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Transistor count increases exponentially, 

but… 
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Mobile SoCs are cool…right? 
Wrong! 

So.. got myself a HTC (T-Mobile) HD2 […].  
As i found out the problem is pretty common: damn thing restart itself - 
thermally related - the old CPU overheat problem. By searching the net 
I found out that it's pretty common with some HTC models. HD2 has it, 
Desire has it, Nexus One has it, hell even some xperia models have it.. 
about half of the devices powered by anything from the Snapdragon series 
could have it.  

June 2011 - http://forum.xda-developers.com/showthread.php?t=982454 

Why? 
ARM has unveiled its next generation "Eagle"  (Cortex A15) processor, 
pitching it at everything from smartphones to energy-efficient servers. 
The A15 will be initially produced at 32nm or 28nm, although ARM claims 
the roadmap stretches down to 20nm. It will deliver clock speeds of up to 
2.5GHz. 

Aug. 2011 - http://www.pcpro.co.uk/news/360994/arm-preys-on-smartphones-and-servers-with-eagle 



A 2011 Mobile SoC 
•  Tegra II 

–  TSMC 40nm (LP/G) 
– A9 - 1GHz (G) 
– GPU, etc.  - 330MHz (LP) 
– GEForce ULV (8 shaders) 
–  2 separate Vdd rails 
–  1MB L2$ 
–  32b LPDDR2 (600MHz DR) 

•  Tegra II 3D 
– A9 – 1.2GHz 
– GPU – 400Mhz 

NVIDIA Tegra II SoC 

SoC+DRAM PoP 



3D-SoCs are even worse 



Rushing to Many-Core 
Hardware Trends  1000+ core system 
Software Trends   Concurrency (1000x +) 

Massively Parallel 
Large Scale SoCs  
(1,000s of cores)  

Intel 80 Core chip 

SCC Tera Scale 
Project (48 Cores) 

Multi 
Processors 
(2-8 cores on 
chip) 

UniProcessors 
(single core) 



Resource 
management policy 

System  
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from OS 

Workload 
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Multicore Platform 

Management Loop: Holistic view 

SW 
HW 

HW-Introspection: monitors HW-control: knobs (Vdd, Vb, f,on/off )  ‏

SW-control: scheduling, allocation 

Proc. N 

Private 

Mem 

SW-introspection: system tracing 

OS: Scheduler 
MW: Job manager 



Outline 
•  Introduction 
•  Scalable Control 
•  Scalable model learning 
•  Experimental Environment 
•  Challenges ahead 



O.S 

DRM - General Architecture 
• System (Chip Scale) 
• Sensors 

–  Performance counter 
- PMU 

–  Core temperature 

• Actuator - Knobs 
–  ACPI states 

–  P-State  DVFS 
–  C-State  PGATING 

–  Task allocation 

• Controller 
–  Reactive 

–  Threshold/Heuristic 
–  Controller theory 

–  Proactive  
–  Predictors 

Simulation snap-shot   
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CONTROLLER 

•  Controller  
•  Minimize energy  
•  Bound the CPU  
  temperature 

•  Layered approach 
•  Stack of controllers 

•  Energy controller  
•  Thermal controller 

CONTROLLER 
Energy 

Thermal 
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Energy Controller 
CPU BOUND TASK 

MEMORY BOUND TASK 

cpu 

cache 

High Frequency 

1 

0 

cpu 
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1 
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•  Performance Loss 
•  Power reduction 
•  Energy Efficiency Loss! 

cpu 

dram 
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0 
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dram 
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•  Same Performance 
•  Power reduction 
•  Energy Efficiency Gain! 



task task task 

Modello  
Termico 

Tj Thermal 
model 

Tn,j 
Pn,j 

Modello di  
potenza 

Taskj Pj Power  
model 

P=g(task,f) 

Thermal & Power Modeling 
Linear dynamic  
state space model 

Non linear 



Thermal transient 
1 2 3 4 5 6 7 8

1
2
3
4
5
6
Ts  < 2ms  
Ts  < 50ms  
Ts  < 75ms  
Ts  < 0.1s  

Ts  < 0.25s  
Ts  < 0.5s  
Ts  > 0.5s  

Thermal locality (Direct Fourier law implication): 
•  Continuous model:  

