
Alberto Sangiovanni-Vincentelli
The Edgar L. and Harold H. Buttner Chair of EECS
University of California at Berkeley

Co-Founder and Member of the Board
Cadence Design Systems

METHODS AND TOOLS FOR
THE DESIGN OF ELECTRONIC SYSTEMS

Outline

•  Introduction and Motivation using Automotive as Test Case

•  The V design process and Platform Based Design

•  The Role of Autosar

•  Semiconductor Design Economics

•  Extensions and Open Issues

THANKS TO BMW, Cadence, GM, Intel, Magneti Marelli, ST and UTC

© Alberto Sangiovanni-Vincentelli. All rights reserved.
2

Infrastructural
core

The IT Platform of Today:
Mobiles at the Edge of the Cloud

[J. Rabaey, ASPDAC’08]

Mobile data growth
[Source: Cisco VNI Mobile, 2011]

Mobile traffic grew 2.6x in 2010 (nearly
tripling for 3rd year)
Driven by Tablets

The Emerging IT Scene: The Swarm at the Edge of the Cloud

Infrastructural
Core: the Cloud

Sensory
swarm

Mobile
access

Courtesy: J. Rabaey

© Alberto Sangiovanni-Vincentelli. All rights reserved.
4

1995 Question: What happens if sensors become tiny,
wireless, and self-contained?

[Courtesy: K. Pister, UC Berkeley]

… Wireless Sensor Networks

2010 Outcome: The Unfullfilled Promise of
Wireless Sensor Nets

Source: On World

What slowed them down?
(Source: On World)
  Cost savings not yet disruptive
  Reliability
  Energy (battery life)
  Ease of use

Wireless Sensor Nets
What REALLY slows them down:
NO Economy of Scale
Stovepipes, Fragmentation, Non-interoperability,
Lack of Virtualization

Industrial automation,
smart buildings,

renewable energy, data
centers, …

802.11x (WiFi),
802.15.4x (Zigbee),
802.15.1 (Bluetooth

(LE)), 802.15.6
(WPANs), NFC, …

TinyOS, eCOS, LiteOS,
Contiki, Arch Rock

Predictions

•  5 Billion people to be connected by 2015 (Source: NSN)

•  The emergence of Web2.0
–  The “always connected” community network

•  7 trillion wireless devices serving 7 billion people in 2017
(Source: WirelessWorldResearchForum (WWRF)
–  1000 wireless devices per person?

(Courtesy: Niko Kiukkonen, Nokia)

© Alberto Sangiovanni-Vincentelli. All rights reserved. 8

Vision 2025

-  Integrated components will be approaching molecular limits and/
or may cover complete walls

-  Every object will have a wireless connection, hence leading to
trillions of connected devices,

-  Collaborating to present unifying experiences or to fulfill common
goals

What will it Enable?
The Birth of the Swarm

CyberPhysical Systems
Linking the Cyber and Physical Words

[H. Gill, NSF 2008] Aka: The Internet of Things, Societal IT Systems, …

CyberBiological	
 Systems	
 (BioCyber)	

Linking	
 the	
 Cyber	
 and	
 Biological	
 Worlds	

Examples:	
 Telesurgery,	
 Body-­‐area	
 networks,	
 health	
 diagnos;cs,	
 drug	
 delivery,	
 brain-­‐
machine	
 interfaces,	
 …	

[Illustration art: Subbu Venkatraman] Power budget: mWs to
1 mW

Moving the state-of-the-art
in wireless sensing

ADC LNA

electrodes

DSP

memory

Tx

regulator

clock

Towards Integrated Wireless Implanted Interfaces

© Alberto Sangiovanni-Vincentelli. All rights reserved. 12

Measuring, Monitoring, Modeling and Managing	

Metering Sensing

Real Time
Data Integration

Real Time
 + Historical Data

Data Modeling
+ Analytics

Visualization
 + Decisions

  Data modeling and analytics
to create insights from data
to feed decision support and
actions	

Fe
ed

ba
ck

 to
 us

er
 an

d d
ata

 so
ur

ce
;

Inc
en

tiv
es

 an
d a

cti
on

s t
o c

ha
ng

e b
eh

av
ior

Feedback to user and data source;
Incentives and actions to change behavior

  Comparison of historical
data, with newly collected
data	

  Data collection	

  Data Integration	

Source: IBM Corporate Strategy

What does it mean to become Smarter?

Outline

•  Introduction and Motivation using Automotive as Test Case

•  The V design process and Platform Based Design

•  The Role of Autosar

•  Semiconductor Design Economics

•  Extensions and Open Issues

THANKS TO BMW, Cadence, GM, Intel, Magneti Marelli, ST and UTC

© Alberto Sangiovanni-Vincentelli. All rights reserved.
14

15

Source: Public financials, Gartner 2005

•  2005 revenue $17.4B
•  CAGR 10%

(2004-2010)

IC Vendors
~15% of revenue from

automotive

•  2004 Revenue ~$200B
•  CAGR 5.4%

(2004-2010)

Tier 1 Suppliers
90%+ of revenue from

automotive

Automakers •  2005 Revenue $1.1T
•  CAGR 2.8%

(2004-2010)

Design Chain Integration
Automotive Industry

ABS: Antilock Brake System
ACC: Adaptive Cruise Control
BCM: Body Control Module
DoD: Displacement On Demand
ECS: Electronics, Controls, and Software

EGR: Exhaust Gas Recirculation.
GDI: Gas Direct Injection
OBD: Onboard Diagnostics
TCC: Torque Converter Clutch
PT: Powertrain Forefront of Innovation

Vehicle Integration

System Connection

Subsystem Controls & Features

Va
lu

e
fr

om
 E

le
ct

ro
ni

cs
 &

 S
of

tw
ar

e

- More functions & features
- Less hardware
- Faster

Potential inflection point.
Now!

1970s 1980s 2000s 2010s 2020s

Source: Matt Tsien, GM

1990s

BCM

ABS

TCC

EGR

Electric Fan

Electric Ignition

Fuel Cell

Wheel Motor

Hybrid PT

Electric Brake

DoD

GDI

ACC

Rear Vision

Passive Entry

Side Airbags

Head Airbags

OnStar

OBD II

HI Spd Data

Rear aud/vid

CDs

Challenge: Electronics, Controls and Software Shifting the
Basis of Competition in Vehicles

50

 E
C

U
s

 (+
15

0%
)

10

0M
 L

in
es

 o
f C

od
e

 (+
99

00
%

)

$4
00

20
 E

C
U

s
AVG. AVG.

