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Infrastructural 
core 

The IT Platform of Today: 
Mobiles at the Edge of the Cloud 

[J. Rabaey, ASPDAC’08] 

Mobile data growth 
[Source: Cisco VNI Mobile, 2011] 

Mobile traffic grew 2.6x in 2010 (nearly 
tripling for 3rd year) 
Driven by Tablets 



The Emerging IT Scene: The Swarm at the Edge of the Cloud  

Infrastructural 
Core: the Cloud 

Sensory 
swarm 

Mobile 
access 

Courtesy: J. Rabaey 
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1995 Question: What happens if sensors become tiny, 
wireless, and self-contained? 

[Courtesy: K. Pister, UC Berkeley] 

… Wireless Sensor Networks 



2010 Outcome: The Unfullfilled Promise of 
Wireless Sensor Nets 

Source: On World  

What slowed them down? 
(Source: On World) 
  Cost savings not yet disruptive 
  Reliability 
  Energy (battery life) 
  Ease of use 



Wireless Sensor Nets 
What REALLY slows them down: 
NO Economy of Scale 
Stovepipes, Fragmentation, Non-interoperability,  
Lack of Virtualization 

Industrial automation, 
smart buildings, 

renewable energy, data 
centers, …  

802.11x (WiFi), 
802.15.4x (Zigbee), 
802.15.1 (Bluetooth

(LE)),  802.15.6 
(WPANs), NFC, … 

TinyOS, eCOS, LiteOS, 
Contiki, Arch Rock 



Predictions 

•  5 Billion people to be connected by 2015 (Source: NSN) 

•  The emergence of Web2.0 
–  The “always connected” community network 

•  7 trillion wireless devices serving 7 billion people in 2017 
(Source: WirelessWorldResearchForum (WWRF) 
–  1000 wireless devices per person? 

(Courtesy: Niko Kiukkonen, Nokia) 
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Vision 2025 

-  Integrated components will be approaching molecular limits and/
or may cover complete walls 

-  Every object will have a wireless connection, hence leading to 
trillions of connected devices, 

-  Collaborating to present unifying experiences or to fulfill common 
goals 

What will it Enable? 
The Birth of the Swarm 



CyberPhysical Systems 
Linking the Cyber and Physical Words 

[H. Gill, NSF 2008] Aka: The Internet of Things, Societal IT Systems, …  



CyberBiological	
  Systems	
  (BioCyber)	
  

Linking	
  the	
  Cyber	
  and	
  Biological	
  Worlds	
  

Examples:	
  Telesurgery,	
  Body-­‐area	
  networks,	
  health	
  diagnos;cs,	
  drug	
  delivery,	
  brain-­‐
machine	
  interfaces,	
  …	
  



[Illustration art: Subbu Venkatraman] Power budget: mWs to 
1 mW 

Moving the state-of-the-art 
in wireless sensing 

ADC LNA 

electrodes 

DSP 

memory 

Tx 

regulator 

clock 

Towards Integrated Wireless Implanted Interfaces 
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Measuring, Monitoring, Modeling and Managing	



Metering Sensing 

Real Time  
Data Integration 

Real Time 
 + Historical Data 

Data Modeling  
+ Analytics 

Visualization 
 + Decisions 

  Data modeling and analytics 
to create insights from data 
to feed decision support and 
actions	
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Feedback to user and data source; 
Incentives and actions to change behavior 

  Comparison of historical 
data, with newly collected 
data	



  Data collection	



  Data Integration	



Source: IBM Corporate Strategy 

What does it mean to become Smarter? 
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Source: Public financials, Gartner 2005 

•  2005 revenue $17.4B 
•  CAGR 10%  

(2004-2010) 

IC Vendors 
~15% of revenue from 

automotive 

•  2004 Revenue ~$200B 
•  CAGR 5.4%  

(2004-2010) 

Tier 1 Suppliers 
90%+ of revenue from 

automotive 

Automakers •  2005 Revenue $1.1T 
•  CAGR 2.8%  

(2004-2010) 

Design Chain Integration 
Automotive Industry 



ABS: Antilock Brake System 
ACC: Adaptive Cruise Control 
BCM: Body Control Module 
DoD: Displacement On Demand 
ECS: Electronics, Controls, and Software 

EGR: Exhaust Gas Recirculation. 
GDI: Gas Direct Injection 
OBD: Onboard Diagnostics 
TCC: Torque Converter Clutch 
PT: Powertrain Forefront of Innovation 

Vehicle Integration 

System Connection 

Subsystem Controls & Features 
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- More functions & features 
- Less hardware 
- Faster 

Potential inflection point. 
Now! 

1970s 1980s 2000s 2010s 2020s 

Source: Matt Tsien, GM 

1990s 

BCM 

ABS 

TCC 

EGR 

Electric Fan 

Electric Ignition 

Fuel Cell 

Wheel Motor 

Hybrid PT 

Electric Brake 

DoD 

GDI 

ACC 

Rear Vision 

Passive Entry 

Side Airbags 

Head Airbags 

OnStar 

OBD II 

HI Spd Data 

Rear aud/vid 

CDs 

Challenge: Electronics, Controls and Software Shifting the 
Basis of Competition in Vehicles 
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Challenges in Automotive Electronics Development 

•  Increasing functionality: 
–  Safety (active/passive) 
–  Fuel efficiency (hybrid) 
–  Reduced emissions (less CO2) 
–  Comfort 

•  Increasing quality: 
–  2000: ~1000 - 10ppm (per ECU) 
–  2010: ~1 - 0ppm (per ECU) 

•  Increasing value: 
•  Electronic Share (value):  

•  2004: 20% -> 2015: 40% 
•  Software Share (value):    

•  2000: 4.5% -> 2010: 13% 
•  Reduce time to market: 

•  2000: ~ 20 – 26 months 
•  2010:  < 18-20 month 
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Pedestrian 
Protection 

Pre-Tensioner 

Electric  
Steering 

Active  
Suspension 

Airbag 

ABS 

Night Vision 

Collision  
Avoidance 

Lateral 
 Control LateralAir

bag 

Traffic  Sign  
Recognition 

Electronic 
Stability 

Active Front  
Steering 

Integrated  
Vehicle Stability 

Convergence Towards Active Safety 

Lane  
Departure 
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From federated to integrated architectures 

Device 
Drivers 

HW 
RTOS 

COM 
stack 

Application 
software 

Each time a new function is required, the OEM starts a request to 
suppliers for a new ECU (an integrated HW/SW device realizing the 
function) to be integrated on the existing networks 

The device is developed by the supplier with its own choice of HW, 
RTOS, device drivers and communication layers (with some 
standardization) 

The result is  
•  Proliferation of ECUs (reaching 100) 
•  Complex distributed architectures with the need of high 

bandwidth and therefore multiple networks and gateways 
•  Complex functional and not-functional (timing) dependencies 

across the network, which OEMs struggle to control 
•  Missing opportunities for common set of libraries and (sub)

functions 
•  Limited standardization, flexibility and extensibility 
•  Limited control on the execution platform by OEMs 

Today:  
Federated Architectures 



?	
  ?	
  