–  Thermal neighborhood = Physical neighborhood 
•  Discrete model: 

–  Thermal neighborhood depends on sample time 
•  Hotspot simulation of ‘Intel SCC like’ 48core 

–  Each core : Area = 11.82mm2, Pmax = 2.6W 
–  We powered on only Core(5,3)  
–  T neighborhood > +0.1°C 

•  Thermal transient – Model Order 
–  Different  materials reflects in  

different time constants [1] 

•  Silicon die, heat spreader, heat sink  
•  Second order model 

[1] W. Huang Differentiating the roles of IR measurement and simulation for 
power and temperature-aware design 2009. 

O.S time scale 
Neighborhood 



Thermal Controller 

[Intel®, ISSCC 2007] 

Threshold based 
controller 

• T > Tmax  low freq 
• T < Tmin   high freq 
•  cannot prevent overshoot 
•  thermal cycle 

Classical feed-back  
controller 

•   PID controllers 
•   Better than threshold 
    based approach 
•   Cannot prevent overshoot 

Model Predictive  
Controller 

• Internal prediction: 
 avoid overshoot 

• Optimization: 
     maximizes performance 

•  Centralized 
•  aware of neighbor 

cores thermal 
influence 

•  All at once – MIMO 
controller 

•  Complexity !!! 

Thermal 
Model 

Past input  
& output 

Optimizer Future  
input 

Target  
frequency 
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Cost  
function 

MPC 

Future 
output 

Future  
error 

Constraint 



MPC Scalability 
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[Intel, ISSCC 2007] [Intel, ISSCC 2007] 

MPC Complexity 
•  Implicit - a.k.a. on-line 

•  computational 
burden 

•  Explicit – a.k.a. off-line 
•  high memory 

occupation 
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Complexity grows 
superlinearly with 
number of cores!! 



Addressing Scalability 
On a short time window, 
power has a local thermal 
effect! 
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One controller for each core 
Controller uses: 
•  local power & thermal model 
•  neighbor’s temperatures 

Fully distributed 
Complexity scales 
linearly with #cores 



Distributed Control 

CoreN 

Core1 

Corei 

multicore 

Distributed and hierarchical controllers: 
•   Energy Controller (EC) 

– Output Frequency fEC 
•  Minimize power – CPI based 
•  Performance degradation < 5% 

•   Temperature Controller (TC)  
– Distributed MPC 
– Inputs: 

•  fEC ,TCORE, TNEIGHBOURS 

– Output 
•  Core frequency (fTC) 

fTC i,k+1 

fTC N,k+1 

T i,k 

T i,k 

controller 
node 
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CPI N,k+1 

ECN 

fEC N,k+1 
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Distributed Thermal Controller 

CPI 

f1,EC 

Observer 

P1,EC g(·) MPC Controller 
Linear Model 

QP Optimiz x1 

TENV 

g-1(·) 
CPI 

P1,TC 

f1,TC 

MPC Controller Core 1 

Nonlinear 
(Frequency  to Power) 

Linear 
(Power to Temperature) 

s.t 

2 states 
per core T1 

Classic Luenberger state observer 

Implicit formulation 
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Region number 

x1SHIFTED x1 + 

A1
-1·∙B1 

[x1 ; TENV ; P1,EC] 
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Explicit Distributed Controller 

Our aim is to minimize the difference between the input P1,TC (also called 
manipulated variable MV) and the reference (P1,EC). Our controller can only take in 
account a constant reference. To overcome this limitation we reformulate the 
tracking problem as a regulation problem consisting in taking the ∆P1  (the new 
MV) to 0. The regulated power P1,TC is: 
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At each time instant the system belongs to a region 
according with its current state. On each region the 
explicit controller executes the following linear control 
law: 

Explicit Distributed Controller 
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The prediction evaluated by our explicit controller cannot take into account the 
measured disturbances (uMD=[Tenv, P1, Tneigh]). Thus we exploit the superposition 
principle of linear systems:  

To remap the effect of these elements we exploit the model to modify the state (x
(k)  xSHIFTED(k)) projecting one step forward the MDs effects.  

