
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

http://www.artist-embedded.org/

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 2

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 3

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 4

Motivation
  today’s embedded systems use complex networks
  hundreds of

functions

  thousands of tasks

  50+ ECUs

  networked control

  many suppliers

  heterogeneous

  networks are an
efficient platform
for systems integration source: Daimler

55 ECUs & 7 Buses of 4 types with gateways

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 5

Growing Network Complexity

source: T. Bone, Daimler

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 6

Motivation
 networks lead to component sharing and networks for different

functions

CAN2

gateway

ECU 4
CAN 1 CAN 2

CAN 3

ECU 5

ECU 6

ECU 1

ECU 2

ECU 3

ECU 8
ECU 7

local
resources CPU2

ECU2

communication network

RTE + HW interface

application 1
ECU 2 + 3

application 2
ECU 1 + 8

local
resources CPU1

ECU1

RTE + HW interface

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 7

Automotive design chain – Many players

OEM
- BMW, Daimler, GM, PSA, Toyota, …

- global system, integration and network

ECU - Supplier
-  Bosch, Delphi, Valeo, …
-  ECU responsibility Bosch Delphi Valeo

RTE - Supplier
-  Vektor, ETAS, Elektrobit,
 Mentor, … HW Component - Supplier

-  Infineon, Freescale, ST, Toshiba, …

specs ECUs

specs SoCs

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 8

Software standardization

 objectives
  reuse and portability of applications
 system optimization
 defined interfaces for supply chain with

standardized methods and tools

 example AUTOSAR
 automotive standard software architecture
 virtual functional bus for integration
  run time environment (RTE)

for specific ECUs

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 9

The safety challenge

 embedded systems are increasingly used to
  implement advanced system features
  improve safety

  in such cases, the embedded system inherits the safety and
dependability requirements of the system function
 safety related embedded systems

 such functions are no longer simple
 example: automotive electronics
 electronic steering
 camera based object recognition and tracking

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 10

source: Volkswagen

Example 1: Electronic steering
  standard equipment functions

 steering power support, speed dependent
 active centering and dampening
 straight-running function …

  upgrade equipment functions
 park assist
  lane-keeping assist

 customizable adaptivity - from sportive to an emphasis on comfort

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 11

Embedded systems architecture

  two-computer system of the steering control unit
 steering functions, motor control, and I/O handling are implemented on

the main computer
  the second computer monitors the main computer
 communication via digital interface
 exchange of high-frequency question-answer-sequences
 both computers have an independent clock and energy supply

 classification: fail-safe system function – SIL 3 (more later)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 12

Example 2: Object recognition and tracking

 may be used as safety feature (collision avoidance) – SIL3?
 FPGA (or multi-core DSP)
 more than 100 GOp/s (algorithmic)
 power constrained (temperature)

camera scene w.
object motion vectors

IMAPCAR DSP
(source: Renesas)

FPGA prototype
source:

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 13

Safety functions are distributed

Source: S. Kuntz, Continental

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 14

Distributed brake function

Source: S. Kuntz, Continental

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 15

Avionics: Airbus 380 – AFDX based network

Source: J-B. Itier. A380 Integrated Modular Avionics
Artist2 meeting 2007

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 16

Safety critical applications extended to open
networks – Example traffic (ARTEMIS SRA)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 17

Integration covers several industrial sectors

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 18

Merging functions with different criticality levels

  integration on one platform leads to systems with applications of
different safety requirements
 strict separation too expensive
 mixed (safety) criticality systems

 mutual dependency via platform and sensors/actuators requires
safety concept and qualification/certification for all functions
 data often missing for less safety critical functions
 high cost for qualification process of all applications on a platform
 significant limitation and costs for updates

→  safety is highly relevant aspect in embedded systems integration

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 19

Safety and time criticality

 many safety critical systems have hard deadlines
 such systems are both safety

and time critical

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 20

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 21

Safety standards

  the design of safety-related systems is driven by safety standards
  safety standards contain
  rules and regulations for all design system
  recommended guidelines for the development process

  safety standards cover all stages of the development process
  specification
  design
  implementation
  test
  maintenance

  objective of safety related design
  avoid unacceptable risk
  assure functional safety

21 TU Braunschweig

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 22

  safety: Freedom from unacceptable risk of physical injury or of
damage to the health of people

  functional safety: refers to the safety of system functions
  risk is characterized by two properties
  frequency of hazardous events
 severity of hazardous events

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 23

  The idea: frequency-severity tradeoff

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 24

Functional safety – a short overview

 safety standards (IEC 61508, ISO 26262) classify systems according
to frequency and severity of functional failures

 a safe system can handle faults without causing severe functional
failures

  terminology

FAULT
 (error source,
e.g. radiation)

ERROR
 (unexpected state)

FAILURE
 (function violation)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 25