Mechanical $
55%

Software $
13%

Other $
8%

Electronics $
24%

Software $
2% Other $

9% Electronics $
13%

Mechanical $
76%

Challenges in Automotive Electronics Development

•  Increasing functionality:
–  Safety (active/passive)
–  Fuel efficiency (hybrid)
–  Reduced emissions (less CO2)
–  Comfort

•  Increasing quality:
–  2000: ~1000 - 10ppm (per ECU)
–  2010: ~1 - 0ppm (per ECU)

•  Increasing value:
•  Electronic Share (value):

•  2004: 20% -> 2015: 40%
•  Software Share (value):

•  2000: 4.5% -> 2010: 13%
•  Reduce time to market:

•  2000: ~ 20 – 26 months
•  2010: < 18-20 month

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Pedestrian
Protection

Pre-Tensioner

Electric
Steering

Active
Suspension

Airbag

ABS

Night Vision

Collision
Avoidance

Lateral
 Control LateralAir

bag

Traffic Sign
Recognition

Electronic
Stability

Active Front
Steering

Integrated
Vehicle Stability

Convergence Towards Active Safety

Lane
Departure

© Alberto Sangiovanni-Vincentelli. All rights reserved.

From federated to integrated architectures

Device
Drivers

HW
RTOS

COM
stack

Application
software

Each time a new function is required, the OEM starts a request to
suppliers for a new ECU (an integrated HW/SW device realizing the
function) to be integrated on the existing networks

The device is developed by the supplier with its own choice of HW,
RTOS, device drivers and communication layers (with some
standardization)

The result is
•  Proliferation of ECUs (reaching 100)
•  Complex distributed architectures with the need of high

bandwidth and therefore multiple networks and gateways
•  Complex functional and not-functional (timing) dependencies

across the network, which OEMs struggle to control
•  Missing opportunities for common set of libraries and (sub)

functions
•  Limited standardization, flexibility and extensibility
•  Limited control on the execution platform by OEMs

Today:
Federated Architectures

?	
 ?	

The Distributed System Problem:
Typical Car Electrical Architecture

© Alberto Sangiovanni-Vincentelli. All rights reserved. 20

Fighting Obsolescence:
How to harmonize fast evolving electronics with products whose
lifetime is >10 years

•  Decouple Function and Architecture

•  Bring back to OEM design control

•  Flexibility and Extensibility of Architectures

•  Manage a Complex Supply and Design Chain

•  Place your bets so that you leverage maximally your core competence
while leveraging as much as possible qualified PARTNERS

© Alberto Sangiovanni-Vincentelli. All rights reserved. 21

From federated to integrated architectures
The execution architecture is completely selected and planned by
the OEM. OEMs are free to standardize HW, drivers, RTOS and
communication layers, leveraging competition among suppliers

Each time a new function is required, the OEM starts a request to
suppliers for new functional content (SW) to be integrated on the
existing platform

The challenges are:
•  Moving from specifications of ECUs with message interfaces to

the specs of SW components
•  Standardize interoperability among components
•  Standardize access to the platform services
•  Define models that allow to predict the result of the composition

(functional and not-functional)

Tomorrow?:
Integrated Architectures

Device
Drivers

HW

RTOS

COM
stack

RTOS

COM
stack

Device
Drivers

RTOS

COM
stack HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

HW

Device
Drivers

RTOS

COM
stack

The Larger Picture

Toyota	
 Problems	

The	
 Washington	
 Post,	
 March	
 7	

Attention has been focused on mechanical and electronic issues with
Toyotas, but another possible cause of the runaway acceleration maybe a
software glitch. Each vehicle contains layers of computer code that may
be added from one model year to next" that control nearly every system,
from acceleration to braking to stability. This software is rigorously
tested, but t is well-known in our community that there is no scientific,
firm way of actually completely verifying and validating software.	

© Alberto Sangiovanni-Vincentelli. All rights reserved. 23

It’s Not Over Yet!

© Alberto Sangiovanni-Vincentelli. All rights reserved. 24

 The refuse-to-collide car!

© Alberto Sangiovanni-Vincentelli. All rights reserved. 25

CMOS mmWave Circuits and SoC: 60GHz Today

•  Multiple 60GHz standards complete

•  WirelessHD products available
–  SiBeam (BWRC startup)
–  Wall-powered
–  Dissipate <2W

•  A $10 Radar is a possibility!

•  60GHz link in mobile applications?
–  Energy-efficiency is key: <~250mW transceiver
–  Solution must scale to 10+ Gb/s
–  Low cost = Single chip RF+phased array+BB+BIST

© Alberto Sangiovanni-Vincentelli. All rights reserved. 26

Plug and Pray!

Integration Challenges: Plug and Play?

© Alberto Sangiovanni-Vincentelli. All rights reserved. 27

The Design Integration Nightmare

P. Picasso,
Blue Period

Specification:

P. Picasso
“Femme se coiffant”
1940

Implementation:

© Alberto Sangiovanni-Vincentelli. All rights reserved. 28

To Enable Success…

We need an integration platform

•  To deal with heterogeneity:
–  Where we can deal with Hardware and Software
–  Where we can mix digital and analog, cyber and physical
–  Where we can assemble internal and external IPs with different physical domains
–  Where we can work at different levels of abstraction

•  To handle the design chain

•  To support integration
–  Tool integration
–  IP integration

The integration platform must subsume the traditional design flow,
rather than displacing it

© Alberto Sangiovanni-Vincentelli. All rights reserved. 29

Outline

•  Introduction and Motivation using Automotive as Test Case

•  The V design process and Platform Based Design

•  The Role of Autosar

•  Semiconductor Design Economics

•  Extensions and Open Issues

© Alberto Sangiovanni-Vincentelli. All rights reserved.
30

Automotive V-Models: a ‘Linear’ Development Process

Development of
Car System

Development of
Mechanical Part (s)

ECU
Development

ECU SW
Development

ECU HW
Development

ECU SW Integration
and Test

ECU HW/SW
Integration and Test

ECU/ Sens./Actrs./Mech. Part(s)
Integration, Calibration, and Test

Sub-System(s)
Integration, Test, and

Validation
Development of

Sub-System

ECU Sign-Off!

Sub-System Sign-Off!

Car System
Sign-Off!

ECU HW
Sign-Off!

ECU SW Implementation

ECU:
Electrical Control Unit

Vertical Design Chain and Design Error Costs

Sub-System
Requirements (e.g.

ABS)

Sub-System
Implementation

OEM

Tier1 Supplier

“Finding and fixing requirements errors consumes between
70% - 85% of total project rework costs.”

STAGE

RELATIVE COST TO REPAIR

Requirements

Software Design

Coding

Unit Test

Accept. Test

Maintenance

1

5

10

20

50

200

Tier2 Supplier

Components
Requirements (e.g.

