METHODS AND TOOLS FOR
THE DESIGN OF ELECTRONIC SYSTEMS

Alberto Sangiovanni-Vincentelli

The Edgar L. and Harold H. Buttner Chair of EECS
University of California at Berkeley

Co-Founder and Member of the Board
Cadence Design Systems

Outline

Introduction and Motivation using Automotive as Test Case
The V design process and Platform Based Design

The Role of Autosar

Semiconductor Design Economics

Extensions and Open Issues

THANKS TO BMW, Cadence, GM, Intel, Magneti Marelli, ST and UTC

2
© Alberto Sangiovanni-Vincentelli. All rights reserved.

The IT Platform of Today:
Mobiles at the Edge of the Cloud

Mobile

Terabytes per Month 92% CAGR 2010-2015

6,000,000 6.3 EB
3.8 EB
3,000,000
2.2EB
1 2EB
0.24 EB 0.6 EB
) -

2010 2011 2012 2013 2014 2015

Mobile traffic grew 2.6x in 2010 (nearly
tripling for 3 year)
The Cloud Driven by Tablets

The Emerging IT Scene: The Swarm at the Edge of the Cloud

Infrastructural
Core: the Cloud

Sensory
swarm

Mobile
access

Courtesy: J. Rabaey

1995 Question: What happens if sensors become tiny,
wireless, and self-contained?

Smart Dust Components

Laser diode
cess

Passive CCR comm.
WIEIWIS fpolysilicon
/Actireheanl steering laser co mm.
// IVEWIS fo ptical quality polysilicon

x Amnalog I/ O, DSP, Control
Sensor 2 COTS CIWIOS

WENSbulk, surface, ... / Power capacitor
Ivlulti-layer ceramic

Solar cell
CIVIOS or III-¥

Thick film battery
Soligel V,0,

1-2 mm

[Courtesy: K. Pister, UC Berkeley]

2010 outcome: The Unfullfilled Promise of
Wireless Sensor Nets

$12,000

Sensor
$10,000 Market

$8.000 What slowed them down?
’ 201 ?(V\;SN (Source: On World)
Marke = Cost savings not yet disruptive
$4,000 Projected, L
(zor(%?c < = Reliability |
$4.000 5010 WSN = Energy (battery life)
’ Market = Ease of use

$2,000 (Actual)

$-

Wireless Sensor Nets

What REALLY slows them down:
NO Economy of Scale

Stovepipes, Fragmentation, Non-interoperability,
Lack of Virtualization

Industrial automation,
smart buildings,
renewable energy, data
centers, ...

802.11x (WiFi),
802.15.4x (Zigbee),

802.15.1 (Bluetooth
TinyOS, eCOS, LiteOS, (LE)), 802.15.6

Contiki, Arch Rock (WPANSs), NFC, ...

Predictions

& EETimes

Wireless is everywhere; ignore it at your peril
Bolaji Ojo

(01/07/2008 9:00 AM EST)

URL: http://www.eetimes.com/showArticle.jhtml?articleID=205208620

The search is over for the next killer app. It is wireless, it is all around you,
and it will leave no sector of the global economy untouched.

« 5 Billion people to be connected by 2015 (Source: NSN)

« The emergence of Web2.0
— The “always connected” community network

« 7 trillion wireless devices serving 7 billion people in 2017
(Source: WirelessWorldResearchForum (WWRF)

— 1000 wireless devices per person?
(Courtesy: Niko Kiukkonen, Nokia)

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Vision 2025

Integrated components will be approaching molecular limits and/
or may cover complete walls

Every object will have a wireless connection, hence leading
trillions of connected devices,

- Collaborating to present unifying experiences or to fulfill common
goals

What will it Enable?
The Birth of the Swarm

CyberPhysical Systems
Linking the Cyber and Physical Words

[H. Gill, NSF 2008] Aka: The Internet of Things, Societal IT Systems, ...

CyberBiological Systems (BioCyber)
Linking the Cyber and Biological Worlds

§0‘ e N 37

Examples: Telesurgery, Body-area networks, health diagnostics, drug delivery, brain-
machine interfaces, ...

Towards Integrated Wireless Implanted Interfaces

Moving the state-of-the-art)/
in wireless sensing - - () ook

— regulator memory

|
< DSP

w ADC

electrodes

Power budget: m\Ws to
1 mW

[lllustration art: Subbu Venkatraman]

12 © Alberto Sangiovanni-Vincentelli. All rights reserved.

What does it mean to become Smarter?

Measuring, Monitoring, Modeling and Managing

‘ = Data collection

Sensing Metering

Real Time
Data Integration

Real Time
+ Historical Data
Data Modeling
+ Analytics

Visualization
+ Decisions

Data Integration

Comparison of historical
data, with newly collected
data

Data modeling and analytics
to create insights from data
to feed decision support and
actions

‘904N0S EJep pue Jasn 0} ¥0eqpas

{
e
=
@
L=
S
32
[}
)
sg
©
<
go
c e
o 2
8o
=
SO
o ®
o
x 2
gm
o »m
o O
Q.=
q)-.—'
c
L o
o
=

J0IABYSq 86UBYD 0} SUOIOB PUE SBANUSIU|

Source: IBM Corporate Strategy

Outline

Introduction and Motivation using Automotive as Test Case
The V design process and Platform Based Design

The Role of Autosar

Semiconductor Design Economics

Extensions and Open Issues

THANKS TO BMW, Cadence, GM, Intel, Magneti Marelli, ST and UTC

14
© Alberto Sangiovanni-Vincentelli. All rights reserved.

Design Chain Integration
Automotive Industry

Automakers

uppliers

& o=
S Dl '

LT

0%+ of revenue from

automotive

~15% of revenue from
automotive

2005 Revenue $1.1T

CAGR 2.8%
(2004-2010)

2004 Revenue ~$200B

CAGR 5.4%
(2004-2010)

2005 revenue $17.4B

CAGR 10%
(2004-2010)

zir1e]l Sofryyzirs

Software $ Other $ Software $

2%
Other $ > Electronics $ 8% 13%

9% 13%

T
N
(=]
[=d
[=2]
(=]
+
~
(]
T
o
(&)
L3
o
n
Q
=
-
=
[=d
(=]
-

$1182 (+196%)
50 ECUs (+150%)

Subsystem Controls & Features Forefront of Innovation

2.