  IEC 61508
  generic standard for safety-related systems

  ISO 26262
  safety standard for automotive domain

  DO 178B, DO 254
  safety standards for aerospace domain

  IEC 61511, IEC 62061
  safety standards for factory automation domain

  EN 50126, EN 50128, EN 50129, EN 50159-1, EN 50159-2
  safety standards for rail domain

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 26

IEC 61508 – Overview

 provides methods to assess the risk of functions
 based on metrics of severity and frequency of failures

  introduction of safety in the lifecycle, which consists of
 management of functional safety, e.g. enforcement of independent review

processes of safety-related components
 enforcement of verification and evaluation methods to assure functional

safety
 dedicated hardware and software development methods and processes

  further parts of IEC 61508
 glossary
 application examples and guidelines

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 27

IEC 61508 – Metrics

  reference standard that is used to derive other standards
(e.g. ISO26262)

 metric: “Safety Integrity Level” – SIL
 defines four degrees of safety: from 1 (lowest) to 4 (highest)
 specification of maximum failure rates for each level

SIL Low demand mode: average
probability of failure on demand

High demand or continuous mode:
probability of dangerous failures per

hour

1 > 10-2 to < 10-1 > 10-6 to < 10-5

2 > 10-3 to < 10-2 > 10-7 to < 10-6

3 > 10-4 to < 10-3 > 10-8 to < 10-7

4 > 10-5 to < 10-4 > 10-9 to < 10-8

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 28

 basic principle: apply reliability analysis to verify that safety
requirements are satisfied
 assumption: required safety level is known a priori hazard analysis

and risk assessment not considered

  IEC 61508 does not directly support mixed criticality systems
 “An E/E/PE safety-related system will usually implement more than one
safety function. If the safety integrity requirements for these safety
functions differ, unless there is sufficient independence of
implementation between them, the requirements applicable to the highest
relevant safety integrity level shall apply to the entire E/E/PE safety-
related system.”

  reliability analysis can help to close this gap!
 more later

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 29

Functional safety – ISO 26262

  ISO 26262 basically similar to IEC 61508
  includes risk classification
 defines development processes and method for saftey-critical automotive

system
  FMEA (failure mode and effect analysis), FTA (fault tree analysis)

  ISO 26262 defines ASIL 1-4 (automotive SIL) analogous to IEC
61508 SIL

  includes risk analysis and ASIL assessment process according to
parameters severity, exposure and controllability
  risk as a function of frequency f and severity S: R = F (f, S)
  frequency as a function of exposure E and controllability C: f = E x C

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 30

C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3

E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

note: the class QM (Quality Management) denotes “no requirement” according to
ISO 26262

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 31

  gap to IEC 61508: ISO 26262 provides no formal failure rate specification
such as 61508

  however: approximate mapping is possible based on the term of
“observable incident rate” introduced in ISO 26262

  the observable incident rate is based on relevant field data
  basically observable incident rate is used for the proven in use argument
 “Proven in use argument is an alternate means of compliance with

ISO26262 requirements that may be used in case of reuse of
existing items or elements when field data is available.”

ASIL Observable incident rate

D <10-8/h

C <10-7/h

B <10-7/h

A <10-6/h

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 32

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 33

Embedded systems functional failures
 embedded system (ES) functional failures are not necessarily

catastrophic
 effect depends on the importance of the failing function for the

overall system
  function criticality

 criticality depends on the overall system functionality
  fail safe

if the ES function fails there is a safe function backup or a safe system
state that avoids severe consequences
(mechanical steering, hydraulic brake, emergency stop)
 ES is not critical but important for quality

  fail operational (fault tolerant)
the function continues based on system redundancy or turns to an error
mode with reduced functionality (graceful degradation)
 ES function is critical, but possibly only needs a specific function

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 34

Safety and time criticality - Reminder

 many safety critical systems have hard deadlines
 such systems are both safety

and time critical

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 35

Embedded system functional failures and timing

 ES functions have different criticality
 depending on the overall system

 where timing is specified, it becomes part of the function criticality
 ES timing failures are ES functional failures

 switching to error modes is time critical
 switching needs hard deadlines to guarantee overall system function

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 36

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 37

Safety challenges in ES integration

 sharing resources is hard to avoide in cost efficient systems
 shared (open) network
 shared on-chip network, shared memories, …

  is it possible to integrate several subsystems and avoid
interference?
  this would be important for mixed criticality systems
  non-critical parts are less verified and not designed for worst case

 would reduce verification/certification/integration cost

 standards require separation in case of shared resources
 Reminder (IEC 61508)

“… If the safety integrity requirements for these safety functions differ,
unless there is sufficient independence of implementation between them,
the requirements applicable to the highest relevant safety integrity level
shall apply to the entire E/E/PE safety-related system.”