Explicit Distributed Controller 



MPC trade-off 

Trace Driven Simulation 
(Matlab) – gold model 
•  Parsec trace obtained on real 

HW 
•  Power Model: Nonlinear vs. 

linear 
•  Thermal Model: 

one vs. two  
•  Centralized vs. Distributed 
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MPC needs a Thermal Model  

•  Accurate, with low complexity  
•  Must be known “at priori” 
•  Depends on user configuration 
•  Changes with system ageing 

“In field” Self-Calibration 
Workload 

t CoreN   

Workload 
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Workload 
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Workload  
execution 
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 tasks 
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Identified State-Space 
Thermal Model 

•  Force test workloads 
•  Measure cores temperatures 
•  System identification 



Model 
least square 
optimization 

Data Optimal  
parameters 

Test pattern 

System 
response 

A,B 

e = Tmodel - Treal 

Parametric optimization 

Parameters 

Cost function 

Error Function 

  i 

LS System Identification 



Workload & Temperature 

Temperature trace 

Pseudorandom workload pattern 



Identification based on pure LS fitting 

TEMPERATURA MISURATA vs. SIMULATA MEASURED vs. SIMULATED TEMPERATURE 

Black-box Identification 



Problem: unstable Model 

Validation 
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Measured 
Thermal Model 



Tamb 

Tcore 

t 

Tcore cannot be ≠ Tamb with P=0 

Gray Box identification 
LS model must be constrained by physical properties to 
avoid over-fitting 



Constraint on initial 
condition 

Linear constraint 

CONSTRAINED LEAST SQUARES 

Physical Constraints 



Model learning Scalability 
System 

Identification 

“In field” Self-Calibration 
•  Force test workloads 
•  Measure cores temperatures 
•  System identification 

Thermal 
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Future 
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Future  
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Constraint 

MPC Weaknesses – 2nd 
Internal Thermal Model  

•  Accurate, with low complexity  
•  Must be known “at priori” 
•  Depends on user configuration 
•  Changes with system ageing 
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Model learning Scalability 
System 

Identification 

“In field” Self-Calibration 
•  Force test workloads 
•  Measure cores temperatures 
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Complexity issue 
•  State-of-the-art is centralized MIMO 
•  Least square based – is based on matrix 
inversion (cubic with #cores) 
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Distributed approach: 
each core identifies its 

local thermal model 
Complexity scales 
linearly with #cores 



Distributed Model learning 
Distributed 

MISO identification 

•  ARX model 

Corei 

Ti(k-s) 

Modeli 
TneigE,i(k-s) TneigW,i(k-s) 

TneigN,i(k-s) 

Pi(k-s) 
AutoRegressive term 

Errors  
(disturbances, measurement errors) 

 Power input 
Neightbours 
 temperatures 

ARX Model 

State Space  
Model 



Distributed model-learning 
Distributed 

identification 

•  ARX model 
•  Computation  
       Algorithm 

•  Objective: find ai and bi,j 

•  System data collection: 
•  input: PRBS signals to all cores (persistently exciting inpt sequence) 
•  output: Temperatures of all cores (Ti

o con  i= # core) 
•  Parameters computation: 
•  Tp(ai, bi,j)=T(k+1|k)  computed with previous equation 
•  To output temperature (measured) 
•  Least square algorithm: •  Results 

2) Temperature response of core 1 1)  Mean Absolute Error between 
original and identified models 



Outline 
•  Introduction 
•  Scalable Control 
•  Scalable model learning 
•  Experimental Environment 
•  Challenges ahead 



Simulation Strategy	
  
Trace driven Simulator [1]: 
•   Not suitable for full system simulation (How to simulate O.S.?) 
•   looses  information on cross-dependencies 

  resulting in degraded simulation accuracy 
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Closed loop simulator: 
•   Cycle accurate simulators [2] : 

•  High modeling accuracy 
•  Suppost well-established power and temperature 

co-simulation based on analytical models and 
system micro-architectural knowledge 

•  Low simulation speed 
•  Not suitable for full-system simulation  

•   Functional and instruction set simulators: 
•   Allow full system simulation 
•   Lower internal precision 
•   Less detailed data 
•   Introduces the challenge of having accurate power 

and temperature physical models 

 no micro-architectural model 

[1] P Chaparro et al. Understanding the thermal implications of multi-core architectures.  2007 
[2] Benini L. et al. MPARM: Exploring the multi-processor SoC design space with SystemC  2005 