The Distributed System Problem:  
Typical Car Electrical Architecture  
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Fighting Obsolescence:  
How to harmonize fast evolving electronics with products whose 
lifetime is >10 years 

•  Decouple Function and Architecture 

•  Bring back to OEM design control 

•  Flexibility and Extensibility of Architectures 

•  Manage a Complex Supply and Design Chain 

•  Place your bets so that you leverage maximally your core competence 
while leveraging as much as possible qualified PARTNERS 
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From federated to integrated architectures 
The  execution architecture is completely selected and planned by 
the OEM. OEMs are free to standardize HW, drivers, RTOS and 
communication layers, leveraging competition among suppliers 

Each time a new function is required, the OEM starts a request to 
suppliers for new functional content (SW) to be integrated on the 
existing platform 

The challenges are: 
•  Moving from specifications of ECUs with message interfaces to 

the specs of SW components 
•  Standardize interoperability among components 
•  Standardize access to the platform services 
•  Define models that allow to predict the result of the composition 

(functional and not-functional) 

Tomorrow?:  
Integrated Architectures 
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The Larger Picture 

Toyota	
  Problems	
  
The	
  Washington	
  Post,	
  March	
  7	
  
Attention has been focused on mechanical and electronic issues with 
Toyotas, but another possible cause of the runaway acceleration maybe a 
software glitch. Each vehicle contains layers of computer code that may 
be added from one model year to next" that control nearly every system, 
from acceleration to braking to stability. This software is rigorously 
tested, but t is well-known in our community that there is no scientific, 
firm way of actually completely verifying and validating software.	
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It’s Not Over Yet! 
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 The refuse-to-collide car! 
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CMOS mmWave Circuits and SoC: 60GHz Today 

•  Multiple 60GHz standards complete 

•  WirelessHD products available 
–  SiBeam (BWRC startup) 
–  Wall-powered 
–  Dissipate <2W 

•  A $10 Radar is a possibility! 

•  60GHz link in mobile applications? 
–  Energy-efficiency is key: <~250mW transceiver 
–  Solution must scale to 10+ Gb/s 
–  Low cost = Single chip RF+phased array+BB+BIST 
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Plug and Pray! 

Integration Challenges: Plug and Play? 
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The Design Integration Nightmare 

P. Picasso,  
Blue Period 

Specification: 

P. Picasso  
“Femme se coiffant”  
1940 

Implementation: 
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To Enable Success… 

We need an integration platform  

•  To deal with heterogeneity: 
–  Where we can deal with Hardware and Software 
–  Where we can mix digital and analog, cyber and physical 
–  Where we can assemble internal and external IPs with different physical domains 
–  Where we can work at different levels of abstraction 

•  To handle the design chain 

•  To support integration 
–  Tool integration 
–  IP integration 

The integration platform must subsume the traditional design flow, 
rather than displacing it 
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Automotive V-Models: a ‘Linear’ Development Process 

Development of 
Car System 

Development of 
Mechanical Part (s) 

ECU  
Development 

ECU SW 
Development 

ECU HW 
Development 

ECU SW Integration 
and Test 

ECU HW/SW 
Integration and Test 

ECU/ Sens./Actrs./Mech. Part(s)  
Integration, Calibration, and Test 

Sub-System(s)  
Integration, Test, and 

Validation 
Development of 

Sub-System 

ECU Sign-Off! 

Sub-System  Sign-Off! 

Car System   
Sign-Off! 

ECU HW 
Sign-Off! 

ECU SW Implementation 

ECU:  
Electrical Control Unit 



Vertical Design Chain and Design Error Costs 

Sub-System 
Requirements (e.g. 

ABS) 

Sub-System 
Implementation 

OEM 

Tier1 Supplier 

“Finding and fixing requirements errors consumes between 
70% - 85% of total project rework costs.”  

STAGE 

RELATIVE COST TO REPAIR 

Requirements 

Software Design 

Coding 

Unit Test 

Accept. Test 

Maintenance 

1 

5 

10 

20 

50 

200 

Tier2 Supplier 

Components 
Requirements (e.g. 

ABS) 

Component 
Implementation 



OEM Design Challenges 

•   Distribution: 
–  Functions are distributed over several subsystems/

components (M/E/E) 
–  Exploration of solutions involve several subsystems 
–  Integration is very expensive 
–  Tool support is critical 

•   Packaging:  
–  space for electronics in the car is reducing 
–  Functional integration might be different from functional 

one 



Enabling OEM and Tier1 Co-Design Space Exploration and 
Co-Verification 

In-Vehicle Network 
Virtual  

Integration 

In-Vehicle Network 
Simulation and 

Constraint Verification 

In-Vehicle Network 
Model Refinement 

In-Vehicle Network 
Constraint 

Decomposition 

OEM System 
Architect 

OEM System 
Integrator 
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Software 

Developer 

System 
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Derivative design 

•  The derivative design approach: 
–  Every two-three years a new generation of products is designed 

•  Product generations are conceived to accommodate the specification of all customers for 
the next years 

–  For each commitment, the electronic control unit is obtained by derivation from the 
current generation 

•  In the derivative design approach, reuse is extensively employed to 
minimize cost and development time 
–  for each class of applications, products are variants of a same originating design 

PPC 

OEM 
Technology  

DB 

ABS ACC Steer C. 

Brake C. 

Control 
Algorithm 

HC11 

Supplier  
Technology  

DB 

SW 
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Platform Models for Model Based Development 

Distributed 
System   

Sign-Off! 

Distributed  
System  

Partitioning 
Virtual Integration of 

Sub-System(s) w/ 
Network Protocol, Test, 

and Validation 

Sub-Systems  
Requirements 

Sub-System(s)  
Integration, Test, and 

Validation 

Sub-System(s) 
Implementation Models 

Sign-Off! 