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 38

Reminder – Automotive network

gateway

ECU 4
CAN 1 CAN2

CAN 3

ECU 5

ECU 6

ECU 2

ECU 8

ECU 1

ECU 7

communication network

application 1

ECU 1 ECU 8

RTE + HW
interface

RTE + HW
interface

application 2

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

safety critical non safety critical ECU 3

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 39

Critical application using network - Consequence

application 1

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

application 2

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

safety
critical

non
safety
critical

communication network

application 1

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

application 2

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

safety level?

safety critical
components

unsafe
access

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 40

Separation - Principle

communication network

application 1

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

application 2

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

safety critical
components

 partitioning into certified/qualified core components that control
the resources used for any of the critical applications
 basic software incl. RTE
 communication
 shared resources used for critical applications

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 41

Automotive network – Affected system parts

 application of safety standard
affects large part of the system
 single criticality on safety critical

ECUs
 mixed criticality on other parts

gateway

ECU 4
CAN 1

CAN 3

ECU 5

ECU 6

ECU 2

ECU 8

ECU 1

ECU 7

ECU 3

CAN2

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 42

Example Automotive - Communication

 CAN
 multi master, non synchronized
  static priority non preemptive (SPNP)
  needs formal analysis to guarantee arrival of critical messages
  error handling protocol

 FlexRay
  fixed sequence of static segments with TDMA protocol and dynamic

priority assigned segments – cyclo-static repetition
  time synchronized, multi master
  guaranteed resource share for each communication channel

 gateways
  proprietary solutions

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 43

Separation on CAN

 assumptions
 all senders adhere to their priority i (message id)
 no two messages of the same type or priority are on the bus
  requires that latest deadline is at end of period

 buses are not overloaded (U < 100%), messages don‘t miss deadlines
  then (simplified):

  for CAN: all Ci equal (constant frame size)
⇒  worst case response times only influenced by higher priority messages
⇒  critical communication independent of other communiation if

 given higher priority (no RMS ⇒ non optimal scheduling)

•  Ri response time message i;
Ti min. period

•  Ci execution/frame transmission time
•  hp(i) higher priority messages

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 44

Separation on FlexRay

 assumptions
 all senders adhere to the TDMA schedule
 all clocks are synchronized
 messages don‘t miss deadlines if TDMA schedule is regarded
  then (simplified) for the static segment:

⇒  worst case response times not influenced by any other message
⇒  complete separation of logic channels

Ri response time task i; tMi time
Ci execution/frame transmission time
tTDMA TDMA cycle time

Bus

frame separation
tTDMA

tM1 tM3 tM1 tM3 tM2 tM2

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 45

Separation on CAN and FlexRay

 both bus protocols support separation of critical from non critical
messages
 FlexRay static segment enables separation of all messages, CAN

provides an asymmetric separation
 all senders must give guarantees
 CAN: keep message priorities (hardware based conflict resolution)
  FleyRay: adhere to global time and TDMA schedule

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 46

Separation in processing units

 uses same scheduling principles as communication
 static priority driven scheduling – automotive: OSEK/VDX and AUTOSAR
 TDMA – avionics: ARINC 653
 main principles used in (mixed-critical) practice
  others proposed

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 47

Scheduling in OSEK/VDX and AUTOSAR

 ECUs typically uses OSEK/VDX RTE
 static priority preemptive scheduling (SPP)
  can be restricted to preemption points

  three priority blocks
  interrupt – scheduling – task level

  task level w. periodic task execution
 Rate Monotonic scheduling
  offsets for load bounding

 PCP protocol to bound
blocking by resource arbitration

 no standard memory access
protection

interrupt level
activated by interrupt

logical level
scheduling activities

task level

priority

source: OSEK/VDX standard V2.2.3

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 48

Separation in processing units

 ARINC 653 – Integrated Modular Architecture IMA
 several systems with separate OS implemented on one CPU
 separated address and memory spaces (requires MMU)

Source: Wind River, 2008

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 49

Separation in processing units

 ARINC 653
 partitions are assigned to time windows TPi iterating over a major Time

Window MAF
 execution can exceed single time window
 supports scheduling hierarchies

source: Ch. Ficek, Symtavision

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 50

Separation in RTOSs

  timing separation similar to communication examples
 separation of memory and device usage requires access control
 approaches: virtualization or memory (address) protection

 consequence
 all RTOS mechanisms needed for separation must be subject to the

highest level of criticality in the system

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 51

Virtualization - principle

  decoupling of virtual and physical resources
  a virtual machine monitor (VMM) administers physical resources such as

processors (CPU time), memory, peripherals
  In classical desktop/server virtualization the VMM splits the physical

computing platform into independent virtual platforms
  some use cases
 consolidation of services on one physical platform
  running different/legacy Oses on the same platform
 containment of services in its own virtual platform
 architectural abstraction: a virtual machine can

easily be migrated

HW
VMM

OS OS

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 52

Virtualization techniques

 paravirtualization
 explicit API interface between guest OS and VMM
  example XEN: guest OS calls HYPERVISOR_mmu_update Xen

