
Managing MPSoCs beyond their
Thermal Design Power*

Luca Benini
Università di Bologna & STMicroelectronics

Luca.benini@unibo.it

*Work supported by INTEL, FP7 THERMINATOR, FP7 Artist-Design

Thermal Power Wall
Transistor count increases exponentially,

but…
Tradi&onal	
 HW	
 power-­‐aware	

techniques	
 are	
 insufficient	

(e.g.,	
 voltage-­‐freq.	
 scaling)	

Dark	
 Silicon	
 !!!	

Sc
al
in
g	

Fa
ct
or
	

Year	

	
 Transistor	
 Scaling	

(Moore's	
 Law)	

	
 Supply	
 Voltage	

(ITRS)	

Can	
 no	
 longer	
 power	
 the	
 en&re	
 chip	

(voltages,	
 cooling	
 do	
 not	
 scale)	

W
a0

s	

/	

Ch

ip
	

Year	

	
 Max	
 Power	
 (air	
 cooling	
 +	
 heatsink)	

	
 Chip	
 Power	
 (ITRS)	
 [Watanabe	
 et	
 al.,	
 ISCA’10]	

[Hardavellas11]

Mobile SoCs are cool…right?
Wrong!

So.. got myself a HTC (T-Mobile) HD2 […].
As i found out the problem is pretty common: damn thing restart itself -
thermally related - the old CPU overheat problem. By searching the net
I found out that it's pretty common with some HTC models. HD2 has it,
Desire has it, Nexus One has it, hell even some xperia models have it..
about half of the devices powered by anything from the Snapdragon series
could have it.

June 2011 - http://forum.xda-developers.com/showthread.php?t=982454

Why?
ARM has unveiled its next generation "Eagle" (Cortex A15) processor,
pitching it at everything from smartphones to energy-efficient servers.
The A15 will be initially produced at 32nm or 28nm, although ARM claims
the roadmap stretches down to 20nm. It will deliver clock speeds of up to
2.5GHz.

Aug. 2011 - http://www.pcpro.co.uk/news/360994/arm-preys-on-smartphones-and-servers-with-eagle

A 2011 Mobile SoC
•  Tegra II

–  TSMC 40nm (LP/G)
– A9 - 1GHz (G)
– GPU, etc. - 330MHz (LP)
– GEForce ULV (8 shaders)
–  2 separate Vdd rails
–  1MB L2$
–  32b LPDDR2 (600MHz DR)

•  Tegra II 3D
– A9 – 1.2GHz
– GPU – 400Mhz

NVIDIA Tegra II SoC

SoC+DRAM PoP

3D-SoCs are even worse

Rushing to Many-Core
Hardware Trends  1000+ core system
Software Trends  Concurrency (1000x +)

Massively Parallel
Large Scale SoCs
(1,000s of cores)

Intel 80 Core chip

SCC Tera Scale
Project (48 Cores)

Multi
Processors
(2-8 cores on
chip)

UniProcessors
(single core)

Resource
management policy

System
information

from OS

Workload
CPU utilization,

queue status

Perf.
Counters

Reliability
alarms

Temperature
Power

Core 1 Core N … Proc. 1 Proc. 2

INTERCONNECT

Private

Mem

Private

Mem
…

Multicore Platform

Management Loop: Holistic view

SW
HW

HW-Introspection: monitors HW-control: knobs (Vdd, Vb, f,on/off) ‏

SW-control: scheduling, allocation

Proc. N

Private

Mem

SW-introspection: system tracing

OS: Scheduler
MW: Job manager

Outline
•  Introduction
•  Scalable Control
•  Scalable model learning
•  Experimental Environment
•  Challenges ahead

O.S

DRM - General Architecture
• System (Chip Scale)
• Sensors

–  Performance counter
- PMU

–  Core temperature

• Actuator - Knobs
–  ACPI states

–  P-State  DVFS
–  C-State  PGATING

–  Task allocation

• Controller
–  Reactive

–  Threshold/Heuristic
–  Controller theory

–  Proactive
–  Predictors

Simulation snap-shot

L2	

CPU1	

L1	

L2	

DRAM	

Network	

CPU2	

L1	

CPUN	

L1	

HW
SW

App.1

T
h
re

ad

1 ...