Distributed  
System 

Requirements 

Sub-Systems Model 
Based Development 

Platform 
 Abstraction 



Platform Based Design 

•  A “meet-in-middle” design method 
–  Platform: an abstraction layer that hides the details 

of several possible implementation refinements of 
the underlying layers 

•  Function model:  
–  abstraction of what the system is supposed to do 

•  Architecture model:  
–  lower level of abstraction describing how the system 

realizes the function 

•  Mapping:  
–  Process by which function and architecture meet 
–  Propagates constraints from above to meet performance 

estimations from below 
–  Phases: Allocation, binding, scheduling 

Texas Instruments OMAP 

Platform  
Mapping & 
Constraint  
Propagation 

Performance  
Estimation & 
Platform 
Design-Space 
Export 
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Buses Buses 
Matlab 

CPUs Buses Operating 
Systems 

Behavior Components       Virtual Architectural Components 

C-Code 
 IPs 

Dymola 

Behavior Platform 

Mapping 

Performance  
Analysis 

Refinement 

Evaluation of 
Architectural and 

Partitioning  
Alternatives 

Implementation 

Separation of Concerns 

© Alberto Sangiovanni-Vincentelli. All rights reserved. 



Platform 
Design-Space 

Export 

Platform 
Mapping 

Architectural Space Application Space 

Application Instance Platform Instance 

Platform-Based Design 

Platform: library of resources defining an abstraction layer with interfaces that identify legal connections  

•  Resources do contain virtual components i.e., placeholders that will be customized in the 
implementation phase to meet constraints 

•  Very important resources are interconnections and communication protocols 
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Platform 
Instance 

Platform Design-Space Export 

Platform 
(Architectural) Space 

Platform Instance Function 
Instance 

Function 
Space Mapped 

Platform 
(Architectural) Space 

Function 
Space 

Platform Instance Function 
Instance 

Mapped 

Fractal Nature of Design 
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Silicon level 

ECU node 
level 

Sub-system level 

Vehicle level 

Functional 
Networks 

bus 

Topologies 
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Design Space vs. Time-to-Market in Platform Based Design 

•  Platform limits the design choices 

•  Designer only needs to analyze alternatives that are implemented by the 
platform 

[Sander 2009] 



AUTOSAR initiative 
•  Each ECU may include functionalities developed by different suppliers and as well 

as the OEM 

•  Started as a partnership between leading European OEMs and Suppliers for 
–  establishment of an open standard for automotive E/E architecture 
–  a basic infrastructure for the management of functions within both future applications 

and standard software modules 

•  Objectives  
–  standardization of basic system functions and functional interfaces 

•  modularity and scalability 
–  the ability to integrate and transfer functions 

•  transferability and re-usability 
–  substantially improve software updates and upgrades over the vehicle lifetime 

•  The AUTOSAR scope includes all vehicle domains 
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AUTOSAR Architecture 
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A fundamental concept of AUTOSAR is the 
separation between: 

•  (functional) application and 
•  infrastructure 

Functional 
infrastructure 



AUTOSAR Architecture and Methodology 
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SW-C Description 

Mapping of “Software Components” to 
ECUs and configuration of basic software. 
Automatic generation of configuration files 
for building the set of software applications 

The AUTOSAR Platforms introduces the 
“Run Time Environment” and “Basic 
Software” to abstract the physical network 
topology and hardware 



Autosar Standardization and Tools 



Control synthesis - algorithm development 

Characteristics of the overall electronic control system 
–  Multi-rate control system composed of nested control loops that interact with other 

embedded controllers 
•  frequency and phase drifts between sampling frequencies 
•  event driven actions 
•  asynchronous communication on the network 

–  Implements both continuous and discrete functionalities 
•  more discrete than continuous  
•  control algorithms may have many operation modes 

–  nominal operation modes 
–  safety, protection and recovery modes 

•  computations performed at transition time are very important 
–  switching conditions  
–  controller initializations 

–  A large part of algorithms devoted to diagnosis, fault tolerance and safety 
Complexity: more than 150 I/O and 200 algorithms in engine control units 
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Control synthesis - algorithm development 

Electronic control units do not implement control and estimation algorithms only 

•  Fault tolerance 
–  recovery algorithms that guarantee minimal operability under fault conditions 

•  Diagnosis 
–  Diagnosis specs, enforced by OBDII (On Board Diagnosis II - USA) and EOBD 

(European On Board Diagnosis EU), require that 
•  every fault, malfunction or simple component degradation that lead to the production of 

pollutant emissions over given thresholds should be diagnosed and notified to the driver 

•  Safety  
–  relevant to vehicle longitudinal and stability control, and next-generation X-by-wire 

systems 
•  e.g. brake-by-wire and steer-by-wire 
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Specification for hw/sw implementation 

The description of the hw/sw specification have to  
–  include all the details for a correct implementation of the algorithms 

•  complete functional description 
•  computation accuracy bounds 

–  value domain: computation precision (fixed-point arithmetic), threshold detection, ... 
–  time domain: latency, jitter, delay in event detection, ... 

•  execution order, synchronization and communication 
•  priorities in case of shared resource (cpu, communication,etc) 
•  data storage requirements 

–  be model-based  
–  be suitable for automatic code generation 
–  be compliant to AUTOSAR middle-ware RTE layer specification 
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Specification for hw/sw implementation 

•  Description of the implementation specification (hybrid formalisms)  

•  Methodologies and tools for the definition and validation of implementation 
constraints 
–  modeling of the degradation due to the implementation of algorithms on bounded 

resource platforms  
–  definition of acceptance criteria for the hw/sw implementation 
–  exploration of hw/sw implementation requirements and constraints 
–  validation of candidate implementation platforms described in abstract form 

•  Tools supporting the specification for hw/sw implementation have to 
–  allow the description of the implementation constraints and acceptance criteria  
–  be efficiently integrated with software development tools 
–  either provide automatic code generation or be linked to auto-coding tools 
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Platform Based Design 
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MBD:	
  CODE	
  GENERATION	
  

High level input models 
(Simulink, Modelica, …) 