ABS)

Component
Implementation

OEM Design Challenges

•  Distribution:
–  Functions are distributed over several subsystems/

components (M/E/E)
–  Exploration of solutions involve several subsystems
–  Integration is very expensive
–  Tool support is critical

•  Packaging:
–  space for electronics in the car is reducing
–  Functional integration might be different from functional

one

Enabling OEM and Tier1 Co-Design Space Exploration and
Co-Verification

In-Vehicle Network
Virtual

Integration

In-Vehicle Network
Simulation and

Constraint Verification

In-Vehicle Network
Model Refinement

In-Vehicle Network
Constraint

Decomposition

OEM System
Architect

OEM System
Integrator

Tier1
Software

Developer

System
Constraint

Model

Sub-System
Constraint

Network
Configuration

t_idct Busy Writing
to t_add

20

39

9

12 14

14

2 14

19

1

1

3

1

1

2

2

18

6

7

8

9

10

11

12

13

14

15

16

6 7 8 9 10 11 12 13 14 15 16 srcProcID

sinkProcID

1

2

Average delay per frame
for all Write & Read transactions from source
Process "10" (t_isiq) to sink Process "8" (t_idct) 20

1

t_add Busy Reading
from t_predict

3

2

37

15 2

3

Derivative design

•  The derivative design approach:
–  Every two-three years a new generation of products is designed

•  Product generations are conceived to accommodate the specification of all customers for
the next years

–  For each commitment, the electronic control unit is obtained by derivation from the
current generation

•  In the derivative design approach, reuse is extensively employed to
minimize cost and development time
–  for each class of applications, products are variants of a same originating design

PPC

OEM
Technology

DB

ABS ACC Steer C.

Brake C.

Control
Algorithm

HC11

Supplier
Technology

DB

SW

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Platform Models for Model Based Development

Distributed
System

Sign-Off!

Distributed
System

Partitioning
Virtual Integration of

Sub-System(s) w/
Network Protocol, Test,

and Validation

Sub-Systems
Requirements

Sub-System(s)
Integration, Test, and

Validation

Sub-System(s)
Implementation Models

Sign-Off!

Distributed
System

Requirements

Sub-Systems Model
Based Development

Platform
 Abstraction

Platform Based Design

•  A “meet-in-middle” design method
–  Platform: an abstraction layer that hides the details

of several possible implementation refinements of
the underlying layers

•  Function model:
–  abstraction of what the system is supposed to do

•  Architecture model:
–  lower level of abstraction describing how the system

realizes the function

•  Mapping:
–  Process by which function and architecture meet
–  Propagates constraints from above to meet performance

estimations from below
–  Phases: Allocation, binding, scheduling

Texas Instruments OMAP

Platform
Mapping &
Constraint
Propagation

Performance
Estimation &
Platform
Design-Space
Export

Specification

Analysis

 D
ev

el
op

m
en

t P
ro

ce
ss

Buses Buses
Matlab

CPUs Buses Operating
Systems

Behavior Components Virtual Architectural Components

C-Code
 IPs

Dymola

Behavior Platform

Mapping

Performance
Analysis

Refinement

Evaluation of
Architectural and

Partitioning
Alternatives

Implementation

Separation of Concerns

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Platform
Design-Space

Export

Platform
Mapping

Architectural Space Application Space

Application Instance Platform Instance

Platform-Based Design

Platform: library of resources defining an abstraction layer with interfaces that identify legal connections

•  Resources do contain virtual components i.e., placeholders that will be customized in the
implementation phase to meet constraints

•  Very important resources are interconnections and communication protocols

© Alberto Sangiovanni-Vincentelli. All rights reserved.
39

Platform
Instance

Platform Design-Space Export

Platform
(Architectural) Space

Platform Instance Function
Instance

Function
Space Mapped

Platform
(Architectural) Space

Function
Space

Platform Instance Function
Instance

Mapped

Fractal Nature of Design

© Alberto Sangiovanni-Vincentelli. All rights reserved. 40

Silicon level

ECU node
level

Sub-system level

Vehicle level

Functional
Networks

bus

Topologies

Domain Topologies
Functional
Sub-Nets

Functions
on ECUs ECU Design

Functions
(Physical Layer) HW-Components

Design Methodology
Pl

at
fo

rm
 C

on
st

ra
in

ts
 P

ro
pa

ga
tio

n
R

equirem
ent Propagation and Platform

 Selection

Design Space vs. Time-to-Market in Platform Based Design

•  Platform limits the design choices

•  Designer only needs to analyze alternatives that are implemented by the
platform

[Sander 2009]

AUTOSAR initiative
•  Each ECU may include functionalities developed by different suppliers and as well

as the OEM

•  Started as a partnership between leading European OEMs and Suppliers for
–  establishment of an open standard for automotive E/E architecture
–  a basic infrastructure for the management of functions within both future applications

and standard software modules

•  Objectives
–  standardization of basic system functions and functional interfaces

•  modularity and scalability
–  the ability to integrate and transfer functions

•  transferability and re-usability
–  substantially improve software updates and upgrades over the vehicle lifetime

•  The AUTOSAR scope includes all vehicle domains

© Alberto Sangiovanni-Vincentelli. All rights reserved.

AUTOSAR Architecture

A
U

T
O

S
A

R
 S

W
-C

 1

SW-C Description

Virtual Functional Bus

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-C
 1

ECU1

A
U

T
O

S
A

R
 S

W
-C

 2

SW-C Description

A
U

T
O

S
A

R
 S

W
-C

 3

SW-C Description

A
U

T
O

S
A

R
 S

W
-C

 n

SW-C Description

ECU Descriptions

System
Constraint
Description

Deployment tools

Basic Software

RTE

A
U

T
O

S
A

R

S
W

-C
 2

ECU1

A
U

T
O

S
A

R

S
W

-C
 3

A fundamental concept of AUTOSAR is the
separation between:

•  (functional) application and
•  infrastructure

Functional
infrastructure

AUTOSAR Architecture and Methodology

ECU Descriptions
System

Constraint
Description

Deployment tools

Basic Software

RTE

A
U

T
O

S
A

R
 S

W
-C

1

ECU1

Gateway

Basic Software

RTE

A
U

T
O

S
A

R
 S

W
-C

2

ECU2

A
U

T
O

S
A

R
 S

W
-C

3

Basic Software

RTE

A
U

T
O

S
A

R
 S

W
-C

n

ECU3

A
U

T
O

S
A

R
 S

W
-

C
 1

SW-C Description

Virtual Functional Bus

A
U

T
O

S
A

R
 S

W
-

C
 2

SW-C Description

A
U

T
O

S
A

R
 S

W
-

C
 3

SW-C Description

A
U

T
O

S
A

R
 S

W
-

C
 n

SW-C Description

Mapping of “Software Components” to
ECUs and configuration of basic software.
Automatic generation of configuration files
for building the set of software applications

The AUTOSAR Platforms introduces the
“Run Time Environment” and “Basic
Software” to abstract the physical network
topology and hardware

Autosar Standardization and Tools

Control synthesis - algorithm development

Characteristics of the overall electronic control system
–  Multi-rate control system composed of nested control loops that interact with other

embedded controllers
•  frequency and phase drifts between sampling frequencies
•  event driven actions
•  asynchronous communication on the network

