
Platzhalter für Bild, Bild auf Titelfolie hinter das Logo einsetzen

http://www.artist-embedded.org/

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 2

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 3

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 4

Motivation
  today’s embedded systems use complex networks
  hundreds of

functions

  thousands of tasks

  50+ ECUs

  networked control

  many suppliers

  heterogeneous

  networks are an
efficient platform
for systems integration source: Daimler

55 ECUs & 7 Buses of 4 types with gateways

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 5

Growing Network Complexity

source: T. Bone, Daimler

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 6

Motivation
 networks lead to component sharing and networks for different

functions

CAN2

gateway

ECU 4
CAN 1 CAN 2

CAN 3

ECU 5

ECU 6

ECU 1

ECU 2

ECU 3

ECU 8
ECU 7

local
resources CPU2

ECU2

communication network

RTE + HW interface

application 1
ECU 2 + 3

application 2
ECU 1 + 8

local
resources CPU1

ECU1

RTE + HW interface

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 7

Automotive design chain – Many players

OEM
- BMW, Daimler, GM, PSA, Toyota, …

- global system, integration and network

ECU - Supplier
-  Bosch, Delphi, Valeo, …
-  ECU responsibility Bosch Delphi Valeo

RTE - Supplier
-  Vektor, ETAS, Elektrobit,
 Mentor, … HW Component - Supplier

-  Infineon, Freescale, ST, Toshiba, …

specs ECUs

specs SoCs

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 8

Software standardization

 objectives
  reuse and portability of applications
 system optimization
 defined interfaces for supply chain with

standardized methods and tools

 example AUTOSAR
 automotive standard software architecture
 virtual functional bus for integration
  run time environment (RTE)

for specific ECUs

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 9

The safety challenge

 embedded systems are increasingly used to
  implement advanced system features
  improve safety

  in such cases, the embedded system inherits the safety and
dependability requirements of the system function
 safety related embedded systems

 such functions are no longer simple
 example: automotive electronics
 electronic steering
 camera based object recognition and tracking

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 10

source: Volkswagen

Example 1: Electronic steering
  standard equipment functions

 steering power support, speed dependent
 active centering and dampening
 straight-running function …

  upgrade equipment functions
 park assist
  lane-keeping assist

 customizable adaptivity - from sportive to an emphasis on comfort

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 11

Embedded systems architecture

  two-computer system of the steering control unit
 steering functions, motor control, and I/O handling are implemented on

the main computer
  the second computer monitors the main computer
 communication via digital interface
 exchange of high-frequency question-answer-sequences
 both computers have an independent clock and energy supply

 classification: fail-safe system function – SIL 3 (more later)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 12

Example 2: Object recognition and tracking

 may be used as safety feature (collision avoidance) – SIL3?
 FPGA (or multi-core DSP)
 more than 100 GOp/s (algorithmic)
 power constrained (temperature)

camera scene w.
object motion vectors

IMAPCAR DSP
(source: Renesas)

FPGA prototype
source:

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 13

Safety functions are distributed

Source: S. Kuntz, Continental

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 14

Distributed brake function

Source: S. Kuntz, Continental

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 15

Avionics: Airbus 380 – AFDX based network

Source: J-B. Itier. A380 Integrated Modular Avionics
Artist2 meeting 2007

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 16

Safety critical applications extended to open
networks – Example traffic (ARTEMIS SRA)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 17

Integration covers several industrial sectors

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 18

Merging functions with different criticality levels

  integration on one platform leads to systems with applications of
different safety requirements
 strict separation too expensive
 mixed (safety) criticality systems

 mutual dependency via platform and sensors/actuators requires
safety concept and qualification/certification for all functions
 data often missing for less safety critical functions
 high cost for qualification process of all applications on a platform
 significant limitation and costs for updates

→  safety is highly relevant aspect in embedded systems integration

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 19

Safety and time criticality

 many safety critical systems have hard deadlines
 such systems are both safety

and time critical

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 20

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 21

Safety standards

  the design of safety-related systems is driven by safety standards
  safety standards contain
  rules and regulations for all design system
  recommended guidelines for the development process

  safety standards cover all stages of the development process
  specification
  design
  implementation
  test
  maintenance

  objective of safety related design
  avoid unacceptable risk
  assure functional safety

21 TU Braunschweig

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 22

  safety: Freedom from unacceptable risk of physical injury or of
damage to the health of people

  functional safety: refers to the safety of system functions
  risk is characterized by two properties
  frequency of hazardous events
 severity of hazardous events

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 23

  The idea: frequency-severity tradeoff

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 24

Functional safety – a short overview

 safety standards (IEC 61508, ISO 26262) classify systems according
to frequency and severity of functional failures

 a safe system can handle faults without causing severe functional
failures

  terminology

FAULT
 (error source,
e.g. radiation)

ERROR
 (unexpected state)

FAILURE
 (function violation)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 25