T
h
re

ad
N

App.N

T
h
re

ad

1 ...

T
h
re

ad
N

f,v
PGATING

TCPU,#L1MISS,#BUSACCESS,CYCLEACTIVE,....

CONTROLLER

•  Controller
•  Minimize energy
•  Bound the CPU
 temperature

•  Layered approach
•  Stack of controllers

•  Energy controller
•  Thermal controller

CONTROLLER
Energy

Thermal

Ti fECi

WLei

fTCi

O.S

DRM - General Architecture
• System (Chip Scale)
• Sensors

–  Performance counter
- PMU

–  Core temperature

• Actuator - Knobs
–  ACPI states

–  P-State  DVFS
–  C-State  PGATING

–  Task allocation

• Controller
–  Reactive

–  Threshold/Heuristic
–  Controller theory

–  Proactive
–  Predictors

Simulation snap-shot

L2	

CPU1	

L1	

L2	

DRAM	

Network	

CPU2	

L1	

CPUN	

L1	

HW
SW

App.1

T
h
re

ad

1 ...

T
h
re

ad
N

App.N

T
h
re

ad

1 ...

T
h
re

ad
N

f,v
PGATING

TCPU,#L1MISS,#BUSACCESS,CYCLEACTIVE,....

CONTROLLER CONTROLLER
Energy

Thermal

Ti fECi

WLei

fTCi

Energy Controller
CPU BOUND TASK

MEMORY BOUND TASK

cpu

cache

High Frequency

1

0

cpu

cache

Low Frequency

1

0

•  Performance Loss
•  Power reduction
•  Energy Efficiency Loss!

cpu

dram

cache

High Frequency

1

0

cpu

dram

cache

Low Frequency

1

0

•  Same Performance
•  Power reduction
•  Energy Efficiency Gain!

task task task

Modello
Termico

Tj Thermal
model

Tn,j
Pn,j

Modello di
potenza

Taskj Pj Power
model

P=g(task,f)

Thermal & Power Modeling
Linear dynamic
state space model

Non linear

Thermal transient
1 2 3 4 5 6 7 8

1
2
3
4
5
6
Ts < 2ms
Ts < 50ms
Ts < 75ms
Ts < 0.1s

Ts < 0.25s
Ts < 0.5s
Ts > 0.5s

Thermal locality (Direct Fourier law implication):
•  Continuous model:

–  Thermal neighborhood = Physical neighborhood
•  Discrete model:

–  Thermal neighborhood depends on sample time
•  Hotspot simulation of ‘Intel SCC like’ 48core

–  Each core : Area = 11.82mm2, Pmax = 2.6W
–  We powered on only Core(5,3)
–  T neighborhood > +0.1°C

•  Thermal transient – Model Order
–  Different materials reflects in

different time constants [1]

•  Silicon die, heat spreader, heat sink
•  Second order model

[1] W. Huang Differentiating the roles of IR measurement and simulation for
power and temperature-aware design 2009.

O.S time scale
Neighborhood

Thermal Controller

[Intel®, ISSCC 2007]

Threshold based
controller

• T > Tmax  low freq
• T < Tmin  high freq
•  cannot prevent overshoot
•  thermal cycle

Classical feed-back
controller

•  PID controllers
•  Better than threshold
 based approach
•  Cannot prevent overshoot

Model Predictive
Controller

• Internal prediction:
 avoid overshoot

• Optimization:
 maximizes performance

•  Centralized
•  aware of neighbor

cores thermal
influence

•  All at once – MIMO
controller

•  Complexity !!!

Thermal
Model

Past input
& output

Optimizer Future
input

Target
frequency

+
-

Cost
function

MPC

Future
output

Future
error

Constraint

MPC Scalability

4

36

[Intel, ISSCC 2007] [Intel, ISSCC 2007]

MPC Complexity
•  Implicit - a.k.a. on-line

•  computational
burden

•  Explicit – a.k.a. off-line
•  high memory

occupation

CORES #
Ex

pl
ic

it
re

gi
on

s

[Intel, ISSCC 2007] [Intel, ISSCC 2007]

8

1296

16

O
ut

 o
f m

em
or

y

Complexity grows
superlinearly with
number of cores!!