–  Implements both continuous and discrete functionalities
•  more discrete than continuous
•  control algorithms may have many operation modes

–  nominal operation modes
–  safety, protection and recovery modes

•  computations performed at transition time are very important
–  switching conditions
–  controller initializations

–  A large part of algorithms devoted to diagnosis, fault tolerance and safety
Complexity: more than 150 I/O and 200 algorithms in engine control units

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Control synthesis - algorithm development

Electronic control units do not implement control and estimation algorithms only

•  Fault tolerance
–  recovery algorithms that guarantee minimal operability under fault conditions

•  Diagnosis
–  Diagnosis specs, enforced by OBDII (On Board Diagnosis II - USA) and EOBD

(European On Board Diagnosis EU), require that
•  every fault, malfunction or simple component degradation that lead to the production of

pollutant emissions over given thresholds should be diagnosed and notified to the driver

•  Safety
–  relevant to vehicle longitudinal and stability control, and next-generation X-by-wire

systems
•  e.g. brake-by-wire and steer-by-wire

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Specification for hw/sw implementation

The description of the hw/sw specification have to
–  include all the details for a correct implementation of the algorithms

•  complete functional description
•  computation accuracy bounds

–  value domain: computation precision (fixed-point arithmetic), threshold detection, ...
–  time domain: latency, jitter, delay in event detection, ...

•  execution order, synchronization and communication
•  priorities in case of shared resource (cpu, communication,etc)
•  data storage requirements

–  be model-based
–  be suitable for automatic code generation
–  be compliant to AUTOSAR middle-ware RTE layer specification

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Specification for hw/sw implementation

•  Description of the implementation specification (hybrid formalisms)

•  Methodologies and tools for the definition and validation of implementation
constraints
–  modeling of the degradation due to the implementation of algorithms on bounded

resource platforms
–  definition of acceptance criteria for the hw/sw implementation
–  exploration of hw/sw implementation requirements and constraints
–  validation of candidate implementation platforms described in abstract form

•  Tools supporting the specification for hw/sw implementation have to
–  allow the description of the implementation constraints and acceptance criteria
–  be efficiently integrated with software development tools
–  either provide automatic code generation or be linked to auto-coding tools

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Platform Based Design

Functions
Functional
Networks bus

Resources
Topologies

Solution
Patterns

Mapping
Solution n+1

Evaluation
and Iteration

Exploring Topologies

Platform Based Design

Functions
Functional
Networks bus

Resources
Topologies

Solution
Patterns

Mapping
Solution n+2

Evaluation
and Iteration

Exploring Topologies

53

Design Flow

ApplicaAon	
 Architecture	

ECU1	
 ECU2	

ECU3	

ECU4	

CAN1	

CAN2	

ImplementaAon	

Mapping	

•  AllocaAon	

•  PrioriAes	

•  Periods	

•  AcAvaAon	
 Model	

IR	

Sensor	

Wheel	

Sensor	

Fusion	

Task	

Object	

ID	
 Task	

Brake	
 	

Actuator	

ThroQle	

Actuator	

Nav.	

Task	

150	
 ms	

225	
 ms	

(Message
s)	

Design	
 Space	

MBD:	
 CODE	
 GENERATION	

High level input models
(Simulink, Modelica, …)

Target code
……

Direct code generation
-  No significant restructuring
-  Low level optimization
-  Manual partition

e.g. Mathworks RTW, dSpace TargetLink

LEARNING	
 FROM	
 LOGIC	
 SYNTHESIS	

d+e	
 b+h	

t4’	

at2+c	

t1t3+fgh	

b’ h’

a

d’ e’
g

f

c

inv(1)	
 nand2(2)	

nor(2)	

aoi21	
 (3)	

xor	
 (5)	

nand3	
 (3)	

oai22	
 (4)	

nor3	
 (3)	
 F	

f	

g	

d	

e	

h	

b	

a	

c	

and2(3)	

inv(1)	

nand2(2)	

High level function model Gate library (platform)

Function model
in netlist

Gate library in
netlist

Technology Mapping
(covering)

Mapped design

-  Separation of func and arch
-  Common language for func and arch
netlists (Boolean logic, NAND2 gate)
-  Automatic mapping

restructuring restructuring

OUR	
 SOFTWARE	
 SYNTHESIS	
 FLOW	

FuncAon	
 Model	
 Architecture	
 PlaUorm	

restructuring restructuring

Stage 1: Common modeling
domain (CMD) selection
Common semantics for func and arch
Primitives to decide abstraction level

FuncAon	
 Model	
 in	

CMD	

T2	
 T1	

T5	

T3	

T6	
 T4	
 Architecture	
 Model	

in	
 CMD	
 Stage 2: Automatic mapping

E1	
 E2	
 E3	

…… B1	

E1	
 E2	
 E3	

…… B1	

T1	
 T2	

T3	

T4	

Mapped	
 Design	
 in	

CMD	

Stage 3: Code generation

CHALLENGES	
 IN	
 THE	
 FLOW	
 	

•  Stage	
 1:	
 Common	
 modeling	
 domain	
 selec;on	

  Various	
 models	
 of	
 computa;on	
 exist	
 in	
 system	
 level.	

  Trade-­‐off	
 between	
 expressiveness	
 and	
 ease	
 of	
 manipula;on	
 when	
 selec;ng	
 the	
 common	

seman;cs.	

  Trade-­‐off	
 between	
 granularity	
 and	
 op;mality	
 when	
 selec;ng	
 the	
 primi;ves.	

•  Stage	
 2:	
 Automa;c	
 mapping	

  Various	
 constraints	
 and	
 objec;ves.	

  Domain-­‐specific	
 algorithms	
 may	
 be	
 used	
 albeit	
 not	
 necessary.	

•  Stage	
 3:	
 Code	
 genera;on	

  Communica;on	
 interface	
 synthesis	
 maybe	
 needed	
 to	
 guarantee	
 correct	
 seman;cs.	

MODELING	
 DOMAIN	

•  Seman;c	
 domain	
 Q	
 -­‐	
 the	
 language	

  Formally	
 defined	
 as	
 trace-­‐based	
 agent	
 algebra	
 [1].	

  Q.D:	
 domain	
 of	
 agents	
 -­‐	
 “building	
 blocks”.	

  Q.A:	
 master	
 alphabet	
 –	
 “set	
 of	
 all	
 signals	
 between	
 blocks”.	

  Q.α	
 :	
 Q.D	
 -­‐>	
 2Q.A,	
 each	
 agent	
 has	
 an	
 alphabet	
 –	
 “each	
 block	
 has	
 a	
 set	
 of	
 signals”	

  Operators:	
 renaming,	
 projec;on	
 and	
 parallel	
 composi;on	
 –	
 	
 “rules	
 to	
 ini;alize	
 and	

compose	
 blocks”	

•  Primi;ves	
 P	
 –	
 abstracDon	
 level	

  Primi;ves	
 are	
 a	
 set	
 of	
 agents	
 in	
 a	
 seman;c	
 domain,	
 	
 P	
 	
 	
 	
 Q.D	
 .	