  IEC 61508
  generic standard for safety-related systems

  ISO 26262
  safety standard for automotive domain

  DO 178B, DO 254
  safety standards for aerospace domain

  IEC 61511, IEC 62061
  safety standards for factory automation domain

  EN 50126, EN 50128, EN 50129, EN 50159-1, EN 50159-2
  safety standards for rail domain

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 26

IEC 61508 – Overview

 provides methods to assess the risk of functions
 based on metrics of severity and frequency of failures

  introduction of safety in the lifecycle, which consists of
 management of functional safety, e.g. enforcement of independent review

processes of safety-related components
 enforcement of verification and evaluation methods to assure functional

safety
 dedicated hardware and software development methods and processes

  further parts of IEC 61508
 glossary
 application examples and guidelines

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 27

IEC 61508 – Metrics

  reference standard that is used to derive other standards
(e.g. ISO26262)

 metric: “Safety Integrity Level” – SIL
 defines four degrees of safety: from 1 (lowest) to 4 (highest)
 specification of maximum failure rates for each level

SIL Low demand mode: average
probability of failure on demand

High demand or continuous mode:
probability of dangerous failures per

hour

1 > 10-2 to < 10-1 > 10-6 to < 10-5

2 > 10-3 to < 10-2 > 10-7 to < 10-6

3 > 10-4 to < 10-3 > 10-8 to < 10-7

4 > 10-5 to < 10-4 > 10-9 to < 10-8

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 28

 basic principle: apply reliability analysis to verify that safety
requirements are satisfied
 assumption: required safety level is known a priori  hazard analysis

and risk assessment not considered

  IEC 61508 does not directly support mixed criticality systems
 “An E/E/PE safety-related system will usually implement more than one
safety function. If the safety integrity requirements for these safety
functions differ, unless there is sufficient independence of
implementation between them, the requirements applicable to the highest
relevant safety integrity level shall apply to the entire E/E/PE safety-
related system.”

  reliability analysis can help to close this gap!
 more later

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 29

Functional safety – ISO 26262

  ISO 26262 basically similar to IEC 61508
  includes risk classification
 defines development processes and method for saftey-critical automotive

system
  FMEA (failure mode and effect analysis), FTA (fault tree analysis)

  ISO 26262 defines ASIL 1-4 (automotive SIL) analogous to IEC
61508 SIL

  includes risk analysis and ASIL assessment process according to
parameters severity, exposure and controllability
  risk as a function of frequency f and severity S: R = F (f, S)
  frequency as a function of exposure E and controllability C: f = E x C

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 30

C1 C2 C3

S1

E1 QM QM QM
E2 QM QM QM
E3 QM QM A
E4 QM A B

S2

E1 QM QM QM
E2 QM QM A
E3 QM A B
E4 A B C

S3

E1 QM QM A
E2 QM A B
E3 A B C
E4 B C D

note: the class QM (Quality Management) denotes “no requirement” according to
ISO 26262

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 31

  gap to IEC 61508: ISO 26262 provides no formal failure rate specification
such as 61508

  however: approximate mapping is possible based on the term of
“observable incident rate” introduced in ISO 26262

  the observable incident rate is based on relevant field data
  basically observable incident rate is used for the proven in use argument
 “Proven in use argument is an alternate means of compliance with

ISO26262 requirements that may be used in case of reuse of
existing items or elements when field data is available.”

ASIL Observable incident rate

D <10-8/h

C <10-7/h

B <10-7/h

A <10-6/h

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 32

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 33

Embedded systems functional failures
 embedded system (ES) functional failures are not necessarily

catastrophic
 effect depends on the importance of the failing function for the

overall system
  function criticality

 criticality depends on the overall system functionality
  fail safe

if the ES function fails there is a safe function backup or a safe system
state that avoids severe consequences
(mechanical steering, hydraulic brake, emergency stop)
 ES is not critical but important for quality

  fail operational (fault tolerant)
the function continues based on system redundancy or turns to an error
mode with reduced functionality (graceful degradation)
 ES function is critical, but possibly only needs a specific function

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 34

Safety and time criticality - Reminder

 many safety critical systems have hard deadlines
 such systems are both safety

and time critical

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 35

Embedded system functional failures and timing

 ES functions have different criticality
 depending on the overall system

 where timing is specified, it becomes part of the function criticality
 ES timing failures are ES functional failures

 switching to error modes is time critical
 switching needs hard deadlines to guarantee overall system function

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 36

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 37

Safety challenges in ES integration

 sharing resources is hard to avoide in cost efficient systems
 shared (open) network
 shared on-chip network, shared memories, …

  is it possible to integrate several subsystems and avoid
interference?
  this would be important for mixed criticality systems
  non-critical parts are less verified and not designed for worst case

 would reduce verification/certification/integration cost

 standards require separation in case of shared resources
 Reminder (IEC 61508)

“… If the safety integrity requirements for these safety functions differ,
unless there is sufficient independence of implementation between them,
the requirements applicable to the highest relevant safety integrity level
shall apply to the entire E/E/PE safety-related system.”