Addressing Scalability
On a short time window,
power has a local thermal
effect!

4

36

CORES #
Ex

pl
ic

it
re

gi
on

s

8

1296

16

O
ut

 o
f m

em
or

y

8 16 32

One controller for each core
Controller uses:
•  local power & thermal model
•  neighbor’s temperatures

Fully distributed
Complexity scales
linearly with #cores

Distributed Control

CoreN

Core1

Corei

multicore

Distributed and hierarchical controllers:
•  Energy Controller (EC)

– Output Frequency fEC
•  Minimize power – CPI based
•  Performance degradation < 5%

•  Temperature Controller (TC)
– Distributed MPC
– Inputs:

•  fEC ,TCORE, TNEIGHBOURS

– Output
•  Core frequency (fTC)

fTC i,k+1

fTC N,k+1

T i,k

T i,k

controller
node

Ti+1,k
Ti-1,k

TN-1,k

Tx,k

T2,k

TCi

TCN

fEC i,k+1
ECi

CPI i,k+1

CPI N,k+1

ECN

fEC N,k+1

Thermal	
 Controller	

Core	
 1	

CPI
f1,EC

f1,TC

Thermal	
 Controller	

Core	
 2	

CPI
f1,EC

f2,TC

Thermal	
 Controller	

Core	
 3	

CPI
f1,EC

Thermal	
 Controller	

Core	
 4	

CPI
f1,EC

PLANT

T1+Tneigh

T1+Tneigh

f4,TC

T3+Tneigh

T4+Tneigh

f3,TC

E
ne

rg
y

C
on

tro
lle

r

High Level Architecture

Distributed Thermal Controller

CPI

f1,EC

Observer

P1,EC g(·) MPC Controller
Linear Model

QP Optimiz x1

TENV

g-1(·)
CPI

P1,TC

f1,TC

MPC Controller Core 1

Nonlinear
(Frequency to Power)

Linear
(Power to Temperature)

s.t

2 states
per core T1

Classic Luenberger state observer

Implicit formulation

?

Region number

x1SHIFTED x1 +

A1
-1·∙B1

[x1 ; TENV ; P1,EC]

REGION	

NUMBER	

GAIN	

MATRICES	

1	
 F1	
 ,	
 G1	

2	
 F2	
 ,	
 G2	

…	
 …	

nr	
 Fnr	
 ,	
 Gnr	

u(k)=∆P1 +

P1,EC

P1,TC

Explicit Distributed Controller

Our aim is to minimize the difference between the input P1,TC (also called
manipulated variable MV) and the reference (P1,EC). Our controller can only take in
account a constant reference. To overcome this limitation we reformulate the
tracking problem as a regulation problem consisting in taking the ∆P1 (the new
MV) to 0. The regulated power P1,TC is:

?

Region number

x1SHIFTED x1 +

A1
-1·∙B1

[x1 ; TENV ; P1,EC]

REGION	

NUMBER	

GAIN	

MATRICES	

1	
 F1	
 ,	
 G1	

2	
 F2	
 ,	
 G2	

…	
 …	

nr	
 Fnr	
 ,	
 Gnr	

u(k)=∆P1 +

P1,EC

P1,TC

At each time instant the system belongs to a region
according with its current state. On each region the
explicit controller executes the following linear control
law:

Explicit Distributed Controller

?

Region number

x1SHIFTED x1 +

A1
-1·∙B1

[x1 ; TENV ; P1,EC]

REGION	

NUMBER	

GAIN	

MATRICES	

1	
 F1	
 ,	
 G1	

2	
 F2	
 ,	
 G2	

…	
 …	

nr	
 Fnr	
 ,	
 Gnr	

u(k)=∆P1 +

P1,EC

P1,TC

The prediction evaluated by our explicit controller cannot take into account the
measured disturbances (uMD=[Tenv, P1, Tneigh]). Thus we exploit the superposition
principle of linear systems:

To remap the effect of these elements we exploit the model to modify the state (x
(k)  xSHIFTED(k)) projecting one step forward the MDs effects.