Challenges in Automotive Electronics Development

* Increasing functionality:

BRlely (active/pas<lve) Electronic Share (value):
Fuel efficiency (hybrid) :

2004: 20% -> 2015: 40%
Reduced emissions (less CO2) - ’
Software Share (value):
Comfort

2000: 4.5% -> 2010: 13%
Reduce time to market:
2000: ~ 20 — 26 months
2010: <18-20 month

Increasing value:

* Increasing quality:
— 2000: ~1000 - 10ppm (per ECU)
— 2010: ~1 - Oppm (per ECU)

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Convergence Towards Active Safety

Pedestrian
Protection

Pre-Tensioner
- =,

LateralAir

———
Integrated

Vehicle Stabilit
Active Front

Steering

Electronic ¢ ?'
acive Stabity g <

Electric Suspension _

Steering

© Alberto.

From federated to integrated architectures

Today:
Federated Architectures

Each time a new function is required, the OEM starts a request to
suppliers for a new ECU (an integrated HW/SW device realizing the
function) to be integrated on the existing networks

The device is developed by the supplier with its own choice of HW,
RTOS, device drivers and communication layers (with some
standardization)

The result is

 Proliferation of ECUs (reaching 100)

+ Complex distributed architectures with the need of high
bandwidth and therefore multiple networks and gateways
Complex functional and not-functional (timing) dependencies
across the network, which OEMs struggle to control
Missing opportunities for common set of libraries and (sub)
functions
Limited standardization, flexibility and extensibility
Limited control on the execution platform by OEMs

f

- -

ot . RS JEENR T A e
WU T S e s e W g

The Distributed System Problem:
Typical Car Electrical Architecture

R e
| 1 .
§ n]

|
LS

@ “:__:j; ;Eé&%'—

’F'r—ﬁ--i

Fighting Obsolescence:

How to harmonize fast evolving electronics with products whose
lifetime is >10 years

Decouple Function and Architecture
Bring back to OEM design control
Flexibility and Extensibility of Architectures

Manage a Complex Supply and Design Chain

Place your bets so that you leverage maximally your core competence
while leveraging as much as possible qualified PARTNERS

21 © Alberto Sangiovanni-Vincentelli. All rights reserved.

From federated to integrated architectures

T 5. The execution architecture is completely selected and planned by
omorrow . the OEM. OEMs are free to standardize HW, drivers, RTOS and

Integrated Architectures communication layers, leveraging competition among suppliers

Each time a new function is required, the OEM starts a request to
suppliers for new functional content (SW) to be integrated on the
existing platform

Device
Drivers

The challenges are:

* Moving from specifications of ECUs with message interfaces to
the specs of SW components

« Standardize interoperability among components
« Standardize access to the platform services

== + Define models that allow to predict the result of the composition

(functlonal and not-functlonal)

23

&

-

On a hot summer trip to Cape Cod. the Mills
family minivan did a peculiar thing. After an
hour on the road, it began to bake the
children. Maom and Dad were coal and
comfortable up front, but heat was blasting
inte the rear of the van and it could not be
turned off.

Fortunately far the Mills children, their father
— W Nathaniel Mills |11, an expert on
computer networking at | B.M. — is
persistent. Vwhen three dealership visits,
days of waiting and the cumbersome
replacement of mechanical parts failed to fix
the problem. he took the van out and drove
it until the oven fired up again. Then he
rushed to the mechanic to look for a
software error

The Larger Picture

What’s Bugging the High-Tech Czc

Additionally, the study feund that althe
errors cannot be removed, more than
took two minutes for them to hook up i
diagnostic tool and find the fault,” said
Mills, senior technical staff member at
1.B.M s T.J. Watson Research Center
Hawthorme, MN.Y. "l can almost see the
software caode; a sensor was bad "

Indeed, the hiah-tech comfort swstem
confust
the 20¢
sending
freezin

loyal ve
up. thir
billion,

-
-

Toyota Problems
The Washington Post, March 7

Attention has been focused on mechanical and electronic issues with
Toyotas, but another possible cause of the runaway acceleration maybe a
software glitch. Each vehicle contains layers of computer code that may
be added from one model year to next" that control nearly every system,
from acceleration to braking to stability. This software is rigorously
tested, but t is well-known in our community that there is no scientific,
firm way of actually completely verifying and validating software.

NHTSA To Probe Reports Of Sudden
Engine Stalls In Prius Hybrids

The National Highway Traffic Safety Administration
said yesterday it is investigating reports that a software
problem can cause the engine of Toyota's Prius hybrid
to stall without warning at highway speeds. No
accidents have been reported thus far.

NHTSA has received 33 reports of stalling in Prius cars
from model yvears 2004 and 2005, according Lo the
agency's initial report. More than 85 percent of the cars

that stalled did so at speeds between 35 and 65 miles

per hour.

© Alberto Sangiovanni-Vincentelli. All rights reserved.

It’s Not Over Yet!

THE WALL STREET JOURNAL.

‘WSJ.com

BUSINESS NOVEMBER 25

5,2010

Boeing 787 Is Set Back as Blaze Forces Fix

3y PETER SANDERS

) ”

emssssnsss "
-

-,?
Vfo S

24 © Alberto Sangiovanni-Vincentelli. All rights reserved.

GM | The refuse-to-collide car!
— 360" Safety with
Integrated Sensor Strategy
Forward Vision System
— Lane tracking
Sgl‘.’":'?“gf — Object detection
i i — Far IR capability

Long-Range
Scanning
Sensor

Sensors

Rear Vision System Enhanced
— Object detection Digital Map

Digital Short Range
— Far IR capability System

V2V communication

25 © Alberto Sangiovanni-Vincentelli. All rights reserved.

