
Sanjoy Baruah

The University of North Carolina at Chapel Hill

Certification-cognizant Scheduling
in

Integrated Computing Environments

Supported by the National Science Foundation, the Army Research Office, the
Air Force Office of Scientific Research, and the Air Force Research Laboratory

Certification-cognizant Scheduling
in

Integrated Computing Environments

Many real-time systems perform safety-critical functions

Certification authorities (CAs) ensure system safety
 Aviation:

 -Federal Aviation Authority (FAA)

 -European Aviation Safety Agency (EASA)

Medical devices:
 -Food and Drug Administration (FDA)

Certification-cognizant Scheduling
in

Integrated Computing Environments

Many real-time systems perform safety-critical functions

Certification authorities (CAs) ensure system safety

CAs tend to be very conservative…

…can require over-provisioning of computing resources

Certification-cognizant Scheduling
in

Integrated Computing Environments

Multiple functionalities on a shared platform

Why integrated computing environments?

•  Can support a wider range of functionalities

Separate implementations are inefficient

•  Size Weight and Power (SWaP) constraints

Certification-cognizant Scheduling
in

Integrated Computing Environments

2 jobs – J1 and J2 – on a preemptive processor
Both arrive at t=0; have deadlines at t=10 and t=8
WCET of J1 is 4; WCET of J2 is 4

0 2 4 6 8 10
time

Earliest Deadline First (EDF) schedule:

 An example

[worst-case execution requirement]

 An example
* Only J1 subject to certification

time
Ai Di

≤ Ci units of execution

2 jobs – J1 and J2 – on a preemptive processor
Both arrive at t=0; have deadlines at t=10 and t=8
WCET of J1 is 4; WCET of J2 is 4 * The job model: Ji = (Ai, Ci, Di)

Ai Di

Ci’s

 An example

Real-
time
code

WCET-
analysis

tool
Schedulability
analysis tool

* Ai and Di: from requirement specs,
and inter-job dependencies

* Ci: by worst-case execution time
(WCET) analysis

Target architecture

2 jobs – J1 and J2 – on a preemptive processor
Both arrive at t=0; have deadlines at t=10 and t=8
WCET of J1 is 4; WCET of J2 is 4

* Only J1 subject to certification

* The task model: Ji = (Ai, Ci, Di)

Real-
time
code

WCET-
analysis

tool
Schedulability
analysis tool

CA’s
WCET-
analysis

tool

CERTIFICATION:

CA’s tool more pessimistic
-E.g., based on worst-case analysis

(Designer’s tool may use simulation
experiments)

 An example

Target architecture

2 jobs – J1 and J2 – on a preemptive processor
Both arrive at t=0; have deadlines at t=10 and t=8
WCET of J1 is 4; WCET of J2 is 4

Real-
time
code

WCET-
analysis

tool
Schedulability
analysis tool

CA’s
WCET-
analysis

tool

CERTIFICATION:

CA’s tool more pessimistic

 An example

By CA’s tool
WCET of J1 is 8; WCET of J2 is 6

Target architecture

2 jobs – J1 and J2 – on a preemptive processor
Both arrive at t=0; have deadlines at t=10 and t=8
WCET of J1 is 4; WCET of J2 is 4 Determined by sys. designer’s

tool

8 + 4 = 12 > 10

0 2 4 6 8 10
time

J2 misses deadline J1 meets deadline

 Priority-based scheduling: J1 > J2

 An example

CERTIFICATION:

Only J1 is subject to certification

system passes certification

2 jobs – J1 and J2 – on a preemptive processor
Both arrive at t=0; have deadlines at t=10 and t=8
WCET of J1 is 4; WCET of J2 is 4

By CA’s tool
WCET of J1 is 8; WCET of J2 is 6

Determined by sys. designer’s
tool

0 2 4 6 8 10
time

J1 meets deadline J2 meets deadline

 Priority-based scheduling: J1 > J2

 An example

DESIGN VALIDATION: system validated correct

Both J1 and J2 should meet their deadlines

2 jobs – J1 and J2 – on a preemptive processor
Both arrive at t=0; have deadlines at t=10 and t=8
WCET of J1 is 4; WCET of J2 is 4

By CA’s tool
WCET of J1 is 8; WCET of J2 is 6

Determined by sys. designer’s
tool

The same system is being analyzed, twice
 Certification System design validation

of only a subset of the system

at a very high level of assurance
of the entire system

at a lower level of assurance

What are the right models, methods, and metrics for MC scheduling?