Target code 
…… 

Direct code generation  
-  No significant restructuring 
-  Low level optimization 
-  Manual partition 

e.g. Mathworks RTW, dSpace TargetLink 
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   nand2(2)	
  

nor(2)	
  

aoi21	
  (3)	
  

xor	
  (5)	
  

nand3	
  (3)	
  

oai22	
  (4)	
  

nor3	
  (3)	
  F	
  

f	
  
g	
  
d	
  
e	
  
h	
  
b	
  
a	
  
c	
  

and2(3)	
  

inv(1)	
  
nand2(2)	
  

High level function model Gate library (platform) 

Function model 
in netlist 

Gate library in 
netlist 

Technology Mapping 
(covering )  

Mapped design 

-  Separation of func and arch 
-  Common language for func and arch 
netlists (Boolean logic,  NAND2 gate) 
-   Automatic mapping 

restructuring restructuring 



OUR	
  SOFTWARE	
  SYNTHESIS	
  FLOW	
  
FuncAon	
  Model	
   Architecture	
  PlaUorm	
  

restructuring restructuring 

Stage 1: Common modeling 
domain (CMD) selection 
Common semantics for func and arch 
Primitives to decide abstraction level 

FuncAon	
  Model	
  in	
  
CMD	
  

T2	
  T1	
  

T5	
  

T3	
  

T6	
  T4	
   Architecture	
  Model	
  
in	
  CMD	
  Stage 2: Automatic mapping 

E1	
   E2	
   E3	
  

…… B1	
  

E1	
   E2	
   E3	
  

…… B1	
  

T1	
   T2	
  
T3	
  

T4	
  

Mapped	
  Design	
  in	
  
CMD	
  

Stage 3: Code generation 



CHALLENGES	
  IN	
  THE	
  FLOW	
  	
  

•  Stage	
  1:	
  Common	
  modeling	
  domain	
  selec;on	
  
  Various	
  models	
  of	
  computa;on	
  exist	
  in	
  system	
  level.	
  

  Trade-­‐off	
  between	
  expressiveness	
  and	
  ease	
  of	
  manipula;on	
  when	
  selec;ng	
  the	
  common	
  
seman;cs.	
  

  Trade-­‐off	
  between	
  granularity	
  and	
  op;mality	
  when	
  selec;ng	
  the	
  primi;ves.	
  

•  Stage	
  2:	
  Automa;c	
  mapping	
  
  Various	
  constraints	
  and	
  objec;ves.	
  
  Domain-­‐specific	
  algorithms	
  may	
  be	
  used	
  albeit	
  not	
  necessary.	
  

•  Stage	
  3:	
  Code	
  genera;on	
  
  Communica;on	
  interface	
  synthesis	
  maybe	
  needed	
  to	
  guarantee	
  correct	
  seman;cs.	
  



MODELING	
  DOMAIN	
  
•  Seman;c	
  domain	
  Q	
  -­‐	
  the	
  language	
  

  Formally	
  defined	
  as	
  trace-­‐based	
  agent	
  algebra	
  [1].	
  
  Q.D:	
  domain	
  of	
  agents	
  -­‐	
  “building	
  blocks”.	
  
  Q.A:	
  master	
  alphabet	
  –	
  “set	
  of	
  all	
  signals	
  between	
  blocks”.	
  
  Q.α	
  :	
  Q.D	
  -­‐>	
  2Q.A,	
  each	
  agent	
  has	
  an	
  alphabet	
  –	
  “each	
  block	
  has	
  a	
  set	
  of	
  signals”	
  
  Operators:	
  renaming,	
  projec;on	
  and	
  parallel	
  composi;on	
  –	
  	
  “rules	
  to	
  ini;alize	
  and	
  

compose	
  blocks”	
  
•  Primi;ves	
  P	
  –	
  abstracDon	
  level	
  

  Primi;ves	
  are	
  a	
  set	
  of	
  agents	
  in	
  a	
  seman;c	
  domain,	
  	
  P	
  	
  	
  	
  Q.D	
  .	
  
  No	
  agent	
  in	
  P	
  can	
  be	
  constructed	
  from	
  other	
  agents	
  in	
  P.	
  	
  

•  Modeling	
  domain	
  CQ(P):	
  all	
  agents	
  constructed	
  from	
  primi;ves	
  P	
  by	
  applying	
  
operators	
  in	
  seman;c	
  domain	
  Q.	
  

⊆	
  

[1]  R. Passerone, Semantic Foundations for Heterogeneous Systems. PhD thesis, University of California, Berkeley, 2004. 



COMMON	
  MODELING	
  DOMAIN	
  (CMD)	
  

•  A	
  model	
  is	
  an	
  agent	
  in	
  the	
  modeling	
  domain.	
  
•  Func;on	
  model	
  f	
  	
  	
  	
  F,	
  architecture	
  model	
  a	
  	
  	
  	
  A.	
  
•  B(s)	
  denotes	
  the	
  behavior	
  of	
  model	
  s.	
  
•  Modeling	
  domain	
  M	
  is	
  a	
  common	
  modeling	
  domain	
  between	
  f	
  and	
  a	
  if	
  

there	
  exists	
  f’	
  	
  	
  	
  M	
  and	
  a’	
  	
  	
  	
  M	
  	
  s.t.	
  	
  B(f’)	
  	
  	
  	
  	
  B(f)	
  and	
  B(a’)	
  	
  	
  	
  B(a).	
  

∈ 	
  ∈ 	
  

∈	
   ∈	
   ⊆	
  ⊆	
  

Behavior of original function 
model f in F 

Behavior of original 
architecture model a in A 

Behavior of function model 
f’ in CMD 

Behavior of architecture 
model a’ in CMD 

O 

Λ 

•  f and a may have different semantics or 
abstraction level – hard to explore o. 
•  f’ and a’ in CMD – mapping space Λ can 
be formally explored. 
•  Λ ⊆ o – mapped behavior is legal.	
  

Illustration of mapping space in CMD 



CMD	
  SELECTION	
  
•  Ancestor-­‐child	
  rela;on	
  between	
  modeling	
  domains.	
  

  Define	
  Ф(M)	
  =	
  {B(s)	
  |	
  s	
  	
  	
  	
  CQ(P)	
  }	
  –	
  set	
  of	
  all	
  agent	
  behavior.	
  
  M1	
  =	
  CQ1(P1)	
  is	
  the	
  ancestor	
  of	
  M2	
  =	
  CQ2(P2)	
  iff	
  	
  Ф(M2)	
  	
  	
  	
  	
  	
  Ф(M1).	
  