Explicit Distributed Controller

MPC trade-off

Trace Driven Simulation
(Matlab) – gold model
•  Parsec trace obtained on real

HW
•  Power Model: Nonlinear vs.

linear
•  Thermal Model:

one vs. two
•  Centralized vs. Distributed

Outline
•  Introduction
•  Scalable Control
•  Scalable model learning
•  Experimental Environment
•  Challenges Ahead

CoreN

Core1

Corei

multicore

Model Identification

Thermal
Model

Past input
& output

Optimizer Future
input

Target
frequency

+
-

Cost
function

MPC

Future
output

Future
error

Constraint

MPC needs a Thermal Model

•  Accurate, with low complexity
•  Must be known “at priori”
•  Depends on user configuration
•  Changes with system ageing

“In field” Self-Calibration
Workload

t CoreN

Workload
t

Workload
t Corei

Workload
t

Workload
t

Workload
t Core1

Workload
t

Workload
execution

Training
 tasks

Workload

Power

Temperature

System
Identification

Identified State-Space
Thermal Model

•  Force test workloads
•  Measure cores temperatures
•  System identification

Model
least square
optimization

Data Optimal
parameters

Test pattern

System
response

A,B

e = Tmodel - Treal

Parametric optimization

Parameters

Cost function

Error Function

 i

LS System Identification

Workload & Temperature

Temperature trace

Pseudorandom workload pattern

Identification based on pure LS fitting

TEMPERATURA MISURATA vs. SIMULATA MEASURED vs. SIMULATED TEMPERATURE

Black-box Identification

Problem: unstable Model

Validation

20.5 21 21.5 22 22.5 23
40.5

41

41.5

42

42.5
Tcore2

seconds

°C

Measured
Thermal Model

Tamb

Tcore

t

Tcore cannot be ≠ Tamb with P=0

Gray Box identification
LS model must be constrained by physical properties to
avoid over-fitting

Constraint on initial
condition

Linear constraint

CONSTRAINED LEAST SQUARES

Physical Constraints

Model learning Scalability
System

Identification

“In field” Self-Calibration
•  Force test workloads
•  Measure cores temperatures
•  System identification

Thermal
Model

Past input
& output

Optimizer Future
input

Target
frequency

+
-

Cost
function

MPC

Future
output

Future
error

Constraint

MPC Weaknesses – 2nd
Internal Thermal Model

•  Accurate, with low complexity
•  Must be known “at priori”
•  Depends on user configuration
•  Changes with system ageing

Workload
t CoreN

Workload
t

Workload
t Corei

Workload
t

Workload
t

Workload
t Core1

Workload
t

Workload
execution

Training
 tasks

Workload

CoreN

Core1

Corei

multicore

Temperature

Power

Identified State-Space
Thermal Model

1 2 4

Model learning Scalability
System

Identification

“In field” Self-Calibration
•  Force test workloads
•  Measure cores temperatures
•  System identification

Thermal
Model

Past input
& output

Optimizer Future
input

Target
frequency

+
-

Cost
function

MPC

Future
output

Future
error

Constraint

MPC Weaknesses – 2nd
Internal Thermal Model

•  Accurate, with low complexity
•  Must be known “at priori”
•  Depends on user configuration
•  Changes with system ageing

Workload
t CoreN

Workload
t

Workload
t Corei

Workload
t

Workload
t

Workload
t Core1

Workload
t

Workload
execution

Training
 tasks

Workload

CoreN

Core1

Corei

multicore

Temperature

Power

Identified State-Space
Thermal Model

Complexity issue
•  State-of-the-art is centralized MIMO
•  Least square based – is based on matrix
inversion (cubic with #cores)

CORES

Ti
m

e
- s

4

105

16

>1h

8

1230

1 2 4

Distributed approach:
each core identifies its

local thermal model
Complexity scales
linearly with #cores

Distributed Model learning
Distributed

MISO identification

•  ARX model

Corei

Ti(k-s)

Modeli
TneigE,i(k-s) TneigW,i(k-s)

TneigN,i(k-s)

Pi(k-s)
AutoRegressive term

Errors
(disturbances, measurement errors)