  No	
 agent	
 in	
 P	
 can	
 be	
 constructed	
 from	
 other	
 agents	
 in	
 P.	
 	

•  Modeling	
 domain	
 CQ(P):	
 all	
 agents	
 constructed	
 from	
 primi;ves	
 P	
 by	
 applying	

operators	
 in	
 seman;c	
 domain	
 Q.	

⊆	

[1] R. Passerone, Semantic Foundations for Heterogeneous Systems. PhD thesis, University of California, Berkeley, 2004.

COMMON	
 MODELING	
 DOMAIN	
 (CMD)	

•  A	
 model	
 is	
 an	
 agent	
 in	
 the	
 modeling	
 domain.	

•  Func;on	
 model	
 f	
 	
 	
 	
 F,	
 architecture	
 model	
 a	
 	
 	
 	
 A.	

•  B(s)	
 denotes	
 the	
 behavior	
 of	
 model	
 s.	

•  Modeling	
 domain	
 M	
 is	
 a	
 common	
 modeling	
 domain	
 between	
 f	
 and	
 a	
 if	

there	
 exists	
 f’	
 	
 	
 	
 M	
 and	
 a’	
 	
 	
 	
 M	
 	
 s.t.	
 	
 B(f’)	
 	
 	
 	
 	
 B(f)	
 and	
 B(a’)	
 	
 	
 	
 B(a).	

∈ 	
 ∈ 	

∈	
 ∈	
 ⊆	
 ⊆	

Behavior of original function
model f in F

Behavior of original
architecture model a in A

Behavior of function model
f’ in CMD

Behavior of architecture
model a’ in CMD

O

Λ

•  f and a may have different semantics or
abstraction level – hard to explore o.
•  f’ and a’ in CMD – mapping space Λ can
be formally explored.
•  Λ ⊆ o – mapped behavior is legal.	

Illustration of mapping space in CMD

CMD	
 SELECTION	

•  Ancestor-­‐child	
 rela;on	
 between	
 modeling	
 domains.	

  Define	
 Ф(M)	
 =	
 {B(s)	
 |	
 s	
 	
 	
 	
 CQ(P)	
 }	
 –	
 set	
 of	
 all	
 agent	
 behavior.	

  M1	
 =	
 CQ1(P1)	
 is	
 the	
 ancestor	
 of	
 M2	
 =	
 CQ2(P2)	
 iff	
 	
 Ф(M2)	
 	
 	
 	
 	
 	
 Ф(M1).	

•  Search	
 CMDs	
 on	
 modeling	
 domain	
 rela;on	
 graph	
 (directed	
 edges	
 represen;ng	

ancestor-­‐child	
 rela;on).	

∈
⊆

F
A

D

C

Original Function
Modeling Domain Original Architecture

Modeling Domain

Common Ancestor Modeling Domain
of F and A

CMD Selection Model Transformation

expressive but too
complex to explore

may lose behavior but
tractable mapping

CMD	
 SELECTION	
 CONTD.	

•  Two	
 design	
 aspects	
 when	
 selec;ng	
 CMD	
 C	
 =	
 CQ(P)	

  Seman;cs	
 –	
 decided	
 by	
 seman;c	
 domain	
 Q	

o  Expressiveness	
 vs.	
 analyzability,	
 e.g.	
 dataflow	
 vs.	
 sta;c	
 dataflow.	

o May	
 first	
 choose	
 seman;c	
 domain	
 for	
 common	
 ancestor	
 domain	
 D,	
 then	
 refine	
 it	
 in	
 C.	

  Abstrac;on	
 level	
 –	
 depends	
 on	
 primi;ves	
 P	

o  Explore	
 different	
 abstrac;on	
 level	
 by	
 choosing	
 different	
 primi;ves.	

o  Carried	
 out	
 when	
 selec;ng	
 C	
 as	
 child	
 domain	
 of	
 D.	

  For	
 both,	
 it	
 is	
 a	
 trade-­‐off	
 between	
 the	
 size	
 of	
 mapping	
 space	
 and	
 complexity.	

COVERING	
 PROBLEM	
 AFTER	
 CMD	
 SELECTION	

•  Symbols:	

  Func;on	
 primi;ve	
 instances	
 :	
 	

  Architecture	
 primi;ve	
 instances	
 :	

  Mapping	
 decision	
 variables	
 :	
 	

  Architecture	
 selec;on	
 variables:	

  Quan;;es	
 (power,	
 area,	
 bandwidth…):	

  General	
 covering	
 formula;on	
 	

Function covering constraints

Architecture selection constraints

Quantity constraints
Objective functions

Domain specific.
Determines
complexity!

CASE	
 STUDY:	
 ACTIVE	
 SAFETY	
 VEHICLE	

•  Func;onal	
 correctness	
 and	
 cost-­‐efficiency	
 are	
 both	
 important	
 for	
 ac;ve	
 safety	

applica;ons.	

•  Func;on	
 and	
 architecture	
 mismatch.	
 	

FuncAon	
 model	

• 	
 synchronous	
 model.	

• 	
 no	
 message	
 loss	
 or	
 duplica;on.	

Architecture	
 plaUorm	

• 	
 clock	
 drin	
 between	
 distributed	
 ECUs,	

asynchronous	
 communica;on.	

• 	
 data	
 loss	
 and	
 duplica;on	
 exist.	

mismatch	

STAGE	
 1:	
 CMD	
 SELECTION	
 –	
 COMMON	
 SEMANTICS	

D = C PN (PD)

F = C SR (PF)

A = C LTTA (PA)

C1 =
C LTTA (P1=PF’ U PA)

C2 =
C SR (P2=PF U PA’)

Original Function
Modeling Domain

Original Architecture
Modeling Domain

CMD Selection

1. Process Networks (PN): expressive but
high modeling complexity. Need
transformation of both func and arch
models.
2. Loosely time triggered architecture
(LTTA): transformation of func model to
support asynchronous communication.

3. Synchronous reactive (SR):
transformation of the arch to support
synchronous communication, by applying
following protocols.

•  Clock synchronization.
•  Constraints on task periods.

Chosen in this case study

STAGE	
 2:	
 COVERING	
 PROBLEM	

FuncAonal	
 Model	
 Architectural	
 Model	

Covering	
 variables	

-­‐ 	
 Task	
 to	
 ECU	

-­‐ 	
 Signal	
 to	
 message	

-­‐ 	
 Message	
 selecDon	

-­‐ 	
 Priority	

-­‐ 	
 Period	

QuanAty	
 constraints	
 and	

objecAve	
 funcAons	
 	

-­‐	
 End-­‐to-­‐end	
 latency	

-­‐ 	
 UDlizaDon	

-­‐ 	
 Extensibility	
 	

-­‐	
 ……	

Variety	
 of	
 algorithms	

-­‐	
 mathema;cal	
 programming	

	
 -­‐	
 heuris;cs	

	
 -­‐	
 meta-­‐heuris;cs	

	
 -­‐	
 machine	
 learning	

	
 -­‐	
 ……	

ECU1	
 ECU2	

ECU3	
 ECU4	

BUS1	

BUS2	

IR	

Sensor	

Wheel	

Sensor	

Fusion	

Task	

Object	

ID	
 Task	

Brake	
 	

Act.	