•  Search	
  CMDs	
  on	
  modeling	
  domain	
  rela;on	
  graph	
  (directed	
  edges	
  represen;ng	
  
ancestor-­‐child	
  rela;on).	
  

∈ 
⊆ 

F 
A 

D 

C 

Original Function 
Modeling Domain Original Architecture 

Modeling Domain 

Common Ancestor Modeling Domain 
of F and A  

CMD Selection Model Transformation 

expressive but too 
complex to explore 

may lose behavior but 
tractable mapping 



CMD	
  SELECTION	
  CONTD.	
  

•  Two	
  design	
  aspects	
  when	
  selec;ng	
  CMD	
  C	
  =	
  CQ(P)	
  
  Seman;cs	
  –	
  decided	
  by	
  seman;c	
  domain	
  Q	
  

o  Expressiveness	
  vs.	
  analyzability,	
  e.g.	
  dataflow	
  vs.	
  sta;c	
  dataflow.	
  
o May	
  first	
  choose	
  seman;c	
  domain	
  for	
  common	
  ancestor	
  domain	
  D,	
  then	
  refine	
  it	
  in	
  C.	
  

  Abstrac;on	
  level	
  –	
  depends	
  on	
  primi;ves	
  P	
  
o  Explore	
  different	
  abstrac;on	
  level	
  by	
  choosing	
  different	
  primi;ves.	
  

o  Carried	
  out	
  when	
  selec;ng	
  C	
  as	
  child	
  domain	
  of	
  D.	
  

  For	
  both,	
  it	
  is	
  a	
  trade-­‐off	
  between	
  the	
  size	
  of	
  mapping	
  space	
  and	
  complexity.	
  



COVERING	
  PROBLEM	
  AFTER	
  CMD	
  SELECTION	
  

•  Symbols:	
  
  Func;on	
  primi;ve	
  instances	
  :	
  	
  

  Architecture	
  primi;ve	
  instances	
  :	
  

  Mapping	
  decision	
  variables	
  :	
  	
  

  Architecture	
  selec;on	
  variables:	
  

  Quan;;es	
  (power,	
  area,	
  bandwidth…):	
  

  General	
  covering	
  formula;on	
  	
  

Function covering constraints  

Architecture selection constraints  

Quantity constraints  
Objective functions 

Domain specific. 
Determines 
complexity! 



CASE	
  STUDY:	
  ACTIVE	
  SAFETY	
  VEHICLE	
  

•  Func;onal	
  correctness	
  and	
  cost-­‐efficiency	
  are	
  both	
  important	
  for	
  ac;ve	
  safety	
  
applica;ons.	
  

•  Func;on	
  and	
  architecture	
  mismatch.	
  	
  

FuncAon	
  model	
  
• 	
  synchronous	
  model.	
  
• 	
  no	
  message	
  loss	
  or	
  duplica;on.	
  

Architecture	
  plaUorm	
  
• 	
  clock	
  drin	
  between	
  distributed	
  ECUs,	
  
asynchronous	
  communica;on.	
  
• 	
  data	
  loss	
  and	
  duplica;on	
  exist.	
  

mismatch	
  



STAGE	
  1:	
  CMD	
  SELECTION	
  –	
  COMMON	
  SEMANTICS	
  

D = C PN (PD) 

F = C SR (PF) 

A = C LTTA (PA) 

C1 =  
C LTTA (P1=PF’ U PA) 

C2 = 
C SR (P2=PF U PA’) 

Original Function 
Modeling Domain 

Original Architecture 
Modeling Domain 

CMD Selection 

1. Process Networks (PN): expressive but 
high modeling complexity. Need 
transformation of both func and arch 
models. 
2. Loosely time triggered architecture 
(LTTA): transformation of func model to 
support asynchronous communication. 

3. Synchronous reactive (SR): 
transformation of the arch to support 
synchronous communication, by applying 
following protocols. 

•  Clock synchronization. 
•  Constraints on task periods. 

Chosen in this case study 



STAGE	
  2:	
  COVERING	
  PROBLEM	
  
FuncAonal	
  Model	
   Architectural	
  Model	
  

Covering	
  variables	
  
-­‐ 	
  Task	
  to	
  ECU	
  

-­‐ 	
  Signal	
  to	
  message	
  
-­‐ 	
  Message	
  selecDon	
  

-­‐ 	
  Priority	
  
-­‐ 	
  Period	
  

QuanAty	
  constraints	
  and	
  
objecAve	
  funcAons	
  	
  

-­‐	
  End-­‐to-­‐end	
  latency	
  
-­‐ 	
  UDlizaDon	
  
-­‐ 	
  Extensibility	
  	
  
-­‐	
  ……	
  

Variety	
  of	
  algorithms	
  
-­‐	
  mathema;cal	
  programming	
  
	
  -­‐	
  heuris;cs	
  
	
  -­‐	
  meta-­‐heuris;cs	
  
	
  -­‐	
  machine	
  learning	
  
	
  -­‐	
  ……	
  

ECU1	
   ECU2	
  

ECU3	
   ECU4	
  

BUS1	
  

BUS2	
  

IR	
  
Sensor	
  

Wheel	
  
Sensor	
  

Fusion	
  
Task	
  

Object	
  
ID	
  Task	
  

Brake	
  	
  
Act.	
  

Nav.	
  
Task	
  

150	
  ms	
  

Signals
	
  

Primitives: tasks, signals Primitives: ECUs, messages on buses 



STAGE	
  2:	
  COVERING	
  PROBLEM	
  CONTD.	
  
•  Worst	
  case	
  analysis	
  for	
  CAN	
  systems	
  with	
  periodic	
  tasks	
  and	
  messages.	
  
•  A	
  complete	
  formula;on	
  with	
  all	
  design	
  variables	
  does	
  not	
  scale	
  for	
  industrial	
  size	
  problems.	
  
•  We	
  start	
  with	
  tackling	
  following	
  sub-­‐problems.	
  