 Power input
Neightbours
 temperatures

ARX Model

State Space
Model

Distributed model-learning
Distributed

identification

•  ARX model
•  Computation
 Algorithm

•  Objective: find ai and bi,j

•  System data collection:
•  input: PRBS signals to all cores (persistently exciting inpt sequence)
•  output: Temperatures of all cores (Ti

o con i= # core)
•  Parameters computation:
•  Tp(ai, bi,j)=T(k+1|k) computed with previous equation
•  To output temperature (measured)
•  Least square algorithm: •  Results

2) Temperature response of core 1 1) Mean Absolute Error between
original and identified models

Outline
•  Introduction
•  Scalable Control
•  Scalable model learning
•  Experimental Environment
•  Challenges ahead

Simulation Strategy	

Trace driven Simulator [1]:
•  Not suitable for full system simulation (How to simulate O.S.?)
•  looses information on cross-dependencies

  resulting in degraded simulation accuracy

C
on

tr
ol

st

ra
te

gy

Multicore
Simulator

Workload Set

Power Model

Temperature Model

Execution Trace
database

Multicore
Simulator

Workload

Power Model

Temperature Model

C
on

tr
ol

st

ra
te

gy

Closed loop simulator:
•  Cycle accurate simulators [2] :

•  High modeling accuracy
•  Suppost well-established power and temperature

co-simulation based on analytical models and
system micro-architectural knowledge

•  Low simulation speed
•  Not suitable for full-system simulation

•  Functional and instruction set simulators:
•  Allow full system simulation
•  Lower internal precision
•  Less detailed data
•  Introduces the challenge of having accurate power

and temperature physical models

 no micro-architectural model

[1] P Chaparro et al. Understanding the thermal implications of multi-core architectures. 2007
[2] Benini L. et al. MPARM: Exploring the multi-processor SoC design space with SystemC 2005

Virtual Platform

Virtual Platform	

Simulator	

SIMICS	

RUBY	
 CORE	

Stall Mem

Access
CPU1	
 CPU2	
 CPUN	

L2	

L1	

L2	

DRAM	

Network	

L1	
 L1	

HW
SW

App.1

T
1 ... T
N

App.N

T
1 ... T
N

O.S.

....

Simics by Virtutech:
•  full system functional simulator
•  models the entire system:

peripherals, BIOS, network interfaces, cores,
memories

•  allows booting full OS, such as Linux SMP
•  supports different target CPU (arm, sparc, x86)
•  x86 model:

•  in-order
•  all instruction are retired in 1 cycle
•  does not account for memory latency

Memory timing model
•  RUBY – GEMS (University of Wisconsin)[1]

•  Public cycle-accurate memory timing
model

•  Different target memory architectures
•  fully integrated with Virtutech Simics
•  written in C++
•  we use it as skeleton to apply our add-

ons (as C++ object)

[1] Martin Milo M. K. et al. Multifacet’s general
execution-driven multiprocessor simulator (GEMS) toolset 2005

Virtual Platform

Virtual Platform	

Simulator	

SIMICS	

PC	

#hlt,stall

active,cycles

RUBY	
 CORE	

Stall Mem

Access

DVFS	

fi

fi

fi ,VDD

CPU1	
 CPU2	
 CPUN	

L2	

L1	

L2	

DRAM	

Network	

L1	
 L1	

HW
SW

App.1

T
1 ... T
N

App.N

T
1 ... T
N

O.S.

....

 #L1MISS, #BUSACCESS,
 CYCLEACTIVE,....

f,v f,v f,v

Performance knobs (DVFS) module:
•  Virtutech Simics support frequency change at run-time
•  RUBY does not support it:

•  does not have internal knowledge of frequency
•  We add a new DVFS module to support it :

•  ensures L2 cache and DRAM to have a constant clock frequency
•  L1 latency scale with Simics processor clock frequency

Performance counters module:
•  Needed by performance control policy
•  We add a new Performance Counter module to support it

•  exports to O.S. and application different quantities:
•  the number of instruction retired, clock cycles and stall cycles expired,

 halt instructions,…

Virtual Platform

Virtual Platform	

Simulator	

SIMICS	

PC	

#hlt,stall

active,cycles

RUBY	
 CORE	

Stall Mem

Access

DVFS	

fi

fi

fi ,VDD

POWER	
 MODEL	

PCORE, PL1, PL2

CPU1	
 CPU2	
 CPUN	

L2	

L1	

L2	

DRAM	

Network	

L1	
 L1	

HW
SW

App.1

T
1 ... T
N

App.N

T
1 ... T
N

O.S.