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 38

Reminder – Automotive network

gateway

ECU 4
CAN 1 CAN2

CAN 3

ECU 5

ECU 6

ECU 2

ECU 8

ECU 1

ECU 7

communication network

application 1

ECU 1 ECU 8

RTE + HW
interface

RTE + HW
interface

application 2

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

safety critical non safety critical ECU 3

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 39

Critical application using network - Consequence

application 1

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

application 2

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

safety
critical

non
safety
critical

communication network

application 1

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

application 2

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

safety level?

safety critical
components

unsafe
access

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 40

Separation - Principle

communication network

application 1

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

application 2

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

safety critical
components

 partitioning into certified/qualified core components that control
the resources used for any of the critical applications
 basic software incl. RTE
 communication
 shared resources used for critical applications

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 41

Automotive network – Affected system parts

 application of safety standard
affects large part of the system
 single criticality on safety critical

ECUs
 mixed criticality on other parts

gateway

ECU 4
CAN 1

CAN 3

ECU 5

ECU 6

ECU 2

ECU 8

ECU 1

ECU 7

ECU 3

CAN2

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 42

Example Automotive - Communication

 CAN
 multi master, non synchronized
  static priority non preemptive (SPNP)
  needs formal analysis to guarantee arrival of critical messages
  error handling protocol

 FlexRay
  fixed sequence of static segments with TDMA protocol and dynamic

priority assigned segments – cyclo-static repetition
  time synchronized, multi master
  guaranteed resource share for each communication channel

 gateways
  proprietary solutions

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 43

Separation on CAN

 assumptions
 all senders adhere to their priority i (message id)
 no two messages of the same type or priority are on the bus
  requires that latest deadline is at end of period

 buses are not overloaded (U < 100%), messages don‘t miss deadlines
  then (simplified):

  for CAN: all Ci equal (constant frame size)
⇒  worst case response times only influenced by higher priority messages
⇒  critical communication independent of other communiation if

 given higher priority (no RMS ⇒ non optimal scheduling)

•  Ri response time message i;
Ti min. period

•  Ci execution/frame transmission time
•  hp(i) higher priority messages

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 44

Separation on FlexRay

 assumptions
 all senders adhere to the TDMA schedule
 all clocks are synchronized
 messages don‘t miss deadlines if TDMA schedule is regarded
  then (simplified) for the static segment:

⇒  worst case response times not influenced by any other message
⇒  complete separation of logic channels

Ri response time task i; tMi time
Ci execution/frame transmission time
tTDMA TDMA cycle time

Bus

frame separation
tTDMA

tM1 tM3 tM1 tM3 tM2 tM2

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 45

Separation on CAN and FlexRay

 both bus protocols support separation of critical from non critical
messages
 FlexRay static segment enables separation of all messages, CAN

provides an asymmetric separation
 all senders must give guarantees
 CAN: keep message priorities (hardware based conflict resolution)
  FleyRay: adhere to global time and TDMA schedule

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 46

Separation in processing units

 uses same scheduling principles as communication
 static priority driven scheduling – automotive: OSEK/VDX and AUTOSAR
 TDMA – avionics: ARINC 653
 main principles used in (mixed-critical) practice
  others proposed

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 47

Scheduling in OSEK/VDX and AUTOSAR

 ECUs typically uses OSEK/VDX RTE
 static priority preemptive scheduling (SPP)
  can be restricted to preemption points

  three priority blocks
  interrupt – scheduling – task level

  task level w. periodic task execution
 Rate Monotonic scheduling
  offsets for load bounding

 PCP protocol to bound
blocking by resource arbitration

 no standard memory access
protection

interrupt level
activated by interrupt

logical level
scheduling activities

task level

priority

source: OSEK/VDX standard V2.2.3

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 48

Separation in processing units

 ARINC 653 – Integrated Modular Architecture IMA
 several systems with separate OS implemented on one CPU
 separated address and memory spaces (requires MMU)

Source: Wind River, 2008

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 49

Separation in processing units

 ARINC 653
 partitions are assigned to time windows TPi iterating over a major Time

Window MAF
 execution can exceed single time window
 supports scheduling hierarchies

source: Ch. Ficek, Symtavision

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 50

Separation in RTOSs

  timing separation similar to communication examples
 separation of memory and device usage requires access control
 approaches: virtualization or memory (address) protection

 consequence
 all RTOS mechanisms needed for separation must be subject to the

highest level of criticality in the system

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 51

Virtualization - principle

  decoupling of virtual and physical resources
  a virtual machine monitor (VMM) administers physical resources such as

processors (CPU time), memory, peripherals
  In classical desktop/server virtualization the VMM splits the physical

computing platform into independent virtual platforms
  some use cases
 consolidation of services on one physical platform
  running different/legacy Oses on the same platform
 containment of services in its own virtual platform
 architectural abstraction: a virtual machine can