Problems	
   Period	
  
Synthesis	
  [1]	
  

AllocaAon	
  &	
  Priority	
  
Synthesis	
  [2]	
  

Extensibility	
  
OpAmizaAon	
  [3,	
  4]	
  

Variables	
   Period	
   Alloca;on	
  
Priority	
  

Alloca;on	
  
Priority	
  

Objec;ve	
   Latency	
   Latency	
   Extensibility	
  

Approach	
   Geometric	
  programming	
  (GP)	
   Mixed	
  integer	
  linear	
  
programming	
  (MILP)	
  

Mul;-­‐step	
  Heuris;c	
  

[1] “Period Optimization for Hard Real-time Distributed Automotive Systems”, 44th DAC, 2007.  
[2] “Definition of Task Allocation and Priority Assignment in Hard Real-Time Distributed Systems”, 28th RTSS, 2007. 
[3] “Optimizing Extensibility in Hard Real-time Distributed Systems”, 15th RTAS, 2009. 
[4] “Optimizing the Software Architecture for Extensibility in Hard Real-Time Distributed Systems”, TII, 2010. 



ALLOCATION	
  &	
  PRIORITY	
  SYNTHESIS	
  (MILP	
  BASED)	
  

Step1:	
  
Synthesize	
  task	
  alloca;on	
  
(using	
  MILP)	
  

Step2:	
  
Synthesize	
  signal	
  packing,	
  	
  task	
  and	
  
message	
  priori;es	
  
(using	
  MILP)	
  

Constraints:	
  
End-­‐to-­‐end	
  latency	
  on	
  given	
  paths	
  
U;liza;on	
  bound	
  on	
  ECUs	
  and	
  buses	
  
Objec6ve:	
  
Sum	
  of	
  latencies	
  on	
  given	
  paths	
  

Design	
  inputs:	
  
Task	
  worst	
  case	
  execu;on	
  ;mes	
  
Task	
  and	
  signal	
  periods	
  
Architecture	
  topology,	
  bus	
  speeds	
  

HeurisAc:	
  
Task	
  and	
  signal	
  priori;es	
  



A:er	
  mapping	
  
-­‐ 	
  Meet	
  all	
  requirements	
  
-­‐ 	
  	
  Total	
  latency	
  from	
  	
  36486ms	
  in	
  manual	
  
design	
  to	
  12900ms	
  

ALLOCATION	
  &	
  PRIORITY	
  SYNTHESIS	
  RESULTS	
  

End to end latencies 

... ECU1 ECU2 

... ECU20 ECU21 

... 

... ECU61 ECU62 

FuncAon	
  Model	
  
-­‐ 	
  41	
  Tasks	
  
-­‐ 	
  83	
  Signals	
  
-­‐ 	
  171	
  paths	
  

Architecture	
  plaUorm	
  
-­‐ 	
  9	
  ECUs	
  
-­‐ 	
  single	
  bus	
  

Mapping	
  



EXTENSIBILITY	
  OPTIMIZATION	
  (MILP	
  AND	
  HEURISTIC)	
  	
  
IniAal	
  Task	
  AllocaAon	
  

(MILP)	
  

Signal	
  Packing	
  and	
  
Message	
  AllocaAon	
  
(Greedy	
  Heuris;c)	
  

Task	
  and	
  Message	
  
Priority	
  Assignment	
  
(Itera;ve	
  Heuris;c)	
  

Task	
  Re-­‐allocaAon	
  
(Heuris;c	
  for	
  incremental	
  
changes)	
  

Reach	
  Stop	
  
CondiAon?	
  	
  

Yes	
  

End	
  

No	
  

IniAal	
  Task	
  and	
  Signal	
  
Priority	
  (Heuris;c)	
  



EXTENSIBILITY	
  OPTIMIZATION	
  RESULTS	
  
•  Same	
  ac;ve	
  safety	
  vehicle	
  as	
  in	
  alloca;on	
  and	
  priority	
  synthesis.	
  
•  Single-­‐bus	
  and	
  dual-­‐bus	
  op;ons.	
  
•  Parameter	
  K	
  to	
  trade	
  off	
  between	
  extensibility	
  and	
  latency.	
  	
  
•  Compared	
  with	
  a	
  simulated	
  annealing	
  algorithm:	
  maximum	
  extensibility	
  within	
  0.3%,	
  

run;me	
  0.5	
  hour	
  vs.	
  12	
  hours.	
  

0	
  

5000	
  

10000	
  

15000	
  

20000	
  

25000	
  

30000	
  

16	
   17	
   18	
   19	
   20	
   21	
   22	
   23	
   24	
   25	
  

To
ta
l	
  L
at
en

cy
	
  (m

s)
	
  

Task	
  Extensibility	
  

2	
  buses	
  case	
   1	
  bus	
  case	
  

K=0	
   K=0	
  

K=0.1	
  

K=0.1	
  

K=0.2	
  K=0.5	
  

K=0.2	
  K=0.5	
  

1	
  bus	
  case	
  manual	
  



CASE	
  STUDIES	
  IN	
  OTHER	
  DOMAINS	
  

•  Building	
  automa;on	
  domain	
  [1]	
  
  Similar	
  seman;cs	
  as	
  in	
  automo;ve	
  –	
  synchronous	
  func;on	
  model	
  and	
  LTTA	
  architecture	
  

plazorm.	
  

  Also	
  choose	
  SR	
  as	
  the	
  common	
  seman;cs,	
  however	
  addi;onal	
  ;ming	
  constraints	
  are	
  added	
  
to	
  the	
  architecture	
  for	
  preserving	
  synchronism,	
  as	
  we	
  consider	
  the	
  physical	
  interac;on	
  with	
  
environment.	
  	
  

  Mapping	
  leverages	
  COSI	
  for	
  communica;on	
  network	
  synthesis.	
  

•  Mul;media	
  domain	
  [2]	
  
  JPEG	
  encoder	
  applica;on.	
  Intel	
  MXP	
  architecture	
  plazorm.	
  

  Seman;cs	
  for	
  both	
  func;on	
  and	
  architecture	
  are	
  dataflow.	
  
  Challenge	
  is	
  to	
  choose	
  the	
  proper	
  abstrac;on	
  level.	
  Different	
  levels	
  are	
  explored	
  and	
  

compared	
  through	
  choices	
  of	
  primi;ves.	
  	