Nav.	

Task	

150	
 ms	

Signals
	

Primitives: tasks, signals Primitives: ECUs, messages on buses

STAGE	
 2:	
 COVERING	
 PROBLEM	
 CONTD.	

•  Worst	
 case	
 analysis	
 for	
 CAN	
 systems	
 with	
 periodic	
 tasks	
 and	
 messages.	

•  A	
 complete	
 formula;on	
 with	
 all	
 design	
 variables	
 does	
 not	
 scale	
 for	
 industrial	
 size	
 problems.	

•  We	
 start	
 with	
 tackling	
 following	
 sub-­‐problems.	

Problems	
 Period	

Synthesis	
 [1]	

AllocaAon	
 &	
 Priority	

Synthesis	
 [2]	

Extensibility	

OpAmizaAon	
 [3,	
 4]	

Variables	
 Period	
 Alloca;on	

Priority	

Alloca;on	

Priority	

Objec;ve	
 Latency	
 Latency	
 Extensibility	

Approach	
 Geometric	
 programming	
 (GP)	
 Mixed	
 integer	
 linear	

programming	
 (MILP)	

Mul;-­‐step	
 Heuris;c	

[1] “Period Optimization for Hard Real-time Distributed Automotive Systems”, 44th DAC, 2007.
[2] “Definition of Task Allocation and Priority Assignment in Hard Real-Time Distributed Systems”, 28th RTSS, 2007.
[3] “Optimizing Extensibility in Hard Real-time Distributed Systems”, 15th RTAS, 2009.
[4] “Optimizing the Software Architecture for Extensibility in Hard Real-Time Distributed Systems”, TII, 2010.

ALLOCATION	
 &	
 PRIORITY	
 SYNTHESIS	
 (MILP	
 BASED)	

Step1:	

Synthesize	
 task	
 alloca;on	

(using	
 MILP)	

Step2:	

Synthesize	
 signal	
 packing,	
 	
 task	
 and	

message	
 priori;es	

(using	
 MILP)	

Constraints:	

End-­‐to-­‐end	
 latency	
 on	
 given	
 paths	

U;liza;on	
 bound	
 on	
 ECUs	
 and	
 buses	

Objec6ve:	

Sum	
 of	
 latencies	
 on	
 given	
 paths	

Design	
 inputs:	

Task	
 worst	
 case	
 execu;on	
 ;mes	

Task	
 and	
 signal	
 periods	

Architecture	
 topology,	
 bus	
 speeds	

HeurisAc:	

Task	
 and	
 signal	
 priori;es	

A:er	
 mapping	

-­‐ 	
 Meet	
 all	
 requirements	

-­‐ 	
 	
 Total	
 latency	
 from	
 	
 36486ms	
 in	
 manual	

design	
 to	
 12900ms	

ALLOCATION	
 &	
 PRIORITY	
 SYNTHESIS	
 RESULTS	

End to end latencies

... ECU1 ECU2

... ECU20 ECU21

...

... ECU61 ECU62

FuncAon	
 Model	

-­‐ 	
 41	
 Tasks	

-­‐ 	
 83	
 Signals	

-­‐ 	
 171	
 paths	

Architecture	
 plaUorm	

-­‐ 	
 9	
 ECUs	

-­‐ 	
 single	
 bus	

Mapping	

EXTENSIBILITY	
 OPTIMIZATION	
 (MILP	
 AND	
 HEURISTIC)	
 	

IniAal	
 Task	
 AllocaAon	

(MILP)	

Signal	
 Packing	
 and	

Message	
 AllocaAon	

(Greedy	
 Heuris;c)	

Task	
 and	
 Message	

Priority	
 Assignment	

(Itera;ve	
 Heuris;c)	

Task	
 Re-­‐allocaAon	

(Heuris;c	
 for	
 incremental	

changes)	

Reach	
 Stop	

CondiAon?	
 	

Yes	

End	

No	

IniAal	
 Task	
 and	
 Signal	

Priority	
 (Heuris;c)	

EXTENSIBILITY	
 OPTIMIZATION	
 RESULTS	

•  Same	
 ac;ve	
 safety	
 vehicle	
 as	
 in	
 alloca;on	
 and	
 priority	
 synthesis.	

•  Single-­‐bus	
 and	
 dual-­‐bus	
 op;ons.	

•  Parameter	
 K	
 to	
 trade	
 off	
 between	
 extensibility	
 and	
 latency.	
 	

•  Compared	
 with	
 a	
 simulated	
 annealing	
 algorithm:	
 maximum	
 extensibility	
 within	
 0.3%,	

run;me	
 0.5	
 hour	
 vs.	
 12	
 hours.	

0	

5000	

10000	

15000	

20000	

25000	

30000	

16	
 17	
 18	
 19	
 20	
 21	
 22	
 23	
 24	
 25	

To
ta
l	
 L
at
en

cy
	
 (m

s)
	

Task	
 Extensibility	

2	
 buses	
 case	
 1	
 bus	
 case	

K=0	
 K=0	

K=0.1	

K=0.1	

K=0.2	
 K=0.5	

K=0.2	
 K=0.5	

1	
 bus	
 case	
 manual	

CASE	
 STUDIES	
 IN	
 OTHER	
 DOMAINS	

•  Building	
 automa;on	
 domain	
 [1]	

  Similar	
 seman;cs	
 as	
 in	
 automo;ve	
 –	
 synchronous	
 func;on	
 model	
 and	
 LTTA	
 architecture	

plazorm.	

  Also	
 choose	
 SR	
 as	
 the	
 common	
 seman;cs,	
 however	
 addi;onal	
 ;ming	
 constraints	
 are	
 added	

to	
 the	
 architecture	
 for	
 preserving	
 synchronism,	
 as	
 we	
 consider	
 the	
 physical	
 interac;on	
 with	

environment.	
 	

  Mapping	
 leverages	
 COSI	
 for	
 communica;on	
 network	
 synthesis.	

•  Mul;media	
 domain	
 [2]	

  JPEG	
 encoder	
 applica;on.	
 Intel	
 MXP	
 architecture	
 plazorm.	

  Seman;cs	
 for	
 both	
 func;on	
 and	
 architecture	
 are	
 dataflow.	

  Challenge	
 is	
 to	
 choose	
 the	
 proper	
 abstrac;on	
 level.	
 Different	
 levels	
 are	
 explored	
 and	

compared	
 through	
 choices	
 of	
 primi;ves.	
 	