updates the MMU
  (proprietary) guest OS must be ported to the VMM API
  hardware emulation required fast

  full/hardware virtualization
  relies on Hardware Support (Intel VT/ AMD Pacifica)
 VMM emulates the standard hardware (e.g. chipset, ethernet)
 when an IOMMU is present: phyical peripherals can be mapped into the

guest OS
 slower than paravirtualization, but supports legacy/propriatary OSs

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 53

Virtualization in embedded systems

  integration of mixed-critical applications supported by
virtualization

 challenges
 VMM introduces additional timing latency
 Shared resources on multi-core architectures (memory, IO)
 Additional cache misses and additional IRQ sources

 see ARINC653

HW
VMM

OS RTOS

UI
RT App

timing isolation

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 54

Mixed critical applications in
multi-core architectures

local
res.

core1 local
res.

core2

shared
res. safety critical

components

safety level?

certification?

MC-ECU

application 1

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

application 2

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

safety
critical

non
safety
critical

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 55

Multi-core separation - Principle

 partitioning into certified/qualified core components that control
the resources used for any of the critical applications
 basic software incl. RTE
 communication
 shared resources used for critical applications

local
res.

core1 local
res.

core2

on-chip communication network

basic software

application 1 application 2 SW architecture

HW architecture

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 56

Separation in multi-core architecture

 standard approach for
separation - isolation
 separate address

spaces and cores
  possibly controlled

by hypervisor
(virtualization)

 only allow event and
data flow from higher
criticality to lower
criticality
 (safety requirement)

  is this sufficient?

Multi-core example: Freescale MP5565

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 57

Multi-core example continued

 assumption
  two cores integrating applications

with different criticality levels

  isolated address space

 CPU2 cannot interfere with CPU1
data

  Independent core scheduling

  tasks access local and global shared
resources (e.g. shared SRAM)

 consequence
  functions are isolated

 but is timing isolated, as well?

Core1 Core2

Multi-Core
Processor

Local
memory

Local
memory

Shared
memory

Safety-Critical
(qualified)

CPU1 Local
memory

Non-Safety-Critical
(not qualified)

CPU2 Local
memory

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 58

Example: Multi-core Cell Broadband Engine

PPE: 64 bit Power (5) processor with 2 level cache architecture as main controller
SPE: Synergistic Processor Element – specialized processor
MFC: Memory Flow Control (DMA)
EIB: Element Interconnect Bus- high speed ring bus
MIC: Memory Interface Controller; IOC: IO Controller Source: IEEE Micro

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 59

CBE memory model – Local and global memory maps

SPU
register file

local
memory

MMU

local physical
addresses of
SPU

DMA
address
translation

EIB
global addresses
of CBE

MFC

  isolation of address space
 SPEs work on local memory
 global address translation

controlled by global processor (PPE)

 but: all cores share the
same bus and external
memory
 mutual timing

influence
(complicated)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 60

A closer look at timing: Single-core execution

Preemption Cache Miss / Stalling

SRAM

CPU1

Execution

Single-Core
execution

Task Activation

ThighPriority

TmediumPriority

  on CPU1
  when a task is waiting for the SRAM the

processor is stalled (“micro lock”)

  ThighPriority and TmediumPriority initiate requests for
the SRAM and have to wait for the required data
 causes additional delays on the execution

of other local tasks

Safety-Critical
(qualified)

WCRT (Thigh)
WCRT (Tmedium)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 61

Application timing dependencies in multi-core

preemption
stalling

single core
execution
(with stalling)

memory

CPU1

increased worst-case response time!!

memory

CPU1

CPU2

multi-core
execution

execution competing accesses to shared resources
challenge worst-case execution time
assumptions!

time

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 62

Single core
Multi-core

Single core

Multi-core

Preemption Cache Miss / Stalling

SRAM

CPU1

SRAM

CPU1

CPU2

Execution

ThighPriority

TmediumPriority

ThighPriority

TmediumPriority

TlowPriority

 (WCRT: worst-case
response time)

TmediumPriority experiences
a new preemption by the
higher priority local task.

single core
execution

multi-core execution
(SRAM is shared)

WCRT (Thigh)

WCRT (Tmedium)

WCRTs of the high
priority tasks on
CPU1 increase
due to shared

SRAM conflicts!

CPU1 has to wait if CPU2
has ongoing requests.