Virtual Platform 

Virtual Platform	
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Simics by Virtutech: 
•  full system functional simulator 
•  models the entire system:  

peripherals, BIOS, network interfaces, cores, 
memories 

•  allows booting full OS, such as Linux SMP  
•  supports different target CPU (arm, sparc, x86) 
•  x86 model:  

•  in-order 
•  all instruction are retired in 1 cycle 
•  does not account for memory latency 

Memory timing model 
•  RUBY – GEMS (University of Wisconsin)[1]  

•  Public cycle-accurate memory timing 
model 

•  Different target memory architectures 
•  fully integrated with Virtutech Simics 
•  written in C++ 
•  we use it as skeleton to apply our add-

ons (as C++ object) 

[1] Martin Milo M. K. et al. Multifacet’s general  
execution-driven multiprocessor simulator (GEMS) toolset 2005 



Virtual Platform 
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Performance knobs (DVFS) module: 
•   Virtutech Simics support frequency change at run-time 
•   RUBY does not support it: 

•   does not have internal knowledge of frequency 
•   We add a new DVFS module to support it : 

•  ensures L2 cache and DRAM to have a constant clock frequency 
•  L1 latency scale with Simics processor clock frequency 

Performance counters module: 
•  Needed by performance control policy  
•  We add a new Performance Counter module to support it 

•  exports to O.S. and application different  quantities:  
•  the number of instruction retired, clock cycles and stall cycles expired, 

 halt instructions,… 



Virtual Platform 
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Power model module: 
•  At run-time estimate the power consumption of the target architecture 
•  Core model PT = [PD(f,CPI) + PS(T, VDD)] *(1 − idleness) + idleness *(PIDLE) 
•  PD experimentally calibrated analytical power model 
•  Cache and memory power – access cost estimated with CACTI [1]  

[1] Thoziyoor Shyamkumar et al. A comprehensive memory modeling tool and its application to the 
design and analysis of future memory hierarchies.  2008 



Power Model 

  Power model interface 
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Modeling Real Platform – Power 	
  
Real Power Measurement  
•   Intel server system S7000FC4UR 

•  16 cores - 4 quad cores Intel® Xeon® X7350, 2.93GHz 
•  16GB FBDIMMs 
•   Intel® Core™ 2 Duo architecture 

•  At the wall Power consumption  
•   test:  

•  set of synthetic benchmarks with different memory pattern accesses  
•  forcing all the cores to run at different performance levels 
•  for each benchmark we extract the clocks per instruction metrics (CPI) and 
correlate it with the power consumption 

•  We relate the static power with the operating point by using an analytical model 

High accuracy at 
high and low CPI 



Virtual Plattform 
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Temperature model module: 
•  we integrate our virtual platform with a thermal simulator [1] 
•  Input: power dissipated by the main functional units composing the target platform 
•  Output: Provides the temperature distribution along the simulated multicore die area 

as output 

[1] Paci G. et al. Exploring ”temperature-aware” design in low-power MPSoCs 
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Modeling Real Platform– Thermal	
  
•  Thermal Model Calibration : 

•  Derived from Intel® Core™ 2 Duo layout 
•  We calibrate the model parameter to simulate real HW transient 
•  High accuracy (error < 1%) and same transient behavior 

Temperature and Power Input of Core 1300302304306308310312314316318Temperature [°K]02468101214161820Time [s]51015202530Power [W]Model TemperatureReal TemperaturePower Input35

CORE 1CORE 2CORE 3CORE 4MM1MM2L1dL1iL1iL1iL1iL1dL1dL1dCORE 1CORE 2CORE 3CORE 4MM1MM2

<1% 



Virtual Platform Performance 
•  Host: 

•  Intel® Core™ 2 Duo  
•  2.4 Ghz 
•  2GB RAM 

Simics +  
Ruby: 

Simics +  
Ruby +  
DVFS: 

Simics +  
Ruby +  
DVFS +  
Power: 

Simics +  
Ruby + 
DVFS +  
Power +  
Thermal  
interface:  

Simics +  
Ruby + 
DVFS + 
Power + 
Thermal  
Model: 