....

 #L1MISS, #BUSACCESS,
 CYCLEACTIVE,....

f,v f,v f,v

Power model module:
•  At run-time estimate the power consumption of the target architecture
•  Core model PT = [PD(f,CPI) + PS(T, VDD)] *(1 − idleness) + idleness *(PIDLE)
•  PD experimentally calibrated analytical power model
•  Cache and memory power – access cost estimated with CACTI [1]

[1] Thoziyoor Shyamkumar et al. A comprehensive memory modeling tool and its application to the
design and analysis of future memory hierarchies. 2008

Power Model

  Power model interface

Simulation snap-shot Ruby	
 &	

simics	

L2	

CPU1	

L1	

CPU	
 N	

L1	

L2	

DRAM	

CPU2	

L1	

Network	

f1 = k1 * fnom f2 = k2 * fnom fN = kN * fnom

i-th CPU
Istruction retired
Stall Cycle
HLT Istruction
i-th L1
Line & WD Read
Line & WD Write

i-th L2

Line Read
Line Write

DRAM

Burst Read
Burst Write

P
O
W
E
R
M
O
D
E
L

P
O
W
E
R
&
E
N
E
R
G
Y

Modeling Real Platform – Power 	

Real Power Measurement
•  Intel server system S7000FC4UR

•  16 cores - 4 quad cores Intel® Xeon® X7350, 2.93GHz
•  16GB FBDIMMs
•  Intel® Core™ 2 Duo architecture

•  At the wall Power consumption
•  test:

•  set of synthetic benchmarks with different memory pattern accesses
•  forcing all the cores to run at different performance levels
•  for each benchmark we extract the clocks per instruction metrics (CPI) and
correlate it with the power consumption

•  We relate the static power with the operating point by using an analytical model

High accuracy at
high and low CPI

Virtual Plattform

Virtual Platform	

Simulator	

SIMICS	

PC	

#hlt,stall

active,cycles

RUBY	
 CORE	

Stall Mem

Access

DVFS	

fi

fi

fi ,VDD

POWER	
 MODEL	

PCORE, PL1, PL2

CPU1	
 CPU2	
 CPUN	

L2	

L1	

L2	

DRAM	

Network	

L1	
 L1	

HW
SW

App.1

T
1 ... T
N

App.N

T
1 ... T
N

O.S.

....

 #L1MISS, #BUSACCESS,
 CYCLEACTIVE,....

TEMPERATURE	
 MODEL	

T

TCPU,

f,v f,v f,v

Temperature model module:
•  we integrate our virtual platform with a thermal simulator [1]
•  Input: power dissipated by the main functional units composing the target platform
•  Output: Provides the temperature distribution along the simulated multicore die area

as output

[1] Paci G. et al. Exploring ”temperature-aware” design in low-power MPSoCs

PCPU1	

PL1	

PCPUn	

PL1	

PCPU2	

PL1	

L2	
 L2	

Network	

Thermal Model
  Methods to solve temperature

P
O
W
E
R
M
O
D
E
L

P
O
W
E
R
&
E
N
E
R
G
Y

si si
si

si
si

si
si

si
si

Cu cu
cu cu cu

CPU2

L2

CPU1 CPUn

L1 L1 L1

Heat spreader
IC package

Package
pin

PCB

IC die

Thermal Model Ti

Modeling Real Platform– Thermal	

•  Thermal Model Calibration :

•  Derived from Intel® Core™ 2 Duo layout
•  We calibrate the model parameter to simulate real HW transient
•  High accuracy (error < 1%) and same transient behavior

Temperature and Power Input of Core 1300302304306308310312314316318Temperature [°K]02468101214161820Time [s]51015202530Power [W]Model TemperatureReal TemperaturePower Input35