CMOS mmWave Circuits and SoC: 60GHz Today

Multiple 60GHz standards complete

WirelessHD products available
— SiBeam (BWRC startup)

— Wall-powered

— Dissipate <2W

A $10 Radar is a possibility! i

60GHz link in mobile applications? 1

— Energy-efficiency is key: <~250mW transceiver

— Solution must scale to 10+ Gb/s

— Low cost = Single chip RF+phased array+BB+BIST

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Integration Challenges: Plug and Play?

27 © Alberto Sangiovanni-Vincentelli. All rights reserved.

The Design Integration Nightmare

Specification:

Implementation:

P. Picasso,
Blue Period

P. Picasso
“Femme se coiffant”
1940

28 © Alberto Sangiovanni-Vincentelli. All rights reserved.

To Enable Success...

We need an integration platform

« To deal with heterogeneity:
— Where we can deal with Hardware and Software
— Where we can mix digital and analog, cyber and physical
— Where we can assemble internal and external IPs with different physical domains
— Where we can work at different levels of abstraction

 To handle the design chain

 To support integration
— Tool integration
— |IP integration

The integration platform must subsume the traditional design flow,
rather than displacing it

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Outline

Introduction and Motivation using Automotive as Test Case

The V design process and Platform Based Design

The Role of Autosar
Semiconductor Design Economics

Extensions and Open Issues

30
© Alberto Sangiovanni-Vincentelli. All rights reserved.

Automotive V-Models: a ‘Linear’ Development Process

Sub-System

-~ Car System

Development of = ﬁ - oyster

Car System _,___J Sign-Off!
N J-

Development of ‘jE

w Sub-System Sign-Off!
Mechanical Part (s)

ECU |
Development

ECU Sign-Off!

ECUSW —
Development

ECUHW —
Development

ECU SW Implementation

Vertical Design Chain and Design Error Costs

DAIMLERCHRYSLER @ m

Driving Machine o
\ ' TR STAGE

Requirements
PSA PEUGEOT CITROEN l

Software Design

Coding

\ Unit Test

Accept. Test

=
CONT :

“:ﬁEIE-II Visteon

Maintenance
EeEe— Tier1 Supplier
R BOSC RELATIVE COST TO REPAIR

Sy ETNAS

freescale-

Supplier

OEM Design Challenges

Distribution:

Functions are distributed over several subsystems/
components (M/E/E)

Exploration of solutions involve several subsystems
Integration is very expensive
Tool support is critical

Packaging:
— space for electronics in the car is reducing

— Functional integration might be different from functional
one

Enabling OEM and Tier1 Co-Design Space Exploration and
Co-Verification

In-Vehicle Network
Virtual

OEM System System : " Intelﬁr/iitlon - Tierl

i temo
Integrator Constraint Sys
: ArchltectIn Vehicle Networ! Software

Simulation and eloper

Constraint Constraint Verificatio
Decomposition

.0

R In Vehicle Network "~.,

\ Model Refinement V
Network \/

Configuration sinkProcD Sub-Sys‘;em

Average delay per frame
4—Hr%ﬂ. —
or all Write & {ransactions 1rom source

Process "10" (t_isiq) to sink Process "8" (t_idct)

Derivative design

 The derivative design approach:

— Every two-three years a new generation of products is designed

* Product generations are conceived to accommodate the specification of all customers for
the next years

— For each commitment, the electronic control unit is obtained by derivation from the
current generation
* In the derivative design approach, reuse is extensively employed to
minimize cost and development time
— for each class of applications, products are variants of a same originating design

Steer C. ACC ABS

OEM Supplier

Technology Technology
DB 3

:'D \ .8 -.-- -
= - ©Alberto Sandovannl Vlncem‘elll Allrights reserved. -r

Platform Models for Model Based Development

Development of
Distributed System

Distributed
System
Requirements

Distributed
System
Partitioning

Sub-Systems Model
Based Development

Sub-Systems
Requirements

Network Protocol
Requirements

Sub-System(s)
Sign-Off!

Distributed
System
Sign-Off!

Sub-System(s)
Integration, Test, and
Validation

Virtual Integration of
Sub-System(s) w/
Network Protocol, Test,
and Validation

Sub-System(s)
Implementation Models
Sign-Off!

Network
Communication
Protocol Sign-Off!

Platform Based Design

A “meet-in-middle” design method

— Platform: an abstraction layer that hides the details
of several possible implementation refinements of
the underlying layers

Function model:
— abstraction of what the system is supposed to do

Architecture model:

— lower level of abstraction describing how the system
realizes the function

Mapping:
— Process by which function and architecture meet

— Propagates constraints from above to meet performance
estimations from below

— Phases: Allocation, binding, scheduling

Platform
Mapping &
Constraint
Propagation

Performance
Estimation &
Platform
Design-Space
Export

Nexperia™ Hardware Architecture

MIPS
=

ﬁpplication%\
Applicatign Instance

L) C)
latform Instance
Architectu

M

Separation of Concerns

Behavior Components Virtual Architectural Components

CPUs Buses Operating

\ / Systems

n

/®\

i
=

Evaluation of
Architectural and
Partitioning
Alternatives
]

Implementation RM

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Development Process

Platform-Based Design

e <

Application Space Architectural Space

Application Instance Platform Instance

Platform Platform
Mapping Design-Space
Export

Platform: library of resources defining an abstraction layer with interfaces that identify legal connections

* Resources do contain virtual components i.e., placeholders that will be customized in the
implementation phase to meet constraints

* Very important resources are interconnections and communication protocols

Fractal Nature of Design

Platform Platform Design-Space Export
Instance
{eee———
Function Platform
Space

Function / ‘. Platform Instance

Mapped (Architectural) Space

Instance

Function Platform
Space (Architectural) Space

Function Platform Instance
Instance

Design Methodology

c
o
=
©
(o))
©
Q.
o
S
o
(2]
]
=
©
=
pr=)
[72)
c
O
(&)
£
.
=
it
L
o

Vehicle level

Sub-system levei

ECU node
level

Silicon level

Resources

Resources

Resources

Resources

Topologies

Domain Topologies

ECU Design

HW-Components

|
Solution Patterns

Solution Patterns

Solution Patterns

Solution Patterns

Functional
Networks

Functional
Sub-Nets

Functions
on ECUs

Functions
(Physical Layer)

Functions

Functions

Functions

Functions

uoI399]9S wuoye|d pue uonebedolq juawalinbay

Design Space vs. Time-to-Market in Platform Based Design

 Platform limits the design choices

* Designer only needs to analyze alternatives that are implemented by the
platform

Initial Model Initial Model
~

N
>
AR .
Functional Functional
Layers fEanh Layers
% [4
. -y Platform
T
F \ Y .