MIXED CRITICALITY (MC) systems

- A model for representing simple MC workloads
- An algorithm for scheduling such MC systems
- A metric for quantifying the effectiveness of this algorithm
- Generalizations to the model
-  Algorithms for scheduling in these generalized models
-  Evaluating these algorithms

PRESENTATION PLAN

A positive integer
•  larger values = greater criticality

The mixed-criticality job model

Job Ji
 - arrival time Ai

 - deadline Di

 - criticality level Li

 - WCET function Ci(1), Ci(2), …

 Previous example: 2 criticalities
 - needs certification; does not need certification

 Civilian aviation (DO-178B): 5 criticalities
 -catastrophic; hazardous; major; minor; no effect

 Automotive systems (ISO 26262): 4 criticalities

time
Ai Di

scheduling window

The mixed-criticality job model

 Ci(j): The worst-case execution time of job Ji, estimated at a level of
assurance consistent with the jth criticality level

(WCET-estimation tools and techniques are criticality level-specific)

Assume Ci(j) ≤ Ci(j+1) for all j

Job Ji
 - arrival time Ai

 - deadline Di

 - criticality level Li

 - WCET function Ci(1), Ci(2), …

Ji’s
 Real-
time
code

Level-j
WCET-
analysis

tool

Target architecture

Ci(j)

- upper bounds: the greater the desired degree of
confidence, the larger the value

CERTIFICATION CRITERION: Job Ji should meet its deadline when each
job Jk executes for at most Ck(Li), for all Ji.

The WCET of Jk, computed at Ji’s criticality level

The mixed-criticality job model

The MIXED-CRIT SCHEDULING PROBLEM: Given an instance {J1, J2, …, Jn} of
mixed-criticality jobs, determine an appropriate scheduling strategy

Job Ji
 - arrival time Ai

 - deadline Di

 - criticality level Li

 - WCET function Ci(1), Ci(2), …

MC scheduling: An example

1

2

2

1

J4:

Ai Di Ci(2) Ci(1) Li Ji:

J1:

J3:

J2:

1 LO
2 HI

MC scheduling: An example

0
time

0

0

0

0 2 LO

HI

HI

LO

2 1

2 1

2 1

1 2 3 4

4

4

4

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

Schedule for LO-criticality behavior
Schedule for HI-criticality behavior

- Earliest Deadline First (EDF)
- Criticality Monotonic scheduling

2 1

2 1

2 1

1 1

MC scheduling: An example

0
time

0

0

0

0 2 LO

HI

HI

1 1

2 1

2 1

2 1 LO

1 2 3 4

4

4

4

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

Schedule for LO-criticality behavior
Schedule for HI-criticality behavior

Single scheduling strategy for both
behaviors?

J1

MC scheduling: An example

0
time

1 2 3 4

HI-criticality certification: must fit 4 units of work here

Earliest Deadline First (EDF)

0 HI

1 1

2 1

2 1

2 1

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

4

0

0

0 2 LO

HI

LO

4

4

J3 J4

MC scheduling: An example

0
time

1 2 3 4

LO-criticality validation: J1 misses its deadline

Criticality-Monotonic

0 HI

1 1

2 1

2 1

2 1

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

4

0

0

0 2 LO

HI

LO

4

4

J3 completes execution J4 completes execution

J3 J4 J3

MC scheduling: An example

0
time

1 2 3 4

If J3 does not complete by 1:
0 HI

1 1

2 1

2 1

2 1

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

4

0

0

0 2 LO

HI

LO

4

4

J3 J1

MC scheduling: An example

0
time

1 2 3 4

If J3 completes by 1:
0 HI

1 1

2 1

2 1

2 1

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

4

0

0

0 2 LO

HI

LO

4

4

J4 J4

If J4 does not complete by 3:

J3 J1 J4 J2

MC scheduling: An example

0
time

1 2 3 4

If J3 completes by 1:
0 HI

1 1

2 1

2 1

2 1

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

4

0

0

0 2 LO

HI

LO

4

4

•  execute J3 first
•  if J3 executes for ≤ 1, J1 is next
•  J4 is next
•  J2 executes last

A correct strategy:

If J4 completes by 3:

The complexity of MC scheduling

 Given an instance of mixed-criticality jobs, determining
whether an appropriate scheduling strategy exists for it
is NP-hard in the strong sense

- Even if there are only two distinct criticality levels

- Upon both preemptive and non-preemptive processors

- And all jobs arrive simultaneously

- For uniprocessors as well as multiprocessors

Coping with intractability

 Given an instance of mixed-criticality jobs, determining
whether an appropriate scheduling strategy exists for it
is NP-hard in the strong sense

Each job is either HI-criticality or LO-criticality

Li ∈ {LO, HI}

 Ji = (Li, Ai, Ci(LO), Ci(HI), Di)

Focus on dual criticality instances:

 Given an instance of mixed-criticality jobs, determining
whether an appropriate scheduling strategy exists for it
is NP-hard in the strong sense

- Already intractable

- All techniques & results generalize to more criticality levels

Coping with intractability

Focus on dual criticality instances:
Each job is either HI-criticality or LO-criticality

- For ease of presentation

Dual-criticality instance I = {J1, J2, …, Jn}

Assign priorities by Lawler’s technique (Audsley’s algorithm)
1. find a lowest-priority job

A preemptive uniprocessor scheduling algorithm

2. remove from instance
3. repeat on remaining instance

[Proof of correctness: On preemptive processors, lower-priority jobs do not
impact the scheduling of higher-priority jobs.]

Dual-criticality instance I = {J1, J2, …, Jn}

Assign priorities by Lawler’s technique (Audsley’s algorithm)

 I’ := I
L1: Ji := a job that may be assigned lowest priority in I’
 I’ := I’ – {Ji}
 if I’ is not empty then goto L1

A preemptive uniprocessor scheduling algorithm

The WCET of Jk, computed at Ji’s criticality level

- recursively find a lowest-priority job

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Assign priorities by Lawler’s technique (Audsley’s algorithm)
Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

- recursively find a lowest-priority job

0 1 2 3 4

0

0 2 LO

HI

2 1

2 2 4

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J2:

Can J1 be lowest priority?

J1 misses its deadline

- no!
An example:

Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

- recursively find a lowest-priority job

0 1 2 3 4

0

0 2 LO

HI

2 1

2 2 4

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J2:

Can J1 be lowest priority?

J2 meets its deadline

- no!
An example:

Can J2 be lowest priority? - yes

Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

- recursively find a lowest-priority job

0 1 2 3 4

0

0 2 LO

HI

2 1

2 2 4

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J2:

An example: Priority ordering: J1 > J2
LO-criticality certification:

Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

J1 meets its deadline J2 meets its deadline

- recursively find a lowest-priority job

0 1 2 3 4

0

0 2 LO

HI

2 1

2 2 4

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J2:

An example: Priority ordering: J1 > J2
HI-criticality certification:

Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

J2 meets its deadline

- recursively find a lowest-priority job
Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

A preemptive uniprocessor scheduling algorithm

OCBP: Own Criticality-Based Priorities

- recursively find a lowest-priority job

* Polynomial runtime
 - O(n3 log n) naive; O(n2)

*Quantitative performance bound
(assuming some run-time support)

PROPERTIES:

Assign priorities by Lawler’s technique (Audsley’s algorithm)

Ji := a job that may be assigned lowest priority in I’

Ji may be assigned lowest priority if it meets its deadline as the lowest-
priority job, when each job Jk executes for Ck(Li) time units

Dual-criticality instance I = {J1, J2, …, Jn}

* Is a sufficient (not exact) scheduling algorithm

A quantitative metric

NP-hard: Such an algorithm is unlikely

So, seek an approximate algorithm that has polynomial run-time

Definition. A scheduling algorithm A has speedup factor equal to s (s ≥ 1) if
any instance that can be scheduled by an optimal algorithm on unit-speed
processors, can be scheduled by algorithm A on speed-s processors

Schedulable instance I A polynomial-time
algorithm

A schedule for I

* Comparing approximation algorithms: smaller s is better
 (An optimal algorithm has s = 1)

* Faster processors to compensate for non-optimality of the algorithm

- Speedup factor

on faster procs.