easily be migrated

HW
VMM

OS OS

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 52

Virtualization techniques

 paravirtualization
 explicit API interface between guest OS and VMM
  example XEN: guest OS calls HYPERVISOR_mmu_update  Xen

updates the MMU
  (proprietary) guest OS must be ported to the VMM API
  hardware emulation required  fast

  full/hardware virtualization
  relies on Hardware Support (Intel VT/ AMD Pacifica)
 VMM emulates the standard hardware (e.g. chipset, ethernet)
 when an IOMMU is present: phyical peripherals can be mapped into the

guest OS
 slower than paravirtualization, but supports legacy/propriatary OSs

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 53

Virtualization in embedded systems

  integration of mixed-critical applications supported by
virtualization

 challenges
 VMM introduces additional timing latency
 Shared resources on multi-core architectures (memory, IO)
 Additional cache misses and additional IRQ sources

 see ARINC653

HW
VMM

OS RTOS

UI
RT App

timing isolation

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 54

Mixed critical applications in
multi-core architectures

local
res.

core1 local
res.

core2

shared
res. safety critical

components

safety level?

certification?

MC-ECU

application 1

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

application 2

ECU 2 ECU 3

RTE + HW
interface

RTE + HW
interface

safety
critical

non
safety
critical

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 55

Multi-core separation - Principle

 partitioning into certified/qualified core components that control
the resources used for any of the critical applications
 basic software incl. RTE
 communication
 shared resources used for critical applications

local
res.

core1 local
res.

core2

on-chip communication network

basic software

application 1 application 2 SW architecture

HW architecture

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 56

Separation in multi-core architecture

 standard approach for
separation - isolation
 separate address

spaces and cores
  possibly controlled

by hypervisor
(virtualization)

 only allow event and
data flow from higher
criticality to lower
criticality
 (safety requirement)

  is this sufficient?

Multi-core example: Freescale MP5565

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 57

Multi-core example continued

 assumption
  two cores integrating applications

with different criticality levels

  isolated address space

 CPU2 cannot interfere with CPU1
data

  Independent core scheduling

  tasks access local and global shared
resources (e.g. shared SRAM)

 consequence
  functions are isolated

 but is timing isolated, as well?

Core1 Core2

Multi-Core
Processor

Local
memory

Local
memory

Shared
memory

Safety-Critical
(qualified)

CPU1 Local
memory

Non-Safety-Critical
(not qualified)

CPU2 Local
memory

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 58

Example: Multi-core Cell Broadband Engine

PPE: 64 bit Power (5) processor with 2 level cache architecture as main controller
SPE: Synergistic Processor Element – specialized processor
MFC: Memory Flow Control (DMA)
EIB: Element Interconnect Bus- high speed ring bus
MIC: Memory Interface Controller; IOC: IO Controller Source: IEEE Micro

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 59

CBE memory model – Local and global memory maps

SPU
register file

local
memory

MMU

local physical
addresses of
SPU

DMA
address
translation

EIB
global addresses
of CBE

MFC

  isolation of address space
 SPEs work on local memory
 global address translation

controlled by global processor (PPE)

 but: all cores share the
same bus and external
memory
 mutual timing

influence
(complicated)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 60

A closer look at timing: Single-core execution

Preemption Cache Miss / Stalling

SRAM

CPU1

Execution

Single-Core
execution

Task Activation

ThighPriority

TmediumPriority

  on CPU1
  when a task is waiting for the SRAM the

processor is stalled (“micro lock”)

  ThighPriority and TmediumPriority initiate requests for
the SRAM and have to wait for the required data
 causes additional delays on the execution

of other local tasks

Safety-Critical
(qualified)

WCRT (Thigh)
WCRT (Tmedium)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 61

Application timing dependencies in multi-core

preemption
stalling

single core
execution
(with stalling)

memory

CPU1

increased worst-case response time!!

memory

CPU1

CPU2

multi-core
execution

execution competing accesses to shared resources
challenge worst-case execution time
assumptions!

time

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 62

Single core
Multi-core

Single core

Multi-core

Preemption Cache Miss / Stalling

SRAM

CPU1

SRAM

CPU1

CPU2

Execution

ThighPriority

TmediumPriority

ThighPriority

TmediumPriority

TlowPriority

 (WCRT: worst-case
response time)

TmediumPriority experiences
a new preemption by the
higher priority local task.

single core
execution

multi-core execution
(SRAM is shared)

WCRT (Thigh)

WCRT (Tmedium)

WCRTs of the high
priority tasks on
CPU1 increase
due to shared

SRAM conflicts!

CPU1 has to wait if CPU2
has ongoing requests.

