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Motivation 
  today’s embedded systems use complex networks 
  hundreds of  

functions 

  thousands of tasks 

  50+ ECUs 

  networked control 

  many suppliers 

  heterogeneous 

  networks are an  
efficient platform  
for systems integration  source: Daimler 

55 ECUs & 7 Buses of 4 types with gateways 
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Growing Network Complexity 

source: T. Bone, Daimler 
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Motivation 
 networks lead to component sharing and networks for different 

functions 

CAN2 

gateway 

ECU 4 
CAN 1 CAN 2 

CAN 3 

ECU 5 

ECU 6 

ECU 1 

ECU 2 

ECU 3 

ECU 8 
ECU 7 

local 
resources CPU2 

ECU2 

communication network 

RTE + HW interface 

application 1 
ECU 2 + 3 

application 2 
ECU 1 + 8 

local 
resources CPU1 

ECU1 

RTE + HW interface 
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Automotive design chain – Many players 

OEM 
- BMW, Daimler, GM, PSA, Toyota, … 

- global system, integration and network   

ECU - Supplier 
-  Bosch, Delphi, Valeo, … 
-  ECU responsibility Bosch Delphi Valeo 

RTE - Supplier 
-  Vektor, ETAS, Elektrobit,  
  Mentor, … HW Component - Supplier 

-  Infineon, Freescale, ST, Toshiba, … 

specs ECUs 

specs SoCs 
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Software standardization 

 objectives 
  reuse and portability of applications 
 system optimization  
 defined interfaces for supply chain with 

standardized methods and tools 

 example AUTOSAR 
 automotive standard software architecture 
 virtual functional bus for integration 
  run time environment (RTE) 

for specific ECUs 
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The safety challenge 

 embedded systems are increasingly used to  
  implement advanced system features 
  improve safety 

  in such cases, the embedded system inherits the safety and 
dependability requirements of the system function 
 safety related embedded systems 

 such functions are no longer simple  
 example: automotive electronics 
 electronic steering 
 camera based object recognition and tracking 
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source: Volkswagen 

Example 1: Electronic steering 
  standard equipment functions 

 steering power support, speed dependent 
 active centering and dampening 
 straight-running function … 

  upgrade equipment functions  
 park assist 
  lane-keeping assist 

 customizable adaptivity  - from sportive to an emphasis on comfort 
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Embedded systems architecture 

  two-computer system of the steering control unit  
 steering functions, motor control, and I/O handling are implemented on 

the main computer 
  the second computer monitors the main computer 
 communication via digital interface 
 exchange of high-frequency question-answer-sequences 
 both computers have an independent clock and energy supply 

 classification: fail-safe system function – SIL 3 (more later) 
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Example 2: Object recognition and tracking  

 may be used as safety feature (collision avoidance) – SIL3? 
 FPGA (or multi-core DSP) 
 more than 100 GOp/s (algorithmic)  
 power constrained (temperature) 

camera scene w.  
object motion vectors 

IMAPCAR DSP 
(source: Renesas) 

FPGA prototype 
source:              
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Safety functions are distributed 

Source: S. Kuntz, Continental 
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Distributed brake function 

Source: S. Kuntz, Continental 
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Avionics: Airbus 380 – AFDX based network 

Source: J-B. Itier. A380 Integrated Modular Avionics 
Artist2 meeting 2007 
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Safety critical applications extended to open 
networks – Example traffic (ARTEMIS SRA)    
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Integration covers several industrial sectors 
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Merging functions with different criticality levels 

  integration on one platform leads to systems with applications of 
different safety requirements 
 strict separation too expensive  
 mixed (safety) criticality systems 

 mutual dependency via platform and sensors/actuators requires 
safety concept and qualification/certification for all functions 
 data often missing for less safety critical functions 
 high cost for qualification process of all applications on a platform 
 significant limitation and costs for updates 

→  safety is highly relevant aspect in embedded systems integration 
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Safety and time criticality 

 many safety critical systems have hard deadlines 
 such systems are both safety  

and time critical  
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Safety standards 

  the design of safety-related systems is driven by safety standards 
  safety standards contain 
  rules and regulations for all design system 
  recommended guidelines for the development process 

  safety standards cover all stages of the development process 
  specification 
  design 
  implementation 
  test  
  maintenance 

  objective of safety related design 
  avoid unacceptable risk 
  assure functional safety 

21 TU Braunschweig 
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  safety: Freedom from unacceptable risk of physical injury or of 
damage to the health of people  

  functional safety: refers to the safety of system functions  
  risk is characterized by two properties 
  frequency of hazardous events 
 severity of hazardous events 
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  The idea: frequency-severity tradeoff 
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Functional safety – a short overview 

 safety standards (IEC 61508, ISO 26262) classify systems according 
to frequency and severity of functional failures  

 a safe system can handle faults without causing severe functional 
failures 

  terminology  

FAULT 
  (error source,  
e.g. radiation) 

ERROR 
    (unexpected state) 

FAILURE 
     (function violation) 
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  IEC 61508 
  generic standard for safety-related systems 