3
,-—lh‘ Y
i f e
e > J <8,
o v | ‘- e
A —_ H N

HE N H
i Possible Implementationd Possible Implemerntations
-t
= - > [yl
Design Space ' Design Space

SW and HW
Layers

SW and HW
Layers

AUTOSAR initiative

Each ECU may include functionalities developed by different suppliers and as well
as the OEM

Started as a partnership between leading European OEMs and Suppliers for
— establishment of an open standard for automotive E/E architecture

— a basic infrastructure for the management of functions within both future applications
and standard software modules

Objectives
— standardization of basic system functions and functional interfaces
« modularity and scalability
— the ability to integrate and transfer functions
+ transferability and re-usability
— substantially improve software updates and upgrades over the vehicle lifetime

The AUTOSAR scope includes all vehicle domains

© Alberto Sangiovanni-Vincentelli. All rights reserved.

AUTOSAR Architecture

SW-C Description SW-C Description SW-C Description SW-C Description
[— [— [—

[
’
| \ N | S

- - onstraint
escription
Descriptions l

ECU1

[re]
[sasicsoftware |
!

A fundamental concept of AUTOSAR is the
separation between:
» (functional) application and
 infrastructure

Function Space
Function Instance

"‘ Common Semantic 0O

-
Platform Instance

Platform
(Archifectural) Space

AUTOSAR Architecture and Methodology

ECU Descriptions @ ‘

Deployment tools

- |

System
Constraint
Description

u
D-MS UV
soLnvy
o
n
A~
v o
X
=

Functionality is described as a logical
network of “Software Components” (SW-C)

The ”Virtual Functional Bus* validates the
interfaces before software implementation.

Mapping of “Software Components” to
ECUs and configuration of basic software.

Automatic generation of configuration files
for building the set of software applications

The AUTOSAR Platforms introduces the
“Run Time Environment” and “Basic
Software” to abstract the physical network
topology and hardware

AUTOSAR Methodology

SW-C sSw-<C sSw<C sSw-C
Description Description Description

Tool supporting deployment
of SW components L

‘Ecu System Constraimt
Descriptions Description

AUT OoOSAR

Standardized description templates for
application software components
(interfaces and BSW requirements)

| Standardized exchange formats
| and methodology for component,
ECU, and system level

Tools for
- support of component mapping

Standardized Basic Software
(BSW) architecture, detailed
specifications for implementation
and configuration of BSW

Control synthesis - algorithm development

Characteristics of the overall electronic control system

— Multi-rate control system composed of nested control loops that interact with other
embedded controllers
+ frequency and phase drifts between sampling frequencies
« event driven actions
« asynchronous communication on the network
— Implements both continuous and discrete functionalities
* more discrete than continuous
« control algorithms may have many operation modes
— nominal operation modes
— safety, protection and recovery modes
+ computations performed at transition time are very important
— switching conditions
— controller initializations

— A large part of algorithms devoted to diagnosis, fault tolerance and safety
Complexity: more than 150 I/0O and 200 algorithms in engine control units

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Control synthesis - algorithm development

Electronic control units do not implement control and estimation algorithms only

* Fault tolerance
— recovery algorithms that guarantee minimal operability under fault conditions

 Diagnosis
— Diagnosis specs, enforced by OBDII (On Board Diagnosis Il - USA) and EOBD
(European On Board Diagnosis EU), require that

» every fault, malfunction or simple component degradation that lead to the production of
pollutant emissions over given thresholds should be diagnosed and notified to the driver

« Safety

— relevant to vehicle longitudinal and stability control, and next-generation X-by-wire
systems
* e.g. brake-by-wire and steer-by-wire

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Specification for hw/sw implementation

The description of the hw/sw specification have to

— include all the details for a correct implementation of the algorithms
« complete functional description
« computation accuracy bounds

— value domain: computation precision (fixed-point arithmetic), threshold detection, ...

— time domain: latency, jitter, delay in event detection, ...
« execution order, synchronization and communication
- priorities in case of shared resource (cpu, communication,etc)
- data storage requirements

— be model-based
— be suitable for automatic code generation
— be compliant to AUTOSAR middle-ware RTE layer specification

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Specification for hw/sw implementation

Description of the implementation specification (hybrid formalisms)

Methodologies and tools for the definition and validation of implementation

constraints
modeling of the degradation due to the implementation of algorithms on bounded
resource platforms
definition of acceptance criteria for the hw/sw implementation
exploration of hw/sw implementation requirements and constraints
validation of candidate implementation platforms described in abstract form

Tools supporting the specification for hw/sw implementation have to
— allow the description of the implementation constraints and acceptance criteria
— be efficiently integrated with software development tools
— either provide automatic code generation or be linked to auto-coding tools

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Platform Based Design

Exploring Topologies

e ¥ o ke

Networks Solution
Patterns gepolody

- Evaluation

Mapping and Iteration

Solution n+1

= N s

Platform Based Design

Exploring Topologies

Zaat w ezl

Networks Solution : Resource
Patterns P olodi

-_ Evaluation
Mapping and Iteration
Solution n+2
B
EE =
: ' = == '
mE =

Design Flow

Appllcatlon

Throttle
Actuator

Architecture

Ecu, | CAN: & Ecu,

ECU, CAN,

ECU,

Mapping

Implementation

Allocation
Priorities

Periods
Activation Model

MBD: CODE GENERATION

e.g. Mathworks RTW, dSpace TargetLink

High level input models)
(Simulink, Modelica, ...) : & - 4

Direct code generation
- No significant restructuring

- Low level optimization S~ _—

- Manual partition

Target code L;‘u """ JJ

LEARNING FROM LOGIC SYNTHESIS

High level function model

T
t,

tjt+fgh [———
N

at,+c

’_+

d+e b+h

restyucturing

d e’