  
[1] “A Design Flow for Building Automation and Control Systems”, 31st RTSS, 2010.  
[2] “JPEG Encoding on the Intel MXP5800: A Platform-Based Design Case Study”, ESTIMedia’05, 2005. 
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MATHEMATICAL	
  PROGRAMMING	
  APPROACHES	
  	
  

Extensibility	
  to	
  add	
  addiDonal	
  constraints	
  	
  
for	
  system-­‐specific	
  situaDons	
  

Design	
  Space	
  
-­‐ 	
  Alloca;on	
  
-­‐ 	
  Priori;es	
  
-­‐ 	
  Periods	
  
-­‐ 	
  Ac;va;on	
  Model	
  

MathemaAcal	
  Programming	
  
Based	
  Approaches	
  

Mixed	
  Integer	
  
Linear	
  Programming	
  (MILP)	
  

Geomatric	
  
Programming	
  (GP)	
  

Period	
  Synthesis	
   AcAvaAon	
  	
  
Model	
  Synthesis	
  

AllocaAon	
  and	
  Priority	
  
Synthesis	
  

DATE	
  2007	
  
RTAS	
  2007	
  
Best	
  Paper	
  

2009	
  IEEE	
  Trans	
  on	
  Industrial	
  InformaAcs	
  (best	
  Paper);	
  3	
  Invited	
  Proc	
  of	
  the	
  IEEE	
  papers	
  

RTSS	
  2007	
  
Best	
  Paper	
  

DAC	
  2007	
  	
  
Best	
  Paper	
  



CONCLUDING	
  REMARKS	
  

•  Sonware	
  (and	
  hardware)	
  synthesis	
  based	
  on	
  a	
  formal	
  mapping	
  procedure	
  
  Formally	
  determines	
  the	
  seman;cs	
  and	
  abstrac;on	
  level	
  of	
  the	
  design	
  by	
  choosing	
  a	
  

common	
  modeling	
  domain.	
  

  Automa;c	
  and	
  op;mal	
  mapping	
  algorithms.	
  
  Generality	
  –	
  applied	
  to	
  various	
  domains	
  with	
  different	
  models	
  of	
  computa;on	
  as	
  well	
  as	
  

different	
  implementa;on	
  plazorms.	
  Domain-­‐specific	
  mapping	
  algorithms	
  may	
  be	
  leveraged	
  
in	
  the	
  framework.	
  

  OpDmality	
  –	
  trade-­‐off	
  between	
  complexity	
  and	
  mapping	
  space	
  through	
  the	
  selec;on	
  of	
  CMD.	
  	
  

  Reusability	
  –	
  common	
  seman;c	
  selec;on	
  requires	
  designers’	
  exper;se.	
  However	
  proper	
  
selec;on	
  is	
  typically	
  general	
  for	
  par;cular	
  domains.	
  



Magneti Marelli Results  

Model and Platform based design methodology successfully implemented 
in Magneti Marelli Powertrain leading to: 

•  Significant increase in application software productivity up to 4 time faster than in 
the traditional hand-coding cycle. 

•  The model compiler has been applied only to models mapped in the application 
software partition with a 90% coverage. 

•  Virtually bug-free application software 100% compliant to executable specifications. 
No need for unitary verification tests, already performed in a simulated environment 
and components already quoted in terms of CPU load with the PIL environment. 

•  Automatically generated software components created for GDI project have been re-
used by other projects (MPI, Diesel) currently in production. 



Heterogeneous models 

Functional design 

System-level Functional 
design 

Component model(s) 

Behavioral model(s) 

Architecture selection Architecture model(s) 

Function-to-Architecture 
(deployment) model(s) 

Module design 

Coding Task model(s) 

Code implementation 

UML/SysML ADL 

SR models 
(Simulink) 

+  separation between the functional model 
and the architecture model 

AUTOSAR 

4.0 ? 

4.0 ? 



Outline 

•  Introduction and Motivation using Automotive as Test Case 

•  The V design process and Platform Based Design 

•  The Role of Autosar 

•  Semiconductor Design Economics 

•  Extensions and Open Issues 

© Alberto Sangiovanni-Vincentelli. All rights reserved. 
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Transistor Model 
Capacity Load 

Gate Level Model 
Capacity Load 

SDF 
Wire Load 

The Story of EDA: The Quest for the Next Level of Abstraction 
ab

st
ra

ct
 cluster 

RTL 

cluster 

1970s 1980s 1990s 2000+ 

abstract 

abstract 

© Alberto Sangiovanni-Vincentelli. All rights reserved. 77 



Evolution of the EDA Industry 

1978 

1985 

1992 

2005 

Transistor Entry: Calma, Applicon, Computervision 

a 

b 

s 

q 
0 

1 

d 

clk 
Schematic Entry: Daisy, Mentor, Valid 

Synthesis: Cadence, Synopsys 

What’s next? 

EDA Tools Evolution 
(McKinsey’s S-Curve) 

Results 
(Design Productivity) 

© Alberto Sangiovanni-Vincentelli. All rights reserved. 78 



Moore’s Law 

New Architectures 
•  1000X Improved Computationally  
•  Energy Optimized (MOPS/watt) 
•  Mixed Signal Platforms 

3-D CMOS + - HYBRIDS 15nm"



The Magic of Moore’s Law 
Time 



Evolution of Digital Design Productivity 

© Alberto Sangiovanni-Vincentelli. All rights reserved. 81 
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How did we cope? 

Abstractions 
Methodologies 

(Freedom from Choice) 

Tools 
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The Full Day: the Maturity of EDA 
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• Cell-Based ASICs prohibitively expensive for 
all but highest volume applications 

Shift to 
•  Re-use strategy at all levels 
•  Higher level of abstractions 
•  Software !!! © Alberto Sangiovanni-Vincentelli. All rights reserved. 84 



Definitions 

•  ASPP:  Application Specific Programmable Platform 
–  Instruction set and architecture are customized to application 
–  Application customers help providing specs 

•  PSPP: Platform Specific Programmable Product 
–  ASPPs: End-user/designers will only program the part 
–  PSPPs: End-user/designers will partially configure/design the hardware then 

program the part 
–  Will there be more PSPPs than ASPPs in 2010? 
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Questions 

•  What applications/businesses will be building ASICs instead of PSPPs and ASPPs? 

•  Bleeding edge performance will be less of a factor for a larger percentage of 
applications moving forward: audio, video? 

•  Where will cost be less of a factor than super-optimized performance?   

•  Will an optimized PSPP be more timely, cost-friendly, and even higher in performance 
given that it has been optimized for speed for a particular application area/platform? 