Task Activation

Competition for shared resources – a closer look

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 63

Example - System parameters

Scheduling Mapping Task Priority
P(1)>P(3)>P(5)>P(6)

Activation
Period

WCET # Memory
Accesses per

execution

Memory
Arbitration

SPP Core 1 T1 1 250 50 5 FCFS

Core 1 T3 3 800 360 12

SPP Core 2 T5 5 1500 500 5

Core 2
(after

update)

T6 6 10000 1200 10

Modeled and analyzed with:

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 64

Integrate safety critical and non safety critical
cores – SW update
 update on Core 2 challenges timing on

Core1

W
or

st
-C

as
e

R
es

po
ns

e
Ti

m
e

(T
1)

Distance between memory requests
Initiated by task T6

Total Memory Access Times in % * execution (T6)

Safety-Critical
(qualified)

Non-Safety-Critical
(not qualified)

T6

Update on the Non-Safety-Critical
Core

 Low priority task T6 also
accesses the Shared Memory

(e.g. performs burst of requests to
the shared memory)

In case requests initiated by T6
are close and the size of all

memory accesses is larger than
20% of the execution of T6 the
system is not-schedulable !!!

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 65

Timing hazards when using shared resources 1/2

 common use of the SRAM among cores – observed effects
 SRAM accesses by low priority tasks on one CPU may slow down other

tasks on another CPU
  affects low and high priority tasks likewise
  counters priority assignment on the cores - priority inversion

 WCRT may even increase super-linearly due to additional preemptions
(shown for Tmedium priority in the example)

 as CPUs are stalled when tasks are waiting for the shared memory the
load on these CPUs will increase

 problem demonstrated for accesses to shared SRAM, but the same
reasoning applies to semaphore protected critical sections and other
shared resources

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 66

Timing hazards when using shared resources 2/2

 example shows high potential impact of non-critical on safety
critical task despite high task priority and isolation
 dangerous if software bugs in non-critical system with lower verification

requirements (e.g. infinite loop w. memory access)
  requires physical separation or (re-)certification including non-critical

part
  extra cost!

 Note: Virtualization alone does NOT help!

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 67

Controlled separation for many-core systems

 separation must include NoC and on-chip memories
 suggested approaches typically use strict resource separation
 example: NXP Aetheral NoC , …
 challenge: efficiency (performance loss)

 possible improvement
 budgeting
 channel separation
 arbitration control for service guarantees

Hard-RT Soft-RT

General-
purpose

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 68

The missing links

 efficient separation of critical NoC traffic with minimized negative
effect on non-critical traffic
 avoid crossbar to enable many-core ICs

  include resource access protection
 avoid resource overutilization by non critical applications

 example: IDAMC

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 69

Integrated Dependable Architecture for Many
Cores (IDAMC)
  general purpose system with

support for mixed-criticality
  safety-critical real-time
  timing guarantees

  best-effort, e.g. office, games,
  latency sensitive

  4-64 nodes
 mesh NoC with QoS
  up to four tiles per Node

  hardware mechanisms for
  virtualization at NoC-Level
 monitoring (timing and power)
  on-chip data transport, c2c communication Image: Synopsys

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 70

Tiles

 each tile is a complete system
 AMBA bus
 LEON3 CPU and/or memory, peripherals

 network interface (NI) connects to NoC

LEON3
Processor

Debug Support
Unit

JTAG Debug
Link

AHB

APB

High Bandwidth
Peripherals

On-Chip
Memory

IDA NI AHB
Controller

AHB/APB
Bridge

Memory
Controller

Interrupt
Controller

Low Bandwidth
Peripherals SDRAM I/O PROM IDA NoC

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 71

Network Interface (NI) - Architecture

  interface to AMBA bus
 system-virtualization of

remote resources
 Address remapping
  Interrupt mapping
 Routing
 Virtual Channel selection

 configured by trusted central
system controller

 monitoring
 error detection and isolation

Master Interface Slave Interface

Output Buffer

Paketization

Address
Translation and

Routing

Depacketization

Input Buffer

M
onitoring

C
ontrol

AMBA AHB Bus

IDA NoC

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 72

System domain address translation

Node S

W

N

E R

Virtual

MMU

Physical SDAT
IDA NI

  translate tile-local physical address to system-wide address
  flags to limit access (e.g. read-only)
  route = address to remote tile
  target address = base address in remote tile

Route T. addr. 0000

Region Offset

Route T. addr. 0001
Route T. addr. …
Route T. addr. 1111

Local tile (physical) address

Base A. Offset
Destination tile address

Packetization

F
F
F
F

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 73

IDAMC – NoC
characteristics of application/traffic classes

 best-effort applications
 most existing applications, major role in user

experience
 unpredictable and bursty resource usage
  latency-sensitive: Application performance

degrades with higher latency

  real-time streaming applications
  require resource and timing guarantees
  resource sharing must be under control for

efficient co-execution
  regular access patterns latency-tolerant:

performance does not degrade with higher
latency (up to a certain latency bound)

Utility
(~Performance)

Latency
Utility

Latency

Hard RT

Soft RT

Best effort

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 74

Input Unit

Crossbar

Output
Unit

Routing
VC

Allocator

Switch
Allocator

Output
Unit

●
●
●

●
●
●

Input Unit

●
VC
●

●
VC
●

QoS-Support for traffic isolation in the router 1/2

 manage contention at router’s
outputs
 static isolation
  e.g. time-division multiple-access