Function model °

in netlist

Gate library (platform)

- Separation of func and arch
- Common language for func and arch
netlists (Boolean logic, NAND2 gate)

- Automatic mapping

Technology Mapping

<_‘m”“””_>

Mapped design

0>
-

=0 D>
= D

> =
B - 2

—>

inv(1) nand2(2)

nor(2)

E aoi21 (3)

xor (5)

£55 Eo

F

nand3 (3)

0ai22 (4)

nor3 (3)

i

restrucfuring

Gate library in
netlist

OUR SOFTWARE SYNTHESIS FLOW

Function Model Architecture Platform
- Stage 1: Common modeling 4 E
F |4 —> domain (CMD) selection <
[Common semantics for func and arch e A o r

Primitives to decide abstraction level

restructuring

restructuying

E1 E2 E3
| | |

Architecture Model

e in CMD

Function Model in
CMD Stage 2: Automatic mapping

Tl T2 T4

[° —> Stage 3: Code generation

I El T E2

Mapped Design in
CMD

B1 |

CHALLENGES IN THE FLOW

e Stage 1: Common modeling domain selection
= Various models of computation exist in system level.

= Trade-off between expressiveness and ease of manipulation when selecting the common
semantics.

= Trade-off between granularity and optimality when selecting the primitives.

* Stage 2: Automatic mapping
= Various constraints and objectives.
= Domain-specific algorithms may be used albeit not necessary.

e Stage 3: Code generation

= Communication interface synthesis maybe needed to guarantee correct semantics.

MODELING DOMAIN

* Semantic domain Q - the language
= Formally defined as trace-based agent algebra [1].
= Q.D: domain of agents - “building blocks”.
Q.A: master alphabet — “set of all signals between blocks”.
Q.a : Q.D -> 224, each agent has an alphabet — “each block has a set of signals”

Operators: renaming, projection and parallel composition — “rules to initialize and
compose blocks”

* Primitives P —abstraction level
= Primitives are a set of agents in a semantic domain, P Q.D. C
= No agentin P can be constructed from other agents in P. -

* Modeling domain C,(P): all agents constructed from primitives P by applying
operators in semantic domain Q.

[1] R. Passerone, Semantic Foundations for Heterogeneous Systems. PhD thesis, University of California, Berkeley, 2004.

COMMON MODELING DOMAIN (CMD)

A modelis an agent in the modeling domain.
* Function model f Earchitecture modela A.S
* B(s) denotes the behavior of model s.

* Modeling domain MEis a commdd modeling doffaain between f akd a if
there exists f* M and agenMosoteniddffi’) B(f) and B(a’) B(a).

Behavior of original function ~ @rchitecture model ain A
model fin F

Behavior of architecture
Behavior of function modegl model a’in CMD
f’in CMD . :
» fand a may have different semantics or
abstraction level — hard to explore o.

* P and a’ in CMD — mapping space A can
be formally explored.

* A C o — mapped behavior is legal.

lllustration of mapping space in CMD

CMD SELECTION

* Ancestor-child relation between modeling domains.
= Define ®(M)={B(s) | s C,(P) }& set of all agent behavior.
" M, =Cq (P,)is the ancestor of M, = Co (P,) iff ®(M,) ~ ®(M,). C
e Search CMDs on modeling domain relation graph (directed edges representing

ancestor-child relation).

Common Ancestor Modeling Domain
of Fand A

“~_ expressive but too
complex to explore

of
0de! Trons!
M CMD Selection

Original Function ™ . . :
Modeling Domain may lose behavior but Original Architecture

tractable mapping Modeling Domain

CMD SELECTION CONTD.

* Two design aspects when selecting CMD C = C,(P)
= Semantics — decided by semantic domain Q
o Expressiveness vs. analyzability, e.g. dataflow vs. static dataflow.
o May first choose semantic domain for common ancestor domain D, then refine it in C.
= Abstraction level — depends on primitives P
o Explore different abstraction level by choosing different primitives.

o Carried out when selecting C as child domain of D.

= For both, it is a trade-off between the size of mapping space and complexity.

COVERING PROBLEM AFTER CMD SELECTION

e Symbols:
= Function primitive instances : F=0f./5.-->.0,)
= Architecture primitive instances : A=(a.a,,....a,)
= Mapping decision variables : dﬁ,aj
= Architecture selection variables: <
= (Quantities (power, area, bandwidth...): Qa; o Qa-,t

= General covering formulation

e Ve F, Z dfi,aj =1

Function covering constraints @3 €A
vfz Efaaj é'Afi'. dfi-.aj =0
. . . ¢ Va; € A, Z df,.a; = Sa;
Architecture selection constraints f.eF

Vfie F.a; € A, df a, < Sa,
Quantity constraints |«<—— H,;({dy, o, } {Q7f..a,.t}> {Sa, }, {Qa,,t}) <O
Objective functions |<«—— min Gi({dy, . a;} {Qri.a;.t} {Sa, }> {Qa,.t})

CASE STUDY: ACTIVE SAFETY VEHICLE

Functional correctness and cost-efficiency are both important for active safety
applications.

 Function and architecture mismatch.

Function model Architecture platform
e synchronous model. e clock drift between distributed ECUs,
* no message loss or duplication. asynchronous communication.

e data loss and duplication exist.

STAGE 1: CMD SELECTION — COMMON SEMANTICS

1. Process Networks (PN): expressive but
high modeling complexity. Need
transformation of both func and arch
models.

2. Loosely time triggered architecture
(LTTA): transformation of func model to
\ support asynchronous communication.

3. Svnchronous reactive (SR):
transformation of the arch to support
synchronous communication, by applying
following protocols.

* Clock synchronization.

» Constraints on task periods.

CMD Selection

A=C [17a (Pa)

Original Function
Modeling Domain

Original Architecture
Modeling Domain

STAGE 2: COVERING PROBLEM

f Functional Model \

signe'®

f Architectural Model \

ECU,

~ BUS, ECU,

BUS,
ECU, [» ECU,

Primitives: tasks, signals /

\Primitives: ECUs, messages on buses /

o

4 Quantity constraints and\ / .] Variety of algorithms
objective functions Covering variables - mathematical programming
- End-to-end latency N i Task to ECU - heuristics
- Utilization - Signal to message - meta-heuristics
- Extensibility i Messag? S.EIECUM - machine learning
/ - Priority .