•  Target: 
•  4 core Pentium® 4  
•  2GB RAM 
•  32 KB private L1 cache 
•  4 MB shared L2 cache 
•  Linux OS 

Tsim =  
       1040 s 

Tsim =  
       1045 s 

Tsim =  
       1110 s 

Tsim =  
       1160 s 

Tsim =  
       1240 s 

68 cells 
T = 100ns 

Compute  
every 13us 

1 Billion instruction 

+ 7% + 19.2% 



Mathworks Matlab/Simulink 
•  Numerical computing environment developed to design, 

implement and test numerical algorithms 
•  Mathworks Simulink – for simulation of dynamic systems: 

simplifies and speedups the development cycle of control systems 
•  Can be called as a computational engine by writing C and Fortran 

programs that use Mathworks Matlab’s engine library 
•  Controller design - two steps:  

•  developing the control algorithm that optimizes the system 
performance  

•   implementing it in the system 

We allow a Mathworks Matlab/Simulink description of the controller to 
directly drive at run-time the performance knobs of the emulated system 
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Mathworks Matlab interface: 
•  New module named Controller in RUBY 
•  Initialization: starts the Mathworks Matlab engine concurrent process, 
•  Every N cycle - wake-up: 

•   send the current performance monitor output to the Mathworks Simulink model 
•   execute one step of the controller Mathworks Simulink model 
•   propagate the Mathworks Simulink controller decision to the DVFS module 

DVFS	
  
fi 

fi 
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Mathworks Matlab interface: 
•  New module named Controller in RUBY 
•  Initialization: starts the Mathworks Matlab engine concurrent process, 
•  Every N cycle - wake-up: 

•   send the current performance monitor output to the Mathworks Simulink model 
•   execute one step of the controller Mathworks Simulink model 
•   propagate the Mathworks Simulink controller decision to the DVFS module 

DVFS	
  
fi 

fi 

CONTROL-STRATEGIES DEVELOPMENT CYCLE 
1.  Controller design  in Mathworks Matlab/Simulink framework 

•  system represented by a simplified model  
•  obtained by physical considerations and identification techniques 

2.  Set of simulation tests and design 
 adjustments done in Simulink 

3.  Tuned controller evaluation 
with an accurate model of the plant  
done in the virtual platform 

4.  Performance analysis, by simulating the overall system 



Results 
Energy Controller (EC) 

– Performance  Loss < 5% 
– Energy minimization 

Temperature Controller (TC)  
–  Complexity reduction 

•  2 explicit region for controller 

– Performs as the centralized 
•  Thermal capping 

 <0.3°  <3% 

 <3% 
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•  567.1 mm2 

•  48cores @1GHz 

•  2GHz NoC 

•  25-125W 

•  27 (f), 8 (V) islands 

Single Chip Cloud (45nm) 



Thermal Sensor Variability 

Sensor map @ 100 MHz idle Sensor map @ 533 MHz power virus 

Sensor Router 

Sensor Core 

Max sensor output  
variation > 3000  Spatially 

 not-correlated 



Outline 
•  Introduction 
•  Scalable Control 
•  Scalable model learning 
•  Experimental Environment 
•  Challenges ahead 



The 1,000 Cores Chip 
•  STM-CEA Platform 2012 project  

– Die with 4 16-cores tiles with L1 & L2  few tens 
of mm2 (28nm)   

– SCC die  20 of these dies: 1,280 cores 
– Thousands of Vdd, f domains 

•  3D stacking currently the only technology 
which can provide sufficient L3 bandwidth 
– Vertical thermal dissipation! 
– Heterogeneous requirements (DRAM≠LOGIC) 

•  Major static and dynamic variability 



Power management Challenges 
•  Truly scalable algorithms  O(NlogN) 
•  Hardware support needed (e.g. DPM NoC) 
•  Cross-layer algos are needed 

–  Real-time intra+inter layer communication  
–  Abstraction and filtering  
–  Multi-scale  

•  The threat of non-linearity 
–  Hybrid control complexity  (MILP is NP-HARD) 
–  Lack of robustness (Ill-conditioning) and stability proofs 

SoCs as complex systems (societies/markets)  
 DPM as political sociology/finance? 