(AEthereal [Goossens], SuperGT [Marescaux])
  service independent of other streams

 dynamic isolation
  e.g. prioritization

(MANGO [Bjerregaard], QNoC [Bolotin], [AlFaruque],
Globally-Synchronized Frames [Lee])

  service depends on the behavior of
other streams

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 75

Input Unit

Crossbar

Output
Unit

Routing
VC

Allocator

Switch
Allocator

Output
Unit

●
●
●

●
●
●

Input Unit

●
VC
●

●
VC
●

QoS-support for traffic isolation in the router 2/2

 existing QoS do guarantees first!
 best-effort traffic = “second-class

citizen”
 BE traffic suffers from high latency
 RT traffic has no benefit from

reduced latency (deadline driven)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 76

Input Unit

Crossbar

Output
Unit

Routing
VC

Allocator

Switch
Allocator

Output
Unit

●
●
●

●
●
●

Input Unit

●
VC
●

●
VC
●

Solution: QoS support for latency sensitive traffic

  idea:
exploit latency tolerance of RT
streaming applications to improve
BE latency

 approach: prioritize BE as long as
guaranteed throughput (GT) traffic
makes sufficient progress
 Distributed Traffic Shaping (DTS)
 Back Suction (BS)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 77

Goal: Guarantees and low BE latency

Utility

Latency

Hard RT

Soft RT

Utility

Latency

Real-time Traffic Best-Effort Traffic

Throughput guarantees

Limited prioritization

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 78

Back Suction (BS)

 Prioritize RT traffic based on downstream buffer occupancy
 Threshold Module at every VC
 Forward back suction signal on low occupancy towards upstream
 Threshold determines how early prioritization of RT propagates

towards sink

 Limit rate (to guaranteed rate) at which sink may assert back suction

Thr. Thr.

Rate
Limit

Arbiter Thr. Arbiter Thr.
Back

Suction

Router 1 Router 2 Sink

RT VC RT VC
GT stream

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 79

Formal timing analysis for BS and DTS

  formally analyze routers iteratively (starting at sink)

 analysis guarantees GT timing if back suction enforced
 uses Compositional Performance Analysis

- based on SymTA/S tool

  future work: admission control performed on-line
as part of resource management process

Router 1 Router 1 Sink 1

Sink 2

Source

Application
model

Mapping

Constraint
validation

Enforcement

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 80

Result: Guarantees and improved BE latency

 mechanism provides throughput guarantees to individual real-time
streams

 BE latency is improved significantly
 application runtime improves accordingly

~ 30% latency
improvement over
standard prioritization
scheme

Improve application
performance by
>10%

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 81

IDAMC - Summary

 efficient separation of critical NoC traffic with minimized negative
effect on non-critical traffic
 back suction gives priority to non-critical traffic granting the

requirements of critical traffic
 exploits full qualification of critical process that includes accurate

requirement definition

  include resource access protection
 external access control protects against accesses from non-critical

applications
 overutilization by non-critical applications constrained by NoC QoS

control

 consequence
 all NoC components and central access and traffic control must be

qualified at the highest criticality level in the system

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 82

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 83

Technology trends – Reliability issues

  reliability is an important challenge in future technology
generations
 growing system complexity combined with continuous technology

downscaling increasing error rates

 appropriate techniques necessary to prevent failures
  fault isolation
 error detection and correction
  bus/network: message retransmission, forward error correction
 CPU/ECU: redundancy, rollback techniques, microarchitectural

measures

 problem: predictability of system reliability
 how does the system behave in case of errors?
 what are consequences for the user / for the environment?
 what is the failure probability?

83 TU Braunschweig

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 84

Fault handling for higher criticalities

  for higher safety requirements separation is necessary but not
sufficient
  isolation still requires correct hardware function
 hardware failures must be included when hardware is less reliable than

safety requirements
 embedded systems trend
  reliability of technology ↓
  safety requirements ↑
  hot industrial topic!

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 85

Fault handling for higher criticalities

 handling of static and transient hardware faults required
  reliability requirements are often quantified
  requires predictable failure bounds

  IEC 61508

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 86

From ES faults to ES failures

 distinguish static and transient ES errors
 static errors have permanent effects requiring redundancy for repair
  transient errors are usually more frequent (EMC, new semiconductor

technologies, …) but can often be masked when detected
  transient error masking can cause timing errors

Unexpected
internal state

 ERROR

Result/Service
within the
specification

Result/Service
violates the
specification

 FAILURE

Violation of functional
specification
 incorrect functionality

Violation of temporal
specification
 incorrect timing

1 0
3+4=7 3+4=8

Deadline
t

FAULT

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 87

Transient error handling

  transient error handling known from communication
 example: CAN (automotive)

 CAN has error detection capabilities (CRC)
  repeats message in case of transmission error using defined protocol
 CAN functional fault tolerance increases timing and load!