- Period

STAGE 2: COVERING PROBLEM CONTD.

* Worst case analysis for CAN systems with periodic tasks and messages.
* A complete formulation with all design variables does not scale for industrial size problems.
* We start with tackling following sub-problems.

Problems Period Allocation & Priority Extensibility
Synthesis [1] Synthesis [2] Optimization [3, 4]

Variables Period Allocation Allocation
Priority Priority

Objective Latency Latency Extensibility

Approach Geometric programming (GP) Mixed integer linear Multi-step Heuristic

programming (MILP)

[1] “Period Optimization for Hard Real-time Distributed Automotive Systems”, 44th DAC, 2007.

[2] “Definition of Task Allocation and Priority Assignment in Hard Real-Time Distributed Systems”, 28th RTSS, 2007.
[3] “Optimizing Extensibility in Hard Real-time Distributed Systems”, 15th RTAS, 2009.

[4] “Optimizing the Software Architecture for Extensibility in Hard Real-Time Distributed Systems”, TlI, 2010.

ALLOCATION & PRIORITY SYNTHESIS (MILP BASED)

(Constraints:) [Desi I
End-to-end latency on given paths gn inputs:

e Task t tion ti
Utilization bound on ECUs and buses T:zk ZV:JSSiCsZT e;(ﬁ(;léson me
Objective: o

Archi I
\.Sum of latencies on given paths J rchitecture topology, bus speeds

\ /
Heuristic: Stepl: . :
Task and sienal briorities Synthesize task allocation
ENa’ P (using MILP)

Step2:

Synthesize signal packing, task and
message priorities

(using MILP)

ALLOCATION & PRIORITY SYNTHESIS RESULTS

ECU1 ECU2

e . 4

Function Model
- 41 Tasks
- 83 Signals

- 171 paths
A\

After mapping

- Meet allyg p ts

- Total latency 36486ms in manual
design to 129

ECU20

F

ECU21
=

ECU61 ECU62
= —

Vv

Architecture platform
-9 ECUs
- single bus

EXTENSIBILITY OPTIMIZATION (MILP AND HEURISTIC)

[

Initial Task and Signal
Priority (Heuristic)

]
)

Initial Task Allocation
(MILP)

Task Re-allocation

(Heuristic for incremental

changes)

A

No

Signal Packing and
Message Allocation

Task and Message
Priority Assighment
Iterative Heuristic

Reach Stop
Condition?

EXTENSIBILITY OPTIMIZATION RESULTS

e Same active safety vehicle as in allocation and priority synthesis.
* Single-bus and dual-bus options.
* Parameter K to trade off between extensibility and latency.

 Compared with a simulated annealing algorithm: maximum extensibility within 0.3%,
runtime 0.5 hour vs. 12 hours.

¢ 2 buses case ¥ 1 bus case
30000
)
€ 25000 = K=0
- K=0.1 =
> 20000 1 bus case manual o) :0 mK=0
c = 2 =U. m,_
@ 15000 K=0.5 K=0.1
©
— 10000
I k=05 K=0.2
B 5000
|_
0
16 17 18 19 20 21 22 23 24 25
Task Extensibility

CASE STUDIES IN OTHER DOMAINS

e Building automation domain [1]

= Similar semantics as in automotive — synchronous function model and LTTA architecture
platform.

= Also choose SR as the common semantics, however additional timing constraints are added

to the architecture for preserving synchronism, as we consider the physical interaction with
environment.

= Mapping leverages COSI for communication network synthesis.
 Multimedia domain [2]

= JPEG encoder application. Intel MXP architecture platform.
= Semantics for both function and architecture are dataflow.

= Challenge is to choose the proper abstraction level. Different levels are explored and
compared through choices of primitives.

[1] “A Design Flow for Building Automation and Control Systems”, 318t RTSS, 2010.
[2] “UPEG Encoding on the Intel MXP5800: A Platform-Based Design Case Study”, ESTIMedia’05, 2005.

MATHEMATICAL PROGRAMMING APPROACHES

Extensibility to add additional constraints
for system-specific situations

Design Space

- Allocation

- Priorities

- Periods

- Activation Model

J

Mathematical Programming
Based Approaches
Geomatric Mixed Integer
Programming (GP) Linear Programming (MILP)
Period Synthesis Activation Allocation and Priority
Model Synthesis Synthesis
DAC 2007 DATE 2007 RTSS 2007
Best Paper RTAS 2007 Best Paper
Best Paper

2009 IEEE Trans on Industrial Informatics (best Paper); 3 Invited Proc of the IEEE papers

72

CONCLUDING REMARKS

e Software (and hardware) synthesis based on a formal mapping procedure

Formally determines the semantics and abstraction level of the design by choosing a
common modeling domain.

Automatic and optimal mapping algorithms.

Generality — applied to various domains with different models of computation as well as
different implementation platforms. Domain-specific mapping algorithms may be leveraged
in the framework.

Optimality — trade-off between complexity and mapping space through the selection of CMD.

Reusability — common semantic selection requires designers’ expertise. However proper
selection is typically general for particular domains.

Magneti Marelli Results

Model and Platform based design methodology successfully implemented
in Magneti Marelli Powertrain leading to:

Significant increase in application software productivity up to 4 time faster than in
the traditional hand-coding cycle.

The model compiler has been applied only to models mapped in the application

software partition with a 90% coverage.

Virtually bug-free application software 100% compliant to executable specifications.
No need for unitary verification tests, already performed in a simulated environment
and components already quoted in terms of CPU load with the PIL environment.

Automatically generated software components created for GDI project have been re-
used by other projects (MPI, Diesel) currently in production.