CORE 1CORE 2CORE 3CORE 4MM1MM2L1dL1iL1iL1iL1iL1dL1dL1dCORE 1CORE 2CORE 3CORE 4MM1MM2

<1%

Virtual Platform Performance
•  Host:

•  Intel® Core™ 2 Duo
•  2.4 Ghz
•  2GB RAM

Simics +
Ruby:

Simics +
Ruby +
DVFS:

Simics +
Ruby +
DVFS +
Power:

Simics +
Ruby +
DVFS +
Power +
Thermal
interface:

Simics +
Ruby +
DVFS +
Power +
Thermal
Model:

•  Target:
•  4 core Pentium® 4
•  2GB RAM
•  32 KB private L1 cache
•  4 MB shared L2 cache
•  Linux OS

Tsim =
 1040 s

Tsim =
 1045 s

Tsim =
 1110 s

Tsim =
 1160 s

Tsim =
 1240 s

68 cells
T = 100ns

Compute
every 13us

1 Billion instruction

+ 7% + 19.2%

Mathworks Matlab/Simulink
•  Numerical computing environment developed to design,

implement and test numerical algorithms
•  Mathworks Simulink – for simulation of dynamic systems:

simplifies and speedups the development cycle of control systems
•  Can be called as a computational engine by writing C and Fortran

programs that use Mathworks Matlab’s engine library
•  Controller design - two steps:

•  developing the control algorithm that optimizes the system
performance

•  implementing it in the system

We allow a Mathworks Matlab/Simulink description of the controller to
directly drive at run-time the performance knobs of the emulated system

Simulator	
 Virtual Platform

Virtual Platform	

Virtutech	
 Simics	

PC	

#hlt,stall

active,cycles

RUBY	
 CORE	

Stall Mem

Access

fi ,VDD

POWER	
 MODEL	

PCORE, PL1, PL2

CPU1	
 CPU2	
 CPUN	

L2	

L1	

L2	

DRAM	

Network	

L1	
 L1	

HW
SW

App.1

T
1 ... T
N

App.N

T
1 ... T
N

O.S.

....

f,v
PGATING

 #L1MISS, #BUSACCESS,
 CYCLEACTIVE,....

TEMPERATURE	
 MODEL	

T M

at
hw

or
ks
	

M
at
la
b	

Controller	

M
A
TL
A
B	

In
te
rf
ac
e	

P

CPI

P,T

TCPU,

Mathworks Matlab interface:
•  New module named Controller in RUBY
•  Initialization: starts the Mathworks Matlab engine concurrent process,
•  Every N cycle - wake-up:

•  send the current performance monitor output to the Mathworks Simulink model
•  execute one step of the controller Mathworks Simulink model
•  propagate the Mathworks Simulink controller decision to the DVFS module

DVFS	

fi

fi

Simulator	
 Virtual Platform

Virtual Platform	

Virtutech	
 Simics	

PC	

#hlt,stall

active,cycles

RUBY	
 CORE	

Stall Mem

Access

fi ,VDD

POWER	
 MODEL	

PCORE, PL1, PL2

CPU1	
 CPU2	
 CPUN	

L2	

L1	

L2	

DRAM	

Network	

L1	
 L1	

HW
SW

App.1

T
1 ... T
N

App.N

T
1 ... T
N

O.S.

....

f,v
PGATING

 #L1MISS, #BUSACCESS,
 CYCLEACTIVE,....

TEMPERATURE	
 MODEL	

T M

at
hw

or
ks
	

M
at
la
b	

Controller	

M
A
TL
A
B	

In
te
rf
ac
e	

P

CPI

P,T

TCPU,

Mathworks Matlab interface:
•  New module named Controller in RUBY
•  Initialization: starts the Mathworks Matlab engine concurrent process,
•  Every N cycle - wake-up:

•  send the current performance monitor output to the Mathworks Simulink model
•  execute one step of the controller Mathworks Simulink model
•  propagate the Mathworks Simulink controller decision to the DVFS module

DVFS	

fi

fi

CONTROL-STRATEGIES DEVELOPMENT CYCLE
1.  Controller design in Mathworks Matlab/Simulink framework

•  system represented by a simplified model
•  obtained by physical considerations and identification techniques