•  Who can afford to design a completely non-reconfigurable, non-programmable ASIC? 
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Transistor Model 
Capacity Load 

Gate Level Model 
Capacity Load 

SDF 
Wire Load 

IP Block Performance 
Inter IP Communication 
Performance Models 

The Story of EDA: The Quest for the Next Level of Abstraction 
ab

st
ra

ct
 cluster 

RTL 

IP Blocks 

RTL 
Clusters 

SW 
Models 

cluster 

cluster 

1970s 1980s 1990s 2000+ 

abstract 

abstract 

abstract 
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The Design Object 
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Developing a New ASIC 

VERY EXPENSIVE PROPOSITION 
–  Core IP (microprocessor) may cost more than 4 Billion (see NYTimes article on 

AP4, the new core by Apple) 
–  NRE are from 8 to 10 Million each chip 
–  Trend is to leverage maximally platforms: few cutomized parts 
–  More important to team with right IC maker and select the right architecture and 

design tools to support the application 
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Cadence EDA360 Vision 

• Design, verification, and implementation of complex 
designs across silicon, package and board 

• Includes comprehensive flows for low power, mixed 
signal, verification, large scale/GHz, and 3D-IC/SiP co-
design 

• Delivered via intent, abstraction, and convergence in 
flows 

• Architecture, design, integration, and verification of 
complex electronic systems 

• Includes hardware-software design and verification, 
system modeling, verification IP, and services 

• Delivered via open, connected, and scalable offerings 

EDA360 

Silicon 
Realization 

SoC 
Realization 

System 
Realization 

• Design IP and Services with technologies for 
architectural exploration, integration, and verification of 
complex SoCs 

• Includes memory and storage subsystems, interfaces, 
and chip planning capabilities 

• Delivered via differentiated, integrated, and proven 
offerings 
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Cadence EDA360 Vision 
– Revisited 

•  Design, verification, and implementation of complex designs 
across silicon, package and board 

•  Includes comprehensive flows for low power, mixed signal, 
verification, large scale/GHz, and 3D-IC/SiP co-design 

•  Delivered via intent, abstraction, and convergence in flows 

•  Architecture, design, integration, and verification of complex 
electronic systems 

•  Includes hardware-software design and verification, system 
modeling, verification IP, and services 

•  Delivered via open, connected, and scalable offerings 

EDA360 

Silicon 
Realization 

SoC 
Realization 

System 
Realization 

•  Design IP and Services with technologies for architectural 
exploration, integration, and verification of complex SoCs 

•  Includes memory and storage subsystems, interfaces, and  
chip planning capabilities 

•  Delivered via differentiated, integrated, and proven offerings 

•  Formal Modeling of multi-physical systems and library 
definitions 

•  Includes requirement capture 
•  Cyber Physical System formal verification and virutalization 
•  Design Space Exploration 

System 
Engineering 
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Embedded 
Software  
Teams 

Machine Code 

Assembly  
Synthesis & Verification 

Programming  
Synthesis & Verification 

IP 

D
rivers 

Business Challenge: Tool Landscape 

R
TO

S
 

Synthesis and Verification 

Algorithmic UML 

~$1.2B 
CAGR 10% 
(Windriver (Intel),  

IBM, Microsoft, …) 

Transistor 

Gate 
Synthesis & Verification 

RTL 
Synthesis & Verification 

TLM 
Synthesis & Verification 

Hardware 
Teams 

IP 

Physical Layout 

~$6B 
Cadence 
Mentor 

Synopsys 
Magma 

~$85M 
CAGR 5% 

(CoWare, Vast (Synopsys),  
Virtutech (Intel),…) 

Software 
Entry 

System Design 
Entry 

User 
Specification 

~$650M 
CAGR >20% 

(Mathworks, CoWare, …) 
~$400M 

CAGR 7% 
(Telelogic IBM-Rational,…) 
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Final Words of Wisdom 
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The EDA Challenge: Software Architecture Today 
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The Swarm Opportunity 
It’s A Connected World 
Time to Abandon the “Component”-Oriented Vision 

Moore’s Law morphs into Metcalfe’s Law: 
Scaling is in number of connected devices, no longer in 
number of transistors/chip 

[J. Rabaey, MuSyC 2009] 

The functionality is in the swarm! 
•  There is power in numbers 
•  Resources can be dynamically provided 

based on availability 



Supporting Theory 

•  Provide a semantic foundations for integrating different models of computation 
–  Independent of the design language 

•  Maximize flexibility for using different levels of abstraction 
–  For different parts of the design 
–  At different stages of the design process 
–  For different kinds of analysis 

•  Support many forms of abstraction 
–  Model of computation (model of time, synchronization, etc.) 
–  Scoping 
–  Structure (hierarchy) 



Platform Based Design! 
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Building Operating Platform 



The Swarm as a Platform 

Home security/
emergency 

Unpad Energy-efficient 
home 

Health monitoring Apps 

Resources Sensors/ 
Input devs 

Actuators/ 
Output devs 

Networks 
Storage 

Computing 

SWARM-OS 

A mediation layer 

Presenting a uniform API to Apps Developers (similar to trends in the Cloud) 



The Swarm as a Platform 

What makes SWARM-OS different (and hard)? 
–  Distributed 
–  Space/context-aware 
–  Heterogeneous shared (and sparse) resources 
–  Dynamic 

•  Mobility, scope, resources, connectivity, …  

Operating System (Broad Sense): Environment that 
•  Presents abstracted vision of hardware to applications 
•  Dynamically balances application needs versus available resources under time 

and energy constraints 

App1 

App2 App2 App2 



THE CLOUD 

How to Deal with Dynamics 
Structured versus ad-hoc? 

THE SWARM 

BOTH OF THE ABOVE!  

[F. Bonomi, Cisco, “Cloud and Fog Computing”– EON June 11] 

THE EDGE 

Exploiting the Edge of the Cloud (or 
The Fog*) 
Packs plenty of computation, 
communication, storage and energy 
resources 
Avoids the overhead of the Cloud 

Not an “OS as usual” 
Reactive or opportunistic emergence of 
capabilities desirable  



The Swarm Challenge(s) 

Complexity 

Energy 

Privacy/
Security 

Management Reliability 

Performance 
(Latency) 

Complex distributed control systems 
combining heterogeneous 
components under dynamically 
varying conditions  



The SCIENCE-Application Dilemma 

Raffaello Sanzio, The Athens School 
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Concluding Remarks 

•  Challenging problems in many domains exist and are amenable to a 
rigorous approach to design methodologies, models and tools 

•  Model-based and Platform-based Design is a MUST 

•  Control algorithm design is critical 

•  Optimized Architecture selection is essential 

•  Holistic view of the design problem must be established 

•  Multidisciplinary approach needed: a challenge for education and 
recruiting 
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