Heterogeneous models

+ separation between the functional model

and the architecture model

System-level Functional

design

UML/SysML AD

Functional design

Component model(s)

Architecture selection

Module design

Architecture model(s)

Function-to-Architecture
(deployment) model(s)

AUTOSAR

Behavioral model(s)

Task model(s)

Code implementation

Outline

Introduction and Motivation using Automotive as Test Case

The V design process and Platform Based Design

The Role of Autosar
Semiconductor Design Economics

Extensions and Open Issues

76
© Alberto Sangiovanni-Vincentelli. All rights reserved.

The Story of EDA: The Quest for the Next Level of Abstraction

abstract
: RTL

abstract

: cluster

.
H
.
.
.
N
.
.
>_ o
N
M
.
.
.
N
H .
. .
. .
. .
N N
. .
. .
=) Ak = 5
ey Eama . .
- vall & 15 - .
AR et [} £ il
Sl W1 ;
) 9 i . "
-t B e D o
Tk . H
.

77 © Alberto Sangiovanni-Vincentelli. All rights reserved.

Evolution of the EDA Industry

Results

(Design Productivity)
A

A :
£ s Synthesis: Cadence, Synopsys

PRy

1985

" Schematic Entry: Daisy, Mentor, Valid

. Transistor Entry: Calma, Applicon, Computervision

EDA Tools Evolution

(McKinsey’s S-Curve)

78 © Alberto Sangiovanni-Vincentelli. All rights reserved.

Moore’s Law

Intel486 ey

Pentium
Pentt|umPr5>
Pentiumlll “®

INENOSCIENCE:

(7))
—
)
]
)
=
o
C
©
=
g
)
N
7))
)
—
=)
e
©
)
LL

1nm ‘ 7 - :
1970 980 1990 2001 2010 2030 2040 {015)0)

Bipolar, NMOS CMOS ?

The Magic of Moore’s Law

» lime
Silicon Process 1.594 1.0y 0.8y 0.6y 0.35u 0.25u 0.18p
Technology P

Intel386™ DX |
Processor

Intel486™ DX
Processor

Pentium® Processor

Pentium®Il, Il
Processors

Pentium® 4

Evolution of Digital Design Productivity

DT Productivity
Impact

Gates Per
Designer per
Year

Description

Design
Technology

4,000

In House Place
and Route

5,550

Automated Block Placement and Routing

Tall Thin
Engineer

9,090

Engineer can purse all tasks to complete a design block from RTL to GDSII

Small (2K-
75K) Block
Reuse

40,000

Blocks from 2,500 —-74,999 gates

Large (75K-
1M) Block
Reuse

56,000

Blocks from 75,000-1M gates

IC
Implementation
Suite

Tightly integrated toolset that goes from RTL synthesis to GDSIII through IC palace and route

Intelligent Test
Bench

RTL verification tool (cockpit) that takes and ES-level description and partitions it into verifiable blocks, then
executes verification tools on the blocks, while tracking and reporting code coverage

ES Level
Methodology

Level above RTL, including both HW and SW design. It consists of a behavioral (where the system function has not
been partitioned) and an architectural level (where HW and SW are identified and handed off to design teams).

Very Large
(>1M) Block
Reuse

Blocks >1M gates; intellectual-property cores

81

© Alberto Sangiovanni-Vincentelli. All rights reserved.

Source: J. Weekly, Synopsys

How did we cope?

82 © Alberto Sangiovanni-Vincentelli. All rights reserved.

The Full Day: the Maturity of EDA

83 © Alberto Sangiovanni-Vincentelli. All rights reserved.

Challenges and Trends

Prototype

(LTI YIS) | S S | | M| M S B

Design Costs

T T T 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

.35um 0.25um 0.18um 0.13um 90nm

5}

$1,500,000

$1,000,000

$500,000

|

180

Engineering Months

Increased

SW Effort
Mask Costs

Mask Cost

1 B

et . m Technology (nm)
Cell-Based ASICs prohibitively expensive for - Re-use strategy at all levels

all but highest volume applications « Higher level of abstractions

84 © Alberto Sangiovanni-Vincentelli. All rights reserved. » Software !l

0.18

N
(6]
o

Process Geometry

Definitions

« ASPP: Application Specific Programmable Platform

— Instruction set and architecture are customized to application
— Application customers help providing specs

« PSPP: Platform Specific Programmable Product

— ASPPs: End-user/designers will only program the part

— PSPPs: End-user/designers will partially configure/design the hardware then
program the part

— Will there be more PSPPs than ASPPs in 20107

85 © Alberto Sangiovanni-Vincentelli. All rights reserved.

Questions

What applications/businesses will be building ASICs instead of PSPPs and ASPPs?

Bleeding edge performance will be less of a factor for a larger percentage of
applications moving forward: audio, video?

Where will cost be less of a factor than super-optimized performance?

Will an optimized PSPP be more timely, cost-friendly, and even higher in performance
given that it has been optimized for speed for a particular application area/platform?

Who can afford to design a completely non-reconfigurable, non-programmable ASIC?

© Alberto Sangiovanni-Vincentelli. All rights reserved.

The Story of EDA: The Quest for the Next Level of Abstraction

abstract

abstract

RTL
; s . cluster Clusters
: abstract :

: cluster

L] i

= ®
4R & y\ .
2 \ = "
©@ ik .
e M .

87 © Alberto Sangiovanni-Vincentelli. All rights reserved.

The Design Object

Rt) Sty S

| e P Y PR

e

14%! 1]
1| TP T
’

88 © Alberto Sangiovanni-Vincentelli. All rights reserved.

 Assemble Components
from parameterized library

* Including:
Configurable processor core
Memories (RAM, ROM)

Special-purpose standard
blocks (ASSPs)

Glue Logic

 Third-party special-purpose
logic/MEMS/MEOS

* Integrate using standard
approach to on-chip
communication

Developing a New ASIC

VERY EXPENSIVE PROPOSITION

Core IP (microprocessor) may cost more than 4 Billion (see NYTimes article on
AP4, the new core by Apple)

NRE are from 8 to 10 Million each chip
Trend is to leverage maximally platforms: few cutomized parts

More important to team with right IC maker and select the right architecture and
design tools to support the application

89 © Alberto Sangiovanni-Vincentelli. All rights reserved.