We seek polynomial-time scheduling algorithms with small speedup factors

 Integrated computing environments + certification requirements

Models
Methods
Metrics

- finite collection of independent jobs
- OCBP (Own Criticality-Based Priorities)
- Processor Speedup Factor

PRESENTATION PLAN:

A processor speedup factor for OCBP

Generalizing the model: recurrent task systems

- an algorithm for recurrent task systems: EDF-MD

- a processor speedup factor for EDF-MD

Further generalizing the model: critical sections

WCET: a closer look

Safety-critical programs (should) exhibit predictable behavior
- Simple control structures; bounded loops; restricted use of cache, etc.
-  Average behavior similar to worst-case behavior

Ji’s execution time

Min. observed
execution time

Max. observed
execution time

“Regular” programs may be more complex
- Greater unpredictability on behavior; greater variation in run-times

LO criticality WCET

Ci(LO) Ci(HI)

HI criticality WCET

Ci(LO) Ci(HI)

Ci(HI) >> Ci(LO) for a less predictable job

Run-time support for mixed criticalities

Does the run-time system police the execution of jobs?

Ci(HI) >> Ci(LO) for LO–criticality jobs

WCET at LO criticality WCET at HI criticality

Run-time support for mixed criticalities

Does the run-time system police the execution of jobs?

- such systems tend to be more complex

Ci(HI) >> Ci(LO) for LO–criticality jobs

 If run-time system can enforce execution budgets

Ci(HI) = Ci(LO) for LO–criticality job Ji

- policing and budget-enforcement must be implemented as HI-criticality
functionalities

 Ci(LO), if Ji is a LO–criticality job

- policing and budgeting overhead costs must be accounted for

But…

Budget assigned to Ji =
 Ci(HI), if Ji is a HI–criticality job

The load parameter

demand(I, [t1, t2)) ≡ cumulative execution requirement of jobs of
instance I over the time interval [t1, t2)

RESULT: Any regular (i.e., non-MC) instance I is feasible on a preemptive
uniprocessor if and only if load(I) ≤ 1

load(I) ≡ maxall [t1,t2) demand(I,[t1,t2)) (t2-t1)

For “regular” real-time instances:

Generalization to dual-criticality instances
 *loadLO(I)

*loadHI(I)

- load “expected” by system designer

- load to be certified

(all jobs; LO-criticality WCET’s)

(only HI-criticality jobs; HI-criticality WCET’s)

2

0
time

0

0

0

0 LO

HI

HI

1 1

1 1

2 1

1 1 LO

1 2 3 4

4

4

4

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

The load parameter: an example

loadLO

 1/(2-0) = 0.5

 4/(4-0) = 1.0

= max (0.5, 1.0) = 1.0

2

0
time

0

0

0

0 LO

HI

HI

1 1

1 1

2 1

1 1 LO

1 2 3 4

4

4

4

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

The load parameter: an example

loadHI

 (2+1)/(4-0) = 0.75

= 0.75

loadLO = max (0.5, 1.0) = 1.0

2

0

0

0

0 LO

HI

HI

1 1

1 1

2 1

1 1 LO

4

4

4

J4:

Ai Di Ci(HI) Ci(LO) Li Ji:

J1:

J3:

J2:

The load parameter: an example

loadHI = 0.75

loadLO = max (0.5, 1.0) = 1.0

This instance I has low-criticality load loadLO(I) = 1.00

and high-criticality load loadHI(I) = 0.75

loadHI(I) 0 1

RESULT: Algorithm OCBP schedules any dual-criticality instance I satisfying
 loadHI(I) + loadLO(I)2 ≤ 1
on a preemptive unit-speed processor

OCBP: A sufficient schedulability condition

necessary condition
 for viability on a
speed-1 processor loadLO(I)