2.  Set of simulation tests and design
 adjustments done in Simulink

3.  Tuned controller evaluation
with an accurate model of the plant
done in the virtual platform

4.  Performance analysis, by simulating the overall system

Results
Energy Controller (EC)

– Performance Loss < 5%
– Energy minimization

Temperature Controller (TC)
–  Complexity reduction

•  2 explicit region for controller

– Performs as the centralized
•  Thermal capping

 <0.3° <3%

 <3%

PREPROCESSING

Pattern Generator Workloader

core0 core1 coreN

XTS

LS

MODEL

LS

MODEL

PREPROCESSING

PRBS.csv

DATA.csv

 ..0,0,1,1,1,…

 ..idle,idle,run,run,run,…

• Temperature
•  Frequency
•  Workload

 C/FORTRAN
(SLICOT,MINPACK)

Matlab System Identification
•  N4SID
•  PEM
•  LS (Levenberg-Marquardt)

HW

(Ts=1/10ms)

Working on Real Chips (Intel)

PREPROCESSING

Pattern Generator Workloader

core0 core1 coreN

XTS

LS

MODEL

LS

MODEL

PREPROCESSING

PRBS.csv

DATA.csv

 ..0,0,1,1,1,…

 ..idle,idle,run,run,run,…

• Temperature
•  Frequency
•  Workload

 C/FORTRAN
(SLICOT,MINPACK)

Matlab System Identification
•  N4SID
•  PEM
•  LS (Levenberg-Marquardt)

HW

(Ts=1/10ms)

Fan board

CPU2 CPU1

Storage drives

SUN FIRE X4270
A

ir
flo

w
 RAM RAM

Chipset

CPU1 CPU2

•  Intel Nehalem

•  8core/16thread

•  2.9GHz

•  95W TDP

•  IPMI

Working on Real Chips (Intel)

PREPROCESSING

Pattern Generator Workloader

core0 core1 coreN

XTS

LS

MODEL

LS

MODEL

PREPROCESSING

PRBS.csv

DATA.csv

 ..0,0,1,1,1,…

 ..idle,idle,run,run,run,…

• Temperature
•  Frequency
•  Workload

 C/FORTRAN
(SLICOT,MINPACK)

Matlab System Identification
•  N4SID
•  PEM
•  LS (Levenberg-Marquardt)

HW

(Ts=1/10ms)

Fan board

CPU2 CPU1

Storage drives

SUN FIRE X4270
A

ir
flo

w
 RAM RAM

Chipset

CPU1 CPU2

•  Intel Nehalem

•  8core/16thread

•  2.9GHz

•  95W TDP

•  IPMI

Working on Real Chips (Intel)

•  567.1 mm2

•  48cores @1GHz

•  2GHz NoC

•  25-125W

•  27 (f), 8 (V) islands

Single Chip Cloud (45nm)

Thermal Sensor Variability

Sensor map @ 100 MHz idle Sensor map @ 533 MHz power virus

Sensor Router

Sensor Core

Max sensor output
variation > 3000 Spatially

 not-correlated

Outline
•  Introduction
•  Scalable Control
•  Scalable model learning
•  Experimental Environment
•  Challenges ahead

The 1,000 Cores Chip
•  STM-CEA Platform 2012 project

– Die with 4 16-cores tiles with L1 & L2  few tens
of mm2 (28nm)

– SCC die  20 of these dies: 1,280 cores
– Thousands of Vdd, f domains

•  3D stacking currently the only technology
which can provide sufficient L3 bandwidth
– Vertical thermal dissipation!
– Heterogeneous requirements (DRAM≠LOGIC)

•  Major static and dynamic variability

Power management Challenges
•  Truly scalable algorithms  O(NlogN)
•  Hardware support needed (e.g. DPM NoC)
•  Cross-layer algos are needed

–  Real-time intra+inter layer communication
–  Abstraction and filtering
–  Multi-scale

•  The threat of non-linearity
–  Hybrid control complexity (MILP is NP-HARD)
–  Lack of robustness (Ill-conditioning) and stability proofs

SoCs as complex systems (societies/markets)
 DPM as political sociology/finance?