Cadence EDA360 Vision
EDA360

Realization

SoC
Realization

Silicon
Realization

90 © Alberto Sangiovanni-Vincentelli. All rights reserved.

* Architecture, design, integration, and verification of
complex electronic systems

* Includes hardware-software design and verification,
system modeling, verification IP, and services

* Delivered via open, connected, and scalable offerings

* Design IP and Services with technologies for
architectural exploration, integration, and verification of
complex SoCs

* Includes memory and storage subsystems, interfaces,
and chip planning capabilities

* Delivered via differentiated, integrated, and proven
offerings

« Design, verification, and implementation of complex
designs across silicon, package and board

* Includes comprehensive flows for low power, mixed
signal, verification, large scale/GHz, and 3D-IC/SiP co-
design

* Delivered via intent, abstraction, and convergence in
flows

Cadence EDA360 VlSlon ZZ;;:;:ol\:zdeling of multi-physical systems and library
_— Re\"s'ted Includes requirement capture

Cyber Physical System formal verification and virutalization
Design Space Exploration

Engineering Architecture, design, integration, and verification of complex

electronic systems

Includes hardware-software design and verification, system
modeling, verification IP, and services

Delivered via open, connected. and scalable offerings

Design IP and Services with technologies for architectural
exploration, integration, and verification of complex SoCs

Includes memory and storage subsystems, interfaces, and
chip planning capabilities

Delivered via differentiated. integrated. and proven offerings

\
\
|
|
|
1
I
I

1

SoC --;--
Rea"zaﬁon\

Design, verification, and implementation of complex designs
across silicon, package and board

Includes comprehensive flows for low power, mixed signal,
verification, large scale/GHz, and 3D-IC/SiP co-design

Delivered via intent, abstraction, and convergence in flows

Silicon
Realization

91 © Alberto Sangiovanni-Vincentelli. All rights reserved.

Business Challenge: Tool Landscape

System Design T User

Entry CAGR >20% Specification ~$400M

(Mathworks, CoWare, ...) CAGR 7%
- (Telelogic IBM-Rational,...)

Synthesis and Verification
~$85M ‘

CAGR 5% > ~$12B

(CoWare, Vast (Synopsys),

Hardware Virtutech (Intel),...) CAGR 1 0%

Teams (Windriver (Intel),
IBM, Microsoft, ...)

1

- Mentor
| Synopsys .
A Magma A

92 © Alberto Sangiovanni-Vincentelli. All rights reserved.

Software
Entry

Embedded
Software
Teams

Final Words of Wisdom

LA}
"~]:L., 5 N

e 'j-‘"ﬁuu-u T . »$

93 © Alberto Sangiovanni-Vincentelli. All rights reserved.

The EDA Challenge: Software Architecture Today

© Alberto Sangiovanni-Vincentelli. All rights reserved.

The Swarm Opportunity

Time to Abandon the “Component”-Oriented Vision

The functionality is in the swarm!

 There is power in numbers

« Resources can be dynamically provided
based on availability

Moore’s Law morphs into Metcalfe's Law:
Scaling is in number of connected devices, no longer in
number of transistors/chip

[J. Rabaey, MuSyC 2009]

Supporting Theory

* Provide a semantic foundations for integrating different models of computation
— Independent of the design language

« Maximize flexibility for using different levels of abstraction
— For different parts of the design
— At different stages of the design process
— For different kinds of analysis
« Support many forms of abstraction
— Model of computation (model of time, synchronization, etc.)
— Scoping
— Structure (hierarchy)

Platform Based Design!

Distributed Resources

Communication P S———— Sensing Storage

The Swarm Operating System -
Dynamically trading off resources
‘ The “Unpad” Services and Applications \
(environment, density, activity)

- =

Utility Maximization
“What matters in the end is the utility
delivered to the user”

Medel lidstance

Model Repository

Building
Madel

.

HVAC
Models

L —

Network

Models

Lighting
Models

Sensor |=— Bullding

-

Network

Dainper f‘

Building Operating Platform

Distributed
code
generation

Network
planning

A
Chiller

. —

Network analysis
and
reconfiguration

Instruction level

v
| RTOS |

Over-the-network

RTOS level programming

Compu?ﬁon 0S

HW level

Fault-recovery

MIDDLEWARE
Implication
analysis

END-TO-END

Upgrade request

The Swarm as a Platform

A mediation layer

Apps

Actuators/
Resources Sensors/ Output devs Storage

Input devs NEE
Computing

Presenting a uniform API to Apps Developers (similar to trends in the Cloud)

The Swarm as a Platform

Operating System (Broad Sense): Environment that

* Presents abstracted vision of hardware to applications

« Dynamically balances application needs versus available resources under time
and energy constraints

What makes SWARM-QOS different (and hard)?
Distributed
Space/context-aware

Heterogeneous shared (and sparse) resources
Dynamic
» Mobility, scope, resources, connectivity, ...

How to Deal with Dynamics
Structured versus ad-hoc?

BOTH OF THE ABOVE! Exploiting the Edge of the Cloud (or
The Fog®)
_—— ¥ Packs plenty of computation,
communication, storage and energy
,,,,,,,,,,, ﬂ resources
Avoids the overhead of the Cloud

THE CLOUD el

Not an “OS as usual”
Reactive or opportunistic emergence of
capabilities desirable

[F. Bonomi, Cisco, “Cloud and Fog Computing”- EON June 11]

The Swarm Challenge(s)

Performance Privacy/
(Latency) Security

Complex distributed control systems
combining heterogeneous
components under dynamically

vauing conditions

Reliability Management

©
S
£
Q
a
C
2
wid
©
2
[
Q
<
LU
O
<
—
O
/)
)
e
-

Raffaello Sanzio, The Athens School

© Alberto Sangiovanni-Vincentelli. All rights reserved.

103

Concluding Remarks

Challenging problems in many domains exist and are amenable to a
rigorous approach to design methodologies, models and tools

Model-based and Platform-based Design is a MUST
Control algorithm design is critical

Optimized Architecture selection is essential

Holistic view of the design problem must be established

Multidisciplinary approach needed: a challenge for education and
recruiting

© Alberto Sangiovanni-Vincentelli. All rights reserved.

