

Bazaar: Results
  90-day UK eBay trace, over 3M users

  Over 8M transactions with buyer feedback

  Would have flagged GBP 164k worth of negative
feedback transactions (36% of transactions with
negative feedback)

  False positive rate of less than 5% (transactions
flagged by Bazaar that resulted in positive
feedback)

ARTIST Summer School Europe 2011

75

Outline

1.  Social systems
2.  Accountability for distributed systems
3.  Leveraging social relationships

  Exploiting social networks for Sybil tolerance
  Credit networks
  Ostra: thwarting spam
  Bazaar: limiting auction fraud
  Genie: limiting social network crawling

ARTIST Summer School Europe 2011

76

Genie:
Limiting OSN crawls

  OSN users and operators wish to limit data
aggregation by crawlers
  Users wish to limit their exposure
  Operators wish to protect their data assets

  Existing rate-limiting techniques are vulnerable to
Sybil attack

  E.g.: Someone crawled over 100k public Facebook
user profiles and shared them via BitTorrent

ARTIST Summer School Europe 2011

77

Genie: Mechanism
  Network:

  Directed link pair between OSN friends
  Link weight is balance of views from either side
  Initial condition: Link requestor grants acceptor 1 credit

  Equilibrium:
  Number of views from either side of a cut is roughly

balanced
  Transaction: Viewer views viewee’s profile

  Viewer->Viewee -1; Viewee->Viewer +1
  One-hop views are free

  Credit Adjustment:
  Link credit is rebalanced at a rate of 5 views / week

ARTIST Summer School Europe 2011

78

Genie: Results
2-week trace of profile views from a sample of the
Renren OSN (705k links, 33k nodes – 0.02% of nodes)

50 attack edges

100 attack edges
ARTIST Summer School Europe 2011

Other Sybil tolerant applications
using trust networks

  SumUp [Tran et al. NSDI’09]
  Sybil-tolerant voting

  [Levien USENIX Sec’98], [Cheng P2PECON’05],
[Ziegler Inf. Sys. Frontiers’05]
  Reputation systems

79 ARTIST Summer School Europe 2011

Challenges

Credit networks enable Sybil-tolerant system properties
  Systems can use weak identities
  Users can use multiple pseudonyms
But…

  Mechanism design is application-specific
  Need to understand scope of possible applications
  Systematic design of solutions
  Need to understand social network structure

80 ARTIST Summer School Europe 2011

Challenges

  Need to understand how social network and credit
network shape each other dynamically (social
dynamics)

  Social pressure shapes the network
  Credit network incentivizes users to chose wisely who

they wish to associate with
  Drop a friend whose requests have repeatedly caused

me to lose liquidity

81 ARTIST Summer School Europe 2011

Conclusion

  Effectiveness of Sybil detection on real social
networks remains unclear

  Sybil tolerance instead seeks to make a
system’s properties of interest robust to Sybils

  Credit networks provide a general model for
Sybil tolerant systems

  Current point solutions cannot easily be
generalized

  Need to understand the social dynamics

82 ARTIST Summer School Europe 2011

83

Max Planck Institute for Software
Systems (MPI-SWS)

  Government-funded basic research institute, since 2005
  Combines best of academia and research lab

  Academic freedom, doctoral students and post-docs
  Generous funding and excellent facilities

  Up to 18 (currently 11) faculty members / groups
  Highly international, working language is English
  Graduate school
  Opportunities for outstanding doctoral students and post-

docs; also, positions for visiting faculty
http://www.mpi-sws.org

ARTIST Summer School Europe 2011

MPI-SWS Faculty

  Umut Acar (CMU 2005): Programming Systems
  Björn Brandenburg (UNC 2011): Real-time Systems
  Paul Francis (UCL 1994): Internet architecture, privacy
  Derek Dreyer (CMU 2005): Programming Languages
  Peter Druschel (Arizona 1994): Distributed Systems
  Deepak Garg (CMU 2009): Security and Privacy
  Krishna Gummadi (UW 2005): Social networks/systems
  Rupak Majumdar (Berkeley 2003): Software Verification
  Ruzica Piskac (EPFL 2011): Automated Reasoning
  Rodrigo Rodrigues (MIT 2005): Dependable Systems
  Viktor Vafeiadis (Cambridge 2010): Logic, Verification

84
ARTIST Summer School Europe 2011

85

Thanks for your attention!

ARTIST Summer School Europe 2011