ECU1
fault detection (HW/SW)
bus
fault detection (HW/SW)
ECU2

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 88

Reliability analysis – General concept

τ2

τ1 τ1,2 τ1,1 τ1,3

error tree
analysis

working
set W5

probability
analysis

P[S1,1]
P[S2,1]
P[S3,1]
P[S1,2]
P[S2,2]

P[S3,2]
P[S1,3]

R1(t) = P[S1,1S1,2S1,3]

τ2,2

τ3

a)  timing prediction

b)  success probability calculation

c)  reliability probability composition

error tree
analysis

working
set W5

probability
analysis

error tree
analysis

working
set W5

probability
analysis

error tree
analysis

working
set W5

probability
analysis

error tree
analysis

working
set W5

probability
analysis

error tree
analysis

working
set W5

probability
analysis

error tree
analysis

working
set W5

probability
analysis

τ2,1

τ3,1 τ3,2 a)

b) c)

R2(t) = P[S2,1S2,2]
R3(t) = P[S3,1S3,2]

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 89

 SAE benchmark frame set
 periodic system, deadline end of period
 approximately 5 x 106 activations per hour
 bus load approx. 70 % (CAN at 150 kbit/s)

 error model
 BER = 10-7 [Ferreira, 2004]
  residual errors according to [Charzinksi, 1994]

MTTFfunc 2 x 1012 h

MTTFtime 1,8 x 105 h

SIL 4

SIL 1
7 orders of magnitude more likely to miss end-of-period deadline!
(for single error fault model)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 90

Lessons to be learned from communication

  functional errors can efficiently be detected
  redundancy in time (message resend) is efficient

  timing failures can be much more likely than residual errors
 even at moderate load
 due to failures at points with peak load

 consider peak load situations!

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 91

 communication can easily incorporate fault-tolerance
 EDC + retransmission (CRC, parity, hashes)
 ECC (Hamming, Turbo, …)

 computation is much harder to protect
 entire processor affected
 control and data flow (including IP cores)
 errors can propagate

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 92

VLSI failure modes and fault-tolerance
  different failure modes of transistors
  permanent errors (electromigration stuck-at-error)
  soft errors (SEUs, cosmic-radiation, thermal neutrons)
  stress induced transient errors (transistor variability, NBTI, PBTI Vt shift)

  soft errors and transient effects are expected to dominate
  all fault tolerance methods are based on redundancy
  spatial redundancy
  dual modular redundancy (DMR): (single) errors will be detected
  triple modular redundnacy (TMR): (single) errors can be corrected

  temporal redundancy (e.g. reevaluation on the same processor)
  slightly worse coverage (permanent errors not detected)
  high impact on timing (additional workload)
  can also be used for recovery (checkpointing & rollback)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 93

Traditional DMR (e.g. lockstep architecture) 2/2

 DMR does not scale for mixed-critical systems
 not all applications need fault tolerance

 mixed-criticality example
 2 critical, 3 uncritical applications
 system lockstep: total overhead factor 2
 overhead caused by uncritical apps: 1.6

non critical

critical

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 94

Task level DMR (fine grained)
  replicate individual tasks only where needed
  comparisons is based task state (e.g. comparison at output)
  result can be verified if results from both instances are available
  DMR creates feedback from core1 on core2 and vice versa

  redundant copies induce higher load on other tasks
  additional overhead through core-to-core communication (comparison)
  timing analysis is necessary to prove correctness

free resources can
be used by other
uncritical apps

result result result result

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 95

Fingerprinting

 compact state to “fingerprint” reduce core-to-core communication and
comparison overhead

 compare execution fingerprints (Smolens et al., 2004)
 efficient, low bandwidth, high coverage

Core

fault tolerant interconnect

…
MPSoC IF

ID

EXE

MEM

WB
Fingerprint

Register

+

Pipeline

fault tolerant memory

Core Core

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 96

Recovery – Typical methods

 system reset
 usually infeasible in hard real-time systems

 switch to fail-safe mode (e.g failed active steering fallback to
mechanical solution)

 checkpointing and rollback recovery
 save state in regular intervals and store it on reliable memory
  in case of errors, restore most recent state
  impact on timing on all (lower priority) tasks in case of errors

  recovery methods lead to timing overhead!
 cp. resend in communication
 use timing analysis

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 97

Modeling of fine grained redundancy

  task τi is split into n segments
  identical replications of task is distributed among e.g. k cores (e.g. 2)
 voting on intermediate result (fingerprint) is performed in

arbitrary (but known) intervals
 use an equivalent task graph as a model

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 98

Recovery operations

 non-matching fingerprints recovery required
 we model checkpointing and rollback
 right before each segment, the state is saved to ECC protected

memory
 in case of an error, a correct state is restored
 overhead for checkpointing and restoration: tcov, trov

te + tcov
te + trov

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 99

Timing failures – Re-execution example (simplified)