[1] “A Design Flow for Building Automation and Control Systems”, 31st RTSS, 2010.
[2] “JPEG Encoding on the Intel MXP5800: A Platform-Based Design Case Study”, ESTIMedia’05, 2005.

72

MATHEMATICAL	
 PROGRAMMING	
 APPROACHES	
 	

Extensibility	
 to	
 add	
 addiDonal	
 constraints	
 	

for	
 system-­‐specific	
 situaDons	

Design	
 Space	

-­‐ 	
 Alloca;on	

-­‐ 	
 Priori;es	

-­‐ 	
 Periods	

-­‐ 	
 Ac;va;on	
 Model	

MathemaAcal	
 Programming	

Based	
 Approaches	

Mixed	
 Integer	

Linear	
 Programming	
 (MILP)	

Geomatric	

Programming	
 (GP)	

Period	
 Synthesis	
 AcAvaAon	
 	

Model	
 Synthesis	

AllocaAon	
 and	
 Priority	

Synthesis	

DATE	
 2007	

RTAS	
 2007	

Best	
 Paper	

2009	
 IEEE	
 Trans	
 on	
 Industrial	
 InformaAcs	
 (best	
 Paper);	
 3	
 Invited	
 Proc	
 of	
 the	
 IEEE	
 papers	

RTSS	
 2007	

Best	
 Paper	

DAC	
 2007	
 	

Best	
 Paper	

CONCLUDING	
 REMARKS	

•  Sonware	
 (and	
 hardware)	
 synthesis	
 based	
 on	
 a	
 formal	
 mapping	
 procedure	

  Formally	
 determines	
 the	
 seman;cs	
 and	
 abstrac;on	
 level	
 of	
 the	
 design	
 by	
 choosing	
 a	

common	
 modeling	
 domain.	

  Automa;c	
 and	
 op;mal	
 mapping	
 algorithms.	

  Generality	
 –	
 applied	
 to	
 various	
 domains	
 with	
 different	
 models	
 of	
 computa;on	
 as	
 well	
 as	

different	
 implementa;on	
 plazorms.	
 Domain-­‐specific	
 mapping	
 algorithms	
 may	
 be	
 leveraged	

in	
 the	
 framework.	

  OpDmality	
 –	
 trade-­‐off	
 between	
 complexity	
 and	
 mapping	
 space	
 through	
 the	
 selec;on	
 of	
 CMD.	
 	

  Reusability	
 –	
 common	
 seman;c	
 selec;on	
 requires	
 designers’	
 exper;se.	
 However	
 proper	

selec;on	
 is	
 typically	
 general	
 for	
 par;cular	
 domains.	

Magneti Marelli Results

Model and Platform based design methodology successfully implemented
in Magneti Marelli Powertrain leading to:

•  Significant increase in application software productivity up to 4 time faster than in
the traditional hand-coding cycle.

•  The model compiler has been applied only to models mapped in the application
software partition with a 90% coverage.

•  Virtually bug-free application software 100% compliant to executable specifications.
No need for unitary verification tests, already performed in a simulated environment
and components already quoted in terms of CPU load with the PIL environment.

•  Automatically generated software components created for GDI project have been re-
used by other projects (MPI, Diesel) currently in production.

Heterogeneous models

Functional design

System-level Functional
design

Component model(s)

Behavioral model(s)

Architecture selection Architecture model(s)

Function-to-Architecture
(deployment) model(s)

Module design

Coding Task model(s)

Code implementation

UML/SysML ADL

SR models
(Simulink)

+  separation between the functional model
and the architecture model

AUTOSAR

4.0 ?

4.0 ?

Outline

•  Introduction and Motivation using Automotive as Test Case

•  The V design process and Platform Based Design

•  The Role of Autosar

•  Semiconductor Design Economics

•  Extensions and Open Issues

© Alberto Sangiovanni-Vincentelli. All rights reserved.
76

Transistor Model
Capacity Load

Gate Level Model
Capacity Load

SDF
Wire Load

The Story of EDA: The Quest for the Next Level of Abstraction
ab

st
ra

ct
 cluster

RTL

cluster

1970s 1980s 1990s 2000+

abstract

abstract

© Alberto Sangiovanni-Vincentelli. All rights reserved. 77

Evolution of the EDA Industry

1978

1985

1992

2005

Transistor Entry: Calma, Applicon, Computervision

a

b

s

q
0

1

d

clk
Schematic Entry: Daisy, Mentor, Valid

Synthesis: Cadence, Synopsys

What’s next?

EDA Tools Evolution
(McKinsey’s S-Curve)

Results
(Design Productivity)

© Alberto Sangiovanni-Vincentelli. All rights reserved. 78

Moore’s Law

New Architectures
•  1000X Improved Computationally
•  Energy Optimized (MOPS/watt)
•  Mixed Signal Platforms

3-D CMOS + - HYBRIDS 15nm"

The Magic of Moore’s Law
Time

Evolution of Digital Design Productivity

© Alberto Sangiovanni-Vincentelli. All rights reserved. 81
Source: J. Weekly, Synopsys

How did we cope?

Abstractions
Methodologies

(Freedom from Choice)

Tools

© Alberto Sangiovanni-Vincentelli. All rights reserved. 82

The Full Day: the Maturity of EDA

© Alberto Sangiovanni-Vincentelli. All rights reserved. 83

Co
st

($
M)

 -27%

Estimated

Technology (nm)
M

as
k

C
os

ts

Challenges and Trends

D
es

ig
n

S
ta

rts

 D
es

ig
n

C
os

ts

 In
cr

ea
se

d
S

W
 E

ffo
rt

 M
as

k
C

os
ts

• Cell-Based ASICs prohibitively expensive for
all but highest volume applications

Shift to
•  Re-use strategy at all levels
•  Higher level of abstractions
•  Software !!! © Alberto Sangiovanni-Vincentelli. All rights reserved. 84

Definitions

•  ASPP: Application Specific Programmable Platform
–  Instruction set and architecture are customized to application
–  Application customers help providing specs

•  PSPP: Platform Specific Programmable Product
–  ASPPs: End-user/designers will only program the part
–  PSPPs: End-user/designers will partially configure/design the hardware then

program the part
–  Will there be more PSPPs than ASPPs in 2010?

© Alberto Sangiovanni-Vincentelli. All rights reserved. 85

Questions

•  What applications/businesses will be building ASICs instead of PSPPs and ASPPs?

•  Bleeding edge performance will be less of a factor for a larger percentage of
applications moving forward: audio, video?

•  Where will cost be less of a factor than super-optimized performance?

•  Will an optimized PSPP be more timely, cost-friendly, and even higher in performance
given that it has been optimized for speed for a particular application area/platform?

•  Who can afford to design a completely non-reconfigurable, non-programmable ASIC?