Task Activation

Competition for shared resources – a closer look

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 63

Example - System parameters

Scheduling Mapping Task Priority
P(1)>P(3)>P(5)>P(6)

Activation
Period

WCET # Memory
Accesses per

execution

Memory
Arbitration

SPP Core 1 T1 1 250 50 5 FCFS

Core 1 T3 3 800 360 12

SPP Core 2 T5 5 1500 500 5

Core 2
(after

update)

T6 6 10000 1200 10

Modeled and analyzed with:

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 64

Integrate safety critical and non safety critical
cores – SW update
 update on Core 2 challenges timing on

Core1

W
or

st
-C

as
e

R
es

po
ns

e
Ti

m
e

(T
1)

Distance between memory requests
Initiated by task T6

Total Memory Access Times in % * execution (T6)

Safety-Critical
(qualified)

Non-Safety-Critical
(not qualified)

T6

Update on the Non-Safety-Critical
Core

 Low priority task T6 also
accesses the Shared Memory

(e.g. performs burst of requests to
the shared memory)

In case requests initiated by T6
are close and the size of all

memory accesses is larger than
20% of the execution of T6 the
system is not-schedulable !!!

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 65

Timing hazards when using shared resources 1/2

 common use of the SRAM among cores – observed effects
 SRAM accesses by low priority tasks on one CPU may slow down other

tasks on another CPU
  affects low and high priority tasks likewise
  counters priority assignment on the cores - priority inversion

 WCRT may even increase super-linearly due to additional preemptions
(shown for Tmedium priority in the example)

 as CPUs are stalled when tasks are waiting for the shared memory the
load on these CPUs will increase

 problem demonstrated for accesses to shared SRAM, but the same
reasoning applies to semaphore protected critical sections and other
shared resources

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 66

Timing hazards when using shared resources 2/2

 example shows high potential impact of non-critical on safety
critical task despite high task priority and isolation
 dangerous if software bugs in non-critical system with lower verification

requirements (e.g. infinite loop w. memory access)
  requires physical separation or (re-)certification including non-critical

part
  extra cost!

 Note: Virtualization alone does NOT help!

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 67

Controlled separation for many-core systems

 separation must include NoC and on-chip memories
 suggested approaches typically use strict resource separation
 example: NXP Aetheral NoC , …
 challenge: efficiency (performance loss)

 possible improvement
 budgeting
 channel separation
 arbitration control for service guarantees

Hard-RT Soft-RT

General-
purpose

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 68

The missing links

 efficient separation of critical NoC traffic with minimized negative
effect on non-critical traffic
 avoid crossbar to enable many-core ICs

  include resource access protection
 avoid resource overutilization by non critical applications

 example: IDAMC

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 69

Integrated Dependable Architecture for Many
Cores (IDAMC)
  general purpose system with

support for mixed-criticality
  safety-critical real-time
  timing guarantees

  best-effort, e.g. office, games,
  latency sensitive

  4-64 nodes
 mesh NoC with QoS
  up to four tiles per Node

  hardware mechanisms for
  virtualization at NoC-Level
 monitoring (timing and power)
  on-chip data transport, c2c communication Image: Synopsys

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 70

Tiles

 each tile is a complete system
 AMBA bus
 LEON3 CPU and/or memory, peripherals

 network interface (NI) connects to NoC

LEON3
Processor

Debug Support
Unit

JTAG Debug
Link

AHB

APB

High Bandwidth
Peripherals

On-Chip
Memory

IDA NI AHB
Controller

AHB/APB
Bridge

Memory
Controller

Interrupt
Controller

Low Bandwidth
Peripherals SDRAM I/O PROM IDA NoC

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 71

Network Interface (NI) - Architecture

  interface to AMBA bus
 system-virtualization of

remote resources
 Address remapping
  Interrupt mapping
 Routing
 Virtual Channel selection

 configured by trusted central
system controller

 monitoring
 error detection and isolation

Master Interface Slave Interface

Output Buffer

Paketization

Address
Translation and

Routing

Depacketization

Input Buffer

M
onitoring

C
ontrol

AMBA AHB Bus

IDA NoC

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 72

System domain address translation

Node S

W

N

E R

Virtual

MMU

Physical SDAT
IDA NI

  translate tile-local physical address to system-wide address
  flags to limit access (e.g. read-only)
  route = address to remote tile
  target address = base address in remote tile

Route T. addr. 0000

Region Offset

Route T. addr. 0001
Route T. addr. …
Route T. addr. 1111

Local tile (physical) address

Base A. Offset
Destination tile address

Packetization

F
F
F
F

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 73

IDAMC – NoC
characteristics of application/traffic classes

 best-effort applications
 most existing applications, major role in user

experience
 unpredictable and bursty resource usage
  latency-sensitive: Application performance

degrades with higher latency

  real-time streaming applications
  require resource and timing guarantees
  resource sharing must be under control for

efficient co-execution
  regular access patterns  latency-tolerant:

performance does not degrade with higher
latency (up to a certain latency bound)

Utility
(~Performance)

Latency
Utility

Latency

Hard RT

Soft RT

Best effort

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 74

Input Unit

Crossbar

Output
Unit

Routing
VC

Allocator

Switch
Allocator

Output
Unit

●
●
●

●
●
●

Input Unit

●
VC
●

●
VC
●

QoS-Support for traffic isolation in the router 1/2

 manage contention at router’s
outputs
 static isolation
  e.g. time-division multiple-access