T2	

T1	

T1	

T3	 Preemption

Execution

Activation

Reexecution

comparison of intermediate results

Recovery

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 100

Accuracy – comparision with Monte Carlo analysis

Task Priority – Mapping
core1/core2 T C Checkpoints Creation Recovery

T0 3/2 300 60 2 10 20
T1 4/- 250 50 -
T2 2/- 100 10 -
T3 -/1 300 50 -
T4 1/3 600 40 2 10 20

Overhead
•  Checkpoint Creation
•  Recovery

λ1,2 = 1/10 sec

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 101

Design tradeoffs - Checkpointing

  checkpointing itself can be a „critical
section“

  for this experiment we assume, that an
error during checkpointing causes a
system failure

λ = 1/week

  assume fault-tolerant checkpointing
  implementation

  e.g. ECC memory protection &
bus EDC

  dual (redundant) DMA engines

λ = 1/week

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 102

Redundant DMA engines for checkpointing

DMA
unit 1

DMA
unit 1

Memory 1

Memory 2

DMA
unit 2

DMA
unit 2

DMA
unit 2

DMA
unit 2

checkpoint is copied by two different DMA engines to different memories

DMA
unit 1

DMA
unit 1

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 103

Tradeoffs – No. of checkpoints 1/2

 experiment 1: low checkpointing overhead: 0.1ms
 R(t) increases with the amount of checkpoints

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 104

 experiment 2: high checkpointing overhead: 1ms
 R(t) decreases with the amount of checkpoints

Tradeoffs – No. of checkpoints 2/2

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 105

The cost of safety

 multi-core for highly safety critical functions require major
hardware overhead

 systems with mixed criticality bare the risk of non manageable
requirements
 vastly different design quality for safety and non-safety function

integrated on the same platform
  function isolation must be complemented by costly fault tolerance

 efficient methods for function isolation and predictable fault
tolerance are needed

 example: Project RECOMP

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 106

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 107

RECOMP

  “Reduced Certification Costs Using Trusted Multi-core Platforms”

  multi-core architectures for mixed safety critical systems
  flexible tradoff between development, certification, and hardware cost
  requires configurable core-to-core communication and separation/virtualization

technologies

  objective
  develop HW and SW architectures, design methods, and tools to efficiently design

and (re-)certify MpSoCs for mixed critical systems

  European ARTEMIS project, 41 partners, 25 Mio € budget, 2010-2013
  covers whole design chain
  semiconductors, RTOS, suppliers, integrators (OEMs)

  several industries
  automotive, aerospace, industrial

  www.recomp-project.eu

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 108

 “Internet of Energy (IoE) for Electric Mobility”
 objective
 develop hardware, software and middleware to use the Internet for future

smart energy grids incl. new applications (electric mobility)
  European ARTEMIS project, 42 partners, 45 Mio € budget, 2011-2014
 complex mixed criticality requirements
 grid stability, individual energy service, …
 economic security

  large economic
challenges
 power efficiency
 network efficiency …

IoE

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 109

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 110

Conclusion

 merging safety critical functions on an embedded platform typically
leads to mixed critical platform components

 mixed criticality is a serious certification cost driver and limits
update capabilities of non-critical functions

 no silver bullets for integration available
 potential integration technologies span broad design space but still

lack coherence and completeness
 project consortia dedicated to the mixed criticality challenge in

local (RECOMP) to widely distributed (IoE) systems
 much further research needed

Thank you!

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 111

  the following people have contributed to the slides
 Philip Axer
  Jonas Diemer
 Mircea Negran
 Simon Schliecker
 Maurice Sebastian

Acknowledgements

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 112

Literature (selected)

 RECOMP http://www.recomp-project.eu/
  for the challenge of multi-core performance dependencies see

  Mircea Negrean, Simon Schliecker, Rolf Ernst. "Response-Time Analysis of Arbitrarily
Activated Tasks in Multiprocessor Systems with Shared Resources." In Proc. of Design,
Automation, and Test in Europe (DATE), Nice, France, April 2009.

  for BS and DTS
  Jonas Diemer and Rolf Ernst, "Back Suction: Service Guarantees for Latency-Sensitive On-

Chip Networks," in Proceedings of the 4th ACM/IEEE International Symposium on Networks-
on-Chip (NOCS'10), May 2010

  for fault tolerance
  Maurice Sebastian, Philip Axer, Rolf Ernst, Nico Feiertag, und Marek Jersak, "Efficient

Reliability and Safety Analysis for Mixed-Criticality Embedded Systems," SAE System Level
Architecture Design Tools and Methods, April 2011

  Maurice Sebastian, Rolf Ernst, "Reliability Analysis of Single Bus Communication with Real-
Time Requirements," in Proc. of 15th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC), (Shanghai, China), November 2009