1

necessary condition
 for viability on a
speed-1 processor necessary condition

 for viability on a
speed-0.62 processor

loadHI(I)

loadLO(I)

0 1

RESULT: Any dual-criticality instance I feasible on a unit-speed processor

is OCBP-schedulable on a speed- = (≈ 1.618) processor

≈ 0.62

≈ 0.62

√5 - 1
2

OCBP: A sufficient schedulability condition

2
√5 - 1

√5 + 1
2

√5 - 1
2

1

RESULT: Any dual-criticality instance I feasible on a unit-speed processor

is OCBP-schedulable on a speed- = (≈ 1.618) processor

OCBP: A sufficient schedulability condition

2
√5 - 1

√5 + 1
2

The Golden Ratio: positive solution to x2 = (x + 1)

.

.

.

.

.

for(;;){

}

Recurrent tasks

Recurring tasks or processes
- generate jobs
- represent code within an infinite loop

Different tasks are assumed independent

Recurrent tasks: the Liu & Layland (LL) model

Task τi = (Ti, Li, [Ci(LO), Ci(HI)])
-  Ti: minimum inter-arrival separation (“period”)
-  Li ∈ {LO, HI}: the criticality level of the task
-  Ci(LO), Ci(HI): WCET estimates, at both criticality levels

Jobs
- first job arrives at any time
- consecutive arrivals at least Ti time units apart
- each job has criticality Li, and WCET’s as specified
- each job must complete within Ti time units

The dual-criticality scheduling problem for LL task systems: Given a
collection { τ1, τ2, …, τn} of dual-criticality LL tasks, determine a correct
scheduling strategy

The load parameter

demand(I, [t1, t2)) ≡ cumulative execution requirement of jobs of
instance I over the time interval [t1, t2)

RESULT: Any regular (i.e., non-MC) instance I is feasible on a preemptive
uniprocessor if and only if load(I) ≤ 1

load(I) ≡ maxall [t1,t2) demand(I,[t1,t2)) (t2-t1)

For “regular” real-time instances:

The load parameter

demand(I, [t1, t2)) ≡ cumulative execution requirement of jobs of
instance I over the time interval [t1, t2)

RESULT: Any regular (i.e., non-MC) instance I is feasible on a preemptive
uniprocessor if and only if load(I) ≤ 1

load(I) ≡ maxall [t1,t2) demand(I,[t1,t2)) (t2-t1)

For “regular” real-time instances:

The utilization parameter of a LL task system

RESULT: Any regular (i.e., non-MC) LL task system τ is feasible on a
preemptive uniprocessor if and only if U (τ) is ≤ 1

For systems of (non mixed-criticality) LL tasks:

U

RESULT: Any regular (i.e., non-MC) LL task system τ is feasible on a
preemptive uniprocessor if and only if U (τ) is ≤ 1

For systems of (non mixed-criticality) LL tasks:

Generalization to dual-criticality LL systems

 *ULO(τ)

*UHI(τ)
(only HI-crit. tasks; HI-crit. WCET’s)

- as “expected” by system designer

- to be certified

(all tasks; LO-criticality WCET’s)

U

The utilization parameter of a LL task system

Scheduling dual-criticality LL tasks on preemptive uniprocessors

Extensions of OCBP to the recurrent tasks model

1.  Li and Baruah. An algorithm for scheduling certifiable mixed-criticality task systems.
RTSS 2010

2.  Guan, Ekberg, Stigge and Yi. Effective and efficient scheduling of certifiable mixed-
criticality sporadic task systems. RTSS 2011

- yields a speedup bound of ≈ 1.62
- quadratic run-time per scheduling decision

Scheduling dual-criticality LL tasks on preemptive uniprocessors

Extensions of OCBP to the recurrent tasks model
- yields a speedup bound of ≈ 1.62
- quadratic run-time per scheduling decision

EDF-MD: a new scheduling algorithm
- Better (smaller) speedup bound
- better run-time behavior

Earliest Deadline First – Modified Deadlines

8

6 LO

HI

3 3

6 2

Ti Ci(HI) Ci(LO) Li

τ1:

τ2:

LO-criticality utilization: 3/6 + 2/8 = ½ + ¼ = ¾
HI-criticality utilization 6/8 = ¾

on a unit-speed processor

⇒ can be scheduled to meet LO-criticality
validation requirements

⇒ can be scheduled to meet HI-criticality
certification requirements

Algorithm EDF-MD: An example

either signal completion, or know
it’s a HI-criticality behavior

either signal completion, or know
it’s a HI-criticality behavior

6 LO

HI

3 3

6 2

Ti Ci(HI) Ci(LO) Li

τ1:

τ2:

LO-criticality utilization: 3/6 + 2/8 = ½ + ¼ = ¾

IDEA: Reduce the period of the HI-
criticality tasks, while maintaining LO-
criticality feasibility

t t+2 t+4 t+6 t+8

3/6 + 2/4 = ½ + ½ = 1

Receive 2 units of
execution here…

real deadline
modified deadline

⇒
τ1 does not need to
execute any more

A job of τ2:

8

Algorithm EDF-MD: An example

4

Algorithm EDF-MD

1. Pre-processing

2. Initial run-time scheduling (assuming LO-criticality behavior)

3. Run-time scheduling upon transitioning to HI-criticality
 - [i.e., some jobs executes beyond its LO-criticality WCET]

* Scale the periods of all HI-criticality tasks such that ULO becomes 1

* Scaling factor is

* Schedule according to EDF
- job deadlines assigned according to the scaled-down periods

* Discard all LO-criticality jobs

* Recompute deadlines for HI-crit. jobs, according to their original periods

- HI-crit: deadlines assigned according to the original periods

* Future arrivals
- LO-crit: discard

Algorithm EDF-MD: Properties

Algorithm EDF-MD can be implemented with a run-time complexity
equal to O(log N) per scheduling decision

The processor speedup factor of Algorithm EDF-MD is 4/3

- Extended OCBP: ≈ 1.62

- Extended OCBP: O(N2) per scheduling decision

number of tasks

for(;;){

}

 Workload: Dual-criticality LL tasks

Recurrent tasks

Jobs access shared resources
- within critical sections …which may be nested

- lock (R1)

- unlock (R1)

- lock (R2)

- unlock (R2)

- lock (R3)

- unlock (R3)

 + additional serially reusable resources
Platform: preemptive uniprocessor

+ shared resources

Priority Inversion: A lower-priority job executes
instead of a higher-priority one

Serially reusable shared resources

shared resource

needs shared resource

unavoidable blocking
Priority inversion and blocking

High
priority

Low
priority

Serially reusable shared resources

shared resource

needs shared resource

does not need shared resource

avoidable blocking

Priority inversion and blocking

High
priority

Low
priority

Medium
priority

Serially reusable shared resources

shared resource

needs shared resource

does not need shared resource

avoidable blocking

Priority inversion and blocking

High
priority

Low
priority

Medium
priority

 is optimal for resource-sharing
“regular” L&L task systems: if any task system is uniprocessor feasible,
then EDF + SRP guarantees to schedule it to meet all deadlines

The STACK RESOURCE POLICY (SRP)

Serially reusable shared resources

Ted Baker. Stack-based scheduling of real-time processes. Real-Time
Systems: The International Journal ofTime-Critical Computing 3(1). 1991.

Ci(LO) Executes for > Ci(LO)

Serially reusable shared resources

Low
criticality

High
criticality

⇒ can abort all low-criticality jobs

Mixed criticality scheduling Mixed criticality scheduling without shared resources

Executes for > Ci(LO)

Serially reusable shared resources

Low
criticality

High
criticality

⇒ may be unsafe to abort the lower-criticality job

shared resource

Mixed criticality scheduling without shared resources with

Problem: Design an efficient, certifiable strategy for
arbitrating access to shared resources for mixed-
criticality sporadic task systems

Context and conclusions

Platform-sharing is here to stay

Different certification criteria for different systems

Current practice: complete isolation amongst applications
 is inefficient

- in resource usage: Size, Weight, and Power (SWaP)
- in certification effort

Needed: Certifiably correct techniques for system design
and implementation

New models, methods, and metrics for achieving this goal