(AEthereal [Goossens], SuperGT [Marescaux])
  service independent of other streams

 dynamic isolation
  e.g. prioritization

(MANGO [Bjerregaard], QNoC [Bolotin], [AlFaruque],
Globally-Synchronized Frames [Lee])

  service depends on the behavior of
other streams

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 75

Input Unit

Crossbar

Output
Unit

Routing
VC

Allocator

Switch
Allocator

Output
Unit

●
●
●

●
●
●

Input Unit

●
VC
●

●
VC
●

QoS-support for traffic isolation in the router 2/2

 existing QoS do guarantees first!
 best-effort traffic = “second-class

citizen”
 BE traffic suffers from high latency
 RT traffic has no benefit from

reduced latency (deadline driven)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 76

Input Unit

Crossbar

Output
Unit

Routing
VC

Allocator

Switch
Allocator

Output
Unit

●
●
●

●
●
●

Input Unit

●
VC
●

●
VC
●

Solution: QoS support for latency sensitive traffic

  idea:
exploit latency tolerance of RT
streaming applications to improve
BE latency

 approach: prioritize BE as long as
guaranteed throughput (GT) traffic
makes sufficient progress
 Distributed Traffic Shaping (DTS)
 Back Suction (BS)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 77

Goal: Guarantees and low BE latency

Utility

Latency

Hard RT

Soft RT

Utility

Latency

Real-time Traffic Best-Effort Traffic

Throughput guarantees

Limited prioritization

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 78

Back Suction (BS)

 Prioritize RT traffic based on downstream buffer occupancy
 Threshold Module at every VC
 Forward back suction signal on low occupancy towards upstream
 Threshold determines how early prioritization of RT propagates

towards sink

 Limit rate (to guaranteed rate) at which sink may assert back suction

Thr. Thr.

Rate
Limit

Arbiter Thr. Arbiter Thr.
Back

Suction

Router 1 Router 2 Sink

RT VC RT VC
GT stream

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 79

Formal timing analysis for BS and DTS

  formally analyze routers iteratively (starting at sink)

 analysis guarantees GT timing if back suction enforced
 uses Compositional Performance Analysis

- based on SymTA/S tool

  future work: admission control performed on-line
as part of resource management process

Router 1 Router 1 Sink 1

Sink 2

Source

Application
model

Mapping

Constraint
validation

Enforcement

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 80

Result: Guarantees and improved BE latency

 mechanism provides throughput guarantees to individual real-time
streams

 BE latency is improved significantly
 application runtime improves accordingly

~ 30% latency
improvement over
standard prioritization
scheme

Improve application
performance by
>10%

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 81

IDAMC - Summary

 efficient separation of critical NoC traffic with minimized negative
effect on non-critical traffic
 back suction gives priority to non-critical traffic granting the

requirements of critical traffic
 exploits full qualification of critical process that includes accurate

requirement definition

  include resource access protection
 external access control protects against accesses from non-critical

applications
 overutilization by non-critical applications constrained by NoC QoS

control

 consequence
 all NoC components and central access and traffic control must be

qualified at the highest criticality level in the system

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 82

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 83

Technology trends – Reliability issues

  reliability is an important challenge in future technology
generations
 growing system complexity combined with continuous technology

downscaling  increasing error rates

 appropriate techniques necessary to prevent failures
  fault isolation
 error detection and correction
  bus/network: message retransmission, forward error correction
 CPU/ECU: redundancy, rollback techniques, microarchitectural

measures

 problem: predictability of system reliability
 how does the system behave in case of errors?
 what are consequences for the user / for the environment?
 what is the failure probability?

83 TU Braunschweig

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 84

Fault handling for higher criticalities

  for higher safety requirements separation is necessary but not
sufficient
  isolation still requires correct hardware function
 hardware failures must be included when hardware is less reliable than

safety requirements
 embedded systems trend
  reliability of technology ↓
  safety requirements ↑
  hot industrial topic!

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 85

Fault handling for higher criticalities

 handling of static and transient hardware faults required
  reliability requirements are often quantified
  requires predictable failure bounds

  IEC 61508

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 86

From ES faults to ES failures

 distinguish static and transient ES errors
 static errors have permanent effects requiring redundancy for repair
  transient errors are usually more frequent (EMC, new semiconductor

technologies, …) but can often be masked when detected
  transient error masking can cause timing errors

Unexpected
internal state

 ERROR

Result/Service
within the
specification

Result/Service
violates the
specification

 FAILURE

Violation of functional
specification
 incorrect functionality

Violation of temporal
specification
 incorrect timing

1 0
3+4=7 3+4=8

Deadline
t

FAULT

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 87

Transient error handling

  transient error handling known from communication
 example: CAN (automotive)

 CAN has error detection capabilities (CRC)
  repeats message in case of transmission error using defined protocol
 CAN functional fault tolerance increases timing and load!