© Alberto Sangiovanni-Vincentelli. All rights reserved. 86

Transistor Model
Capacity Load

Gate Level Model
Capacity Load

SDF
Wire Load

IP Block Performance
Inter IP Communication
Performance Models

The Story of EDA: The Quest for the Next Level of Abstraction
ab

st
ra

ct
 cluster

RTL

IP Blocks

RTL
Clusters

SW
Models

cluster

cluster

1970s 1980s 1990s 2000+

abstract

abstract

abstract

© Alberto Sangiovanni-Vincentelli. All rights reserved. 87

The Design Object

© Alberto Sangiovanni-Vincentelli. All rights reserved. 88

Developing a New ASIC

VERY EXPENSIVE PROPOSITION
–  Core IP (microprocessor) may cost more than 4 Billion (see NYTimes article on

AP4, the new core by Apple)
–  NRE are from 8 to 10 Million each chip
–  Trend is to leverage maximally platforms: few cutomized parts
–  More important to team with right IC maker and select the right architecture and

design tools to support the application

© Alberto Sangiovanni-Vincentelli. All rights reserved. 89

Cadence EDA360 Vision

• Design, verification, and implementation of complex
designs across silicon, package and board

• Includes comprehensive flows for low power, mixed
signal, verification, large scale/GHz, and 3D-IC/SiP co-
design

• Delivered via intent, abstraction, and convergence in
flows

• Architecture, design, integration, and verification of
complex electronic systems

• Includes hardware-software design and verification,
system modeling, verification IP, and services

• Delivered via open, connected, and scalable offerings

EDA360

Silicon
Realization

SoC
Realization

System
Realization

• Design IP and Services with technologies for
architectural exploration, integration, and verification of
complex SoCs

• Includes memory and storage subsystems, interfaces,
and chip planning capabilities

• Delivered via differentiated, integrated, and proven
offerings

© Alberto Sangiovanni-Vincentelli. All rights reserved. 90

Cadence EDA360 Vision
– Revisited

•  Design, verification, and implementation of complex designs
across silicon, package and board

•  Includes comprehensive flows for low power, mixed signal,
verification, large scale/GHz, and 3D-IC/SiP co-design

•  Delivered via intent, abstraction, and convergence in flows

•  Architecture, design, integration, and verification of complex
electronic systems

•  Includes hardware-software design and verification, system
modeling, verification IP, and services

•  Delivered via open, connected, and scalable offerings

EDA360

Silicon
Realization

SoC
Realization

System
Realization

•  Design IP and Services with technologies for architectural
exploration, integration, and verification of complex SoCs

•  Includes memory and storage subsystems, interfaces, and
chip planning capabilities

•  Delivered via differentiated, integrated, and proven offerings

•  Formal Modeling of multi-physical systems and library
definitions

•  Includes requirement capture
•  Cyber Physical System formal verification and virutalization
•  Design Space Exploration

System
Engineering

© Alberto Sangiovanni-Vincentelli. All rights reserved. 91

Embedded
Software
Teams

Machine Code

Assembly
Synthesis & Verification

Programming
Synthesis & Verification

IP

D
rivers

Business Challenge: Tool Landscape

R
TO

S

Synthesis and Verification

Algorithmic UML

~$1.2B
CAGR 10%
(Windriver (Intel),

IBM, Microsoft, …)

Transistor

Gate
Synthesis & Verification

RTL
Synthesis & Verification

TLM
Synthesis & Verification

Hardware
Teams

IP

Physical Layout

~$6B
Cadence
Mentor

Synopsys
Magma

~$85M
CAGR 5%

(CoWare, Vast (Synopsys),
Virtutech (Intel),…)

Software
Entry

System Design
Entry

User
Specification

~$650M
CAGR >20%

(Mathworks, CoWare, …)
~$400M

CAGR 7%
(Telelogic IBM-Rational,…)

© Alberto Sangiovanni-Vincentelli. All rights reserved. 92

Final Words of Wisdom

© Alberto Sangiovanni-Vincentelli. All rights reserved. 93

The EDA Challenge: Software Architecture Today

© Alberto Sangiovanni-Vincentelli. All rights reserved. 94

The Swarm Opportunity
It’s A Connected World
Time to Abandon the “Component”-Oriented Vision

Moore’s Law morphs into Metcalfe’s Law:
Scaling is in number of connected devices, no longer in
number of transistors/chip

[J. Rabaey, MuSyC 2009]

The functionality is in the swarm!
•  There is power in numbers
•  Resources can be dynamically provided

based on availability

Supporting Theory

•  Provide a semantic foundations for integrating different models of computation
–  Independent of the design language

•  Maximize flexibility for using different levels of abstraction
–  For different parts of the design
–  At different stages of the design process
–  For different kinds of analysis

•  Support many forms of abstraction
–  Model of computation (model of time, synchronization, etc.)
–  Scoping
–  Structure (hierarchy)

Platform Based Design!

© Alberto Sangiovanni-Vincentelli. All rights reserved. 97

Building Operating Platform

The Swarm as a Platform

Home security/
emergency

Unpad Energy-efficient
home

Health monitoring Apps

Resources Sensors/
Input devs

Actuators/
Output devs

Networks
Storage

Computing

SWARM-OS

A mediation layer

Presenting a uniform API to Apps Developers (similar to trends in the Cloud)

The Swarm as a Platform

What makes SWARM-OS different (and hard)?
–  Distributed
–  Space/context-aware
–  Heterogeneous shared (and sparse) resources
–  Dynamic

•  Mobility, scope, resources, connectivity, …

Operating System (Broad Sense): Environment that
•  Presents abstracted vision of hardware to applications
•  Dynamically balances application needs versus available resources under time

and energy constraints

App1

App2 App2 App2

THE CLOUD

How to Deal with Dynamics
Structured versus ad-hoc?

THE SWARM

BOTH OF THE ABOVE!

[F. Bonomi, Cisco, “Cloud and Fog Computing”– EON June 11]

THE EDGE

Exploiting the Edge of the Cloud (or
The Fog*)
Packs plenty of computation,
communication, storage and energy
resources
Avoids the overhead of the Cloud

Not an “OS as usual”
Reactive or opportunistic emergence of
capabilities desirable

The Swarm Challenge(s)

Complexity

Energy

Privacy/
Security

Management Reliability

Performance
(Latency)

Complex distributed control systems
combining heterogeneous
components under dynamically
varying conditions

The SCIENCE-Application Dilemma

Raffaello Sanzio, The Athens School
© Alberto Sangiovanni-Vincentelli. All rights reserved. 103

Concluding Remarks

•  Challenging problems in many domains exist and are amenable to a
rigorous approach to design methodologies, models and tools

•  Model-based and Platform-based Design is a MUST

•  Control algorithm design is critical

•  Optimized Architecture selection is essential

•  Holistic view of the design problem must be established

•  Multidisciplinary approach needed: a challenge for education and
recruiting

© Alberto Sangiovanni-Vincentelli. All rights reserved. 104