ECU1
fault detection (HW/SW)
bus
fault detection (HW/SW)
ECU2

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 88

Reliability analysis – General concept

τ2

τ1 τ1,2 τ1,1 τ1,3

error tree
analysis

working
set W5

probability
analysis

P[S1,1]
P[S2,1]
P[S3,1]
P[S1,2]
P[S2,2]

P[S3,2]
P[S1,3]

R1(t) = P[S1,1S1,2S1,3]

τ2,2

τ3

a)  timing prediction

b)  success probability calculation

c)  reliability probability composition

error tree
analysis

working
set W5

probability
analysis

error tree
analysis

working
set W5

probability
analysis

error tree
analysis

working
set W5

probability
analysis

error tree
analysis

working
set W5

probability
analysis

error tree
analysis

working
set W5

probability
analysis

error tree
analysis

working
set W5

probability
analysis

τ2,1

τ3,1 τ3,2 a)

b) c)

R2(t) = P[S2,1S2,2]
R3(t) = P[S3,1S3,2]

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 89

 SAE benchmark frame set
 periodic system, deadline end of period
 approximately 5 x 106 activations per hour
 bus load approx. 70 % (CAN at 150 kbit/s)

 error model
 BER = 10-7 [Ferreira, 2004]
  residual errors according to [Charzinksi, 1994]

MTTFfunc 2 x 1012 h

MTTFtime 1,8 x 105 h

SIL 4

SIL 1
7 orders of magnitude more likely to miss end-of-period deadline!
(for single error fault model)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 90

Lessons to be learned from communication

  functional errors can efficiently be detected
  redundancy in time (message resend) is efficient

  timing failures can be much more likely than residual errors
 even at moderate load
 due to failures at points with peak load

 consider peak load situations!

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 91

 communication can easily incorporate fault-tolerance
 EDC + retransmission (CRC, parity, hashes)
 ECC (Hamming, Turbo, …)

 computation is much harder to protect
 entire processor affected
 control and data flow (including IP cores)
 errors can propagate

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 92

VLSI failure modes and fault-tolerance
  different failure modes of transistors
  permanent errors (electromigration  stuck-at-error)
  soft errors (SEUs, cosmic-radiation, thermal neutrons)
  stress induced transient errors (transistor variability, NBTI, PBTI  Vt shift)

  soft errors and transient effects are expected to dominate
  all fault tolerance methods are based on redundancy
  spatial redundancy
  dual modular redundancy (DMR): (single) errors will be detected
  triple modular redundnacy (TMR): (single) errors can be corrected

  temporal redundancy (e.g. reevaluation on the same processor)
  slightly worse coverage (permanent errors not detected)
  high impact on timing (additional workload)
  can also be used for recovery (checkpointing & rollback)

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 93

Traditional DMR (e.g. lockstep architecture) 2/2

 DMR does not scale for mixed-critical systems
 not all applications need fault tolerance

 mixed-criticality example
 2 critical, 3 uncritical applications
 system lockstep: total overhead factor 2
 overhead caused by uncritical apps: 1.6

non critical

critical

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 94

Task level DMR (fine grained)
  replicate individual tasks only where needed
  comparisons is based task state (e.g. comparison at output)
  result can be verified if results from both instances are available
  DMR creates feedback from core1 on core2 and vice versa

  redundant copies induce higher load on other tasks
  additional overhead through core-to-core communication (comparison)
  timing analysis is necessary to prove correctness

free resources can
be used by other
uncritical apps

result result result result

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 95

Fingerprinting

 compact state to “fingerprint” reduce core-to-core communication and
comparison overhead

 compare execution fingerprints (Smolens et al., 2004)
 efficient, low bandwidth, high coverage

Core

fault tolerant interconnect

…
MPSoC IF

ID

EXE

MEM

WB
Fingerprint

Register

+

Pipeline

fault tolerant memory

Core Core

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 96

Recovery – Typical methods

 system reset
 usually infeasible in hard real-time systems

 switch to fail-safe mode (e.g failed active steering  fallback to
mechanical solution)

 checkpointing and rollback recovery
 save state in regular intervals and store it on reliable memory
  in case of errors, restore most recent state
  impact on timing on all (lower priority) tasks in case of errors

  recovery methods lead to timing overhead!
 cp. resend in communication
 use timing analysis

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 97

Modeling of fine grained redundancy

  task τi is split into n segments
  identical replications of task is distributed among e.g. k cores (e.g. 2)
 voting on intermediate result (fingerprint) is performed in

arbitrary (but known) intervals
 use an equivalent task graph as a model

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 98

Recovery operations

 non-matching fingerprints  recovery required
 we model checkpointing and rollback
 right before each segment, the state is saved to ECC protected

memory
 in case of an error, a correct state is restored
 overhead for checkpointing and restoration: tcov, trov

te + tcov
te + trov

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 99

Timing failures – Re-execution example (simplified)

T2	

T1	

T1	

T3	
 Preemption

Execution

Activation

Reexecution

comparison of intermediate results

Recovery

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 100

Accuracy – comparision with Monte Carlo analysis

Task Priority – Mapping
core1/core2 T C Checkpoints Creation Recovery

T0 3/2 300 60 2 10 20
T1 4/- 250 50 -
T2 2/- 100 10 -
T3 -/1 300 50 -
T4 1/3 600 40 2 10 20

Overhead
•  Checkpoint Creation
•  Recovery

λ1,2 = 1/10 sec

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 101

Design tradeoffs - Checkpointing

  checkpointing itself can be a „critical
section“

  for this experiment we assume, that an
error during checkpointing causes a
system failure

λ = 1/week

  assume fault-tolerant checkpointing
  implementation

  e.g. ECC memory protection &
bus EDC

  dual (redundant) DMA engines

λ = 1/week

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 102

Redundant DMA engines for checkpointing

DMA
unit 1

DMA
unit 1

Memory 1

Memory 2

DMA
unit 2

DMA
unit 2

DMA
unit 2

DMA
unit 2

checkpoint is copied by two different DMA engines to different memories

DMA
unit 1

DMA
unit 1

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 103

Tradeoffs – No. of checkpoints 1/2

 experiment 1: low checkpointing overhead: 0.1ms
 R(t) increases with the amount of checkpoints

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 104

 experiment 2: high checkpointing overhead: 1ms
 R(t) decreases with the amount of checkpoints

Tradeoffs – No. of checkpoints 2/2

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 105

The cost of safety

 multi-core for highly safety critical functions require major
hardware overhead

 systems with mixed criticality bare the risk of non manageable
requirements
 vastly different design quality for safety and non-safety function

integrated on the same platform
  function isolation must be complemented by costly fault tolerance

 efficient methods for function isolation and predictable fault
tolerance are needed

 example: Project RECOMP

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 106

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 107

RECOMP

  “Reduced Certification Costs Using Trusted Multi-core Platforms”

  multi-core architectures for mixed safety critical systems
  flexible tradoff between development, certification, and hardware cost
  requires configurable core-to-core communication and separation/virtualization

technologies

  objective
  develop HW and SW architectures, design methods, and tools to efficiently design

and (re-)certify MpSoCs for mixed critical systems

  European ARTEMIS project, 41 partners, 25 Mio € budget, 2010-2013
  covers whole design chain
  semiconductors, RTOS, suppliers, integrators (OEMs)

  several industries
  automotive, aerospace, industrial

  www.recomp-project.eu

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 108

 “Internet of Energy (IoE) for Electric Mobility”
 objective
 develop hardware, software and middleware to use the Internet for future

smart energy grids incl. new applications (electric mobility)
  European ARTEMIS project, 42 partners, 45 Mio € budget, 2011-2014
 complex mixed criticality requirements
 grid stability, individual energy service, …
 economic security

  large economic
challenges
 power efficiency
 network efficiency …

IoE

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 109

 motivation
 safety critical embedded system design
 networks and multi-core systems for mixed time and safety critical

applications
  reliable systems for higher safety requirements
 example projects
 conclusion

Overview

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 110

Conclusion

 merging safety critical functions on an embedded platform typically
leads to mixed critical platform components

 mixed criticality is a serious certification cost driver and limits
update capabilities of non-critical functions

 no silver bullets for integration available
 potential integration technologies span broad design space but still

lack coherence and completeness
 project consortia dedicated to the mixed criticality challenge in

local (RECOMP) to widely distributed (IoE) systems
 much further research needed

Thank you!

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 111

  the following people have contributed to the slides
 Philip Axer
  Jonas Diemer
 Mircea Negran
 Simon Schliecker
 Maurice Sebastian

Acknowledgements

07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 112

Literature (selected)

 RECOMP http://www.recomp-project.eu/
  for the challenge of multi-core performance dependencies see

  Mircea Negrean, Simon Schliecker, Rolf Ernst. "Response-Time Analysis of Arbitrarily
Activated Tasks in Multiprocessor Systems with Shared Resources." In Proc. of Design,
Automation, and Test in Europe (DATE), Nice, France, April 2009.

  for BS and DTS
  Jonas Diemer and Rolf Ernst, "Back Suction: Service Guarantees for Latency-Sensitive On-

Chip Networks," in Proceedings of the 4th ACM/IEEE International Symposium on Networks-
on-Chip (NOCS'10), May 2010

  for fault tolerance
  Maurice Sebastian, Philip Axer, Rolf Ernst, Nico Feiertag, und Marek Jersak, "Efficient

Reliability and Safety Analysis for Mixed-Criticality Embedded Systems," SAE System Level
Architecture Design Tools and Methods, April 2011

  Maurice Sebastian, Rolf Ernst, "Reliability Analysis of Single Bus Communication with Real-
Time Requirements," in Proc. of 15th IEEE Pacific Rim International Symposium on
Dependable Computing (PRDC), (Shanghai, China), November 2009