  ISO 26262 
  safety standard for automotive domain 

  DO 178B, DO 254 
  safety standards for aerospace domain 

  IEC 61511, IEC 62061 
  safety standards for factory automation domain 

  EN 50126, EN 50128, EN 50129, EN 50159-1, EN 50159-2 
  safety standards for rail domain 
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IEC 61508 – Overview 

 provides methods to assess the risk of functions 
 based on metrics of severity and frequency of failures 

  introduction of safety in the lifecycle, which consists of 
 management of functional safety, e.g. enforcement of independent review 

processes of safety-related components 
 enforcement of verification and evaluation methods to assure functional 

safety 
 dedicated hardware and software development methods and processes  

  further parts of IEC 61508 
 glossary 
 application examples and guidelines 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 27  

IEC 61508 – Metrics 

  reference standard that is used to derive other standards  
(e.g. ISO26262) 

 metric: “Safety Integrity Level” – SIL 
 defines four degrees of safety: from 1 (lowest) to 4 (highest) 
 specification of maximum failure rates for each level  

SIL Low demand mode: average 
probability of failure on demand 

High demand or continuous mode: 
probability of dangerous failures per 

hour 

1 > 10-2 to < 10-1 > 10-6 to < 10-5 

2 > 10-3 to < 10-2 > 10-7 to < 10-6 

3 > 10-4 to < 10-3 > 10-8 to < 10-7 

4 > 10-5 to < 10-4 > 10-9 to < 10-8 
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 basic principle: apply reliability analysis to verify that safety 
requirements are satisfied 
 assumption: required safety level is known a priori  hazard analysis 

and risk assessment not considered 

  IEC 61508 does not directly support mixed criticality systems 
 “An E/E/PE safety-related system will usually implement more than one 
safety function. If the safety integrity requirements for these safety 
functions differ, unless there is sufficient independence of 
implementation between them, the requirements applicable to the highest 
relevant safety integrity level shall apply to the entire E/E/PE safety-
related system.” 

  reliability analysis can help to close this gap! 
 more later 
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Functional safety – ISO 26262 

  ISO 26262 basically similar to IEC 61508  
  includes risk classification  
 defines development processes and method for saftey-critical automotive 

system 
  FMEA (failure mode and effect analysis), FTA (fault tree analysis) 

  ISO 26262 defines ASIL 1-4 (automotive SIL) analogous to IEC 
61508 SIL 

  includes risk analysis and ASIL assessment process according to 
parameters severity, exposure and controllability 
  risk as a function of frequency f and severity S: R = F (f, S) 
  frequency as a function of exposure E and controllability C: f = E x C 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 30  

C1 C2 C3 

S1 

E1 QM QM QM 
E2 QM QM QM 
E3 QM QM A 
E4 QM A B 

S2 

E1 QM QM QM 
E2 QM QM A 
E3 QM A B 
E4 A B C 

S3 

E1 QM QM A 
E2 QM A B 
E3 A B C 
E4 B C D 

note: the class QM (Quality Management) denotes “no requirement” according to  
ISO 26262 
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  gap to IEC 61508: ISO 26262 provides no formal failure rate specification 
such as 61508 

  however: approximate mapping is possible based on the term of 
“observable incident rate” introduced in ISO 26262 

  the observable incident rate is based on relevant field data 
  basically observable incident rate is used for the proven in use argument  
 “Proven in use argument is an alternate means of compliance with 

ISO26262 requirements that may be used in case of reuse of 
existing items or elements when field data is available.” 

ASIL Observable incident rate 

D <10-8/h 

C <10-7/h 

B <10-7/h 

A <10-6/h 
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Embedded systems functional failures 
 embedded system (ES) functional failures are not necessarily 

catastrophic 
 effect depends on the importance of the failing function for the 

overall system 
  function criticality 

 criticality depends on the overall system functionality 
  fail safe  

if the ES function fails there is a safe function backup or a safe system 
state that avoids severe consequences 
(mechanical steering, hydraulic brake, emergency stop)  
 ES is not critical but important for quality 

  fail operational (fault tolerant)  
the function continues based on system redundancy or turns to an error 
mode with reduced functionality (graceful degradation) 
 ES function is critical, but possibly only needs a specific function 
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Safety and time criticality - Reminder 

 many safety critical systems have hard deadlines 
 such systems are both safety  

and time critical  
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Embedded system functional failures and timing  

 ES functions have different criticality 
 depending on the overall system  

 where timing is specified, it becomes part of the function criticality 
 ES timing failures are ES functional failures 

 switching to error modes is time critical 
 switching needs hard deadlines to guarantee overall system function 
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Safety challenges in ES integration 

 sharing resources is hard to avoide in cost efficient systems  
 shared  (open) network 
 shared on-chip network, shared memories, … 

  is it possible to integrate several subsystems and avoid 
interference? 
  this would be important for mixed criticality systems  
  non-critical parts are less verified and not designed for worst case 

 would reduce verification/certification/integration cost 

 standards require separation in case of shared resources 
 Reminder (IEC 61508)  

“… If the safety integrity requirements for these safety functions differ, 
unless there is sufficient independence of implementation between them, 
the requirements applicable to the highest relevant safety integrity level 
shall apply to the entire E/E/PE safety-related system.” 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 38  

Reminder – Automotive network  

gateway 

ECU 4 
CAN 1 CAN2 

CAN 3 

ECU 5 

ECU 6 

ECU 2 

ECU 8 

ECU 1 

ECU 7 

communication network 

application 1 

ECU 1 ECU 8 

RTE + HW  
interface 

RTE + HW  
interface 

application 2 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

safety critical non safety critical ECU 3 
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Critical application using network - Consequence 

application 1 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

application 2 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

safety 
critical 

non  
safety  
critical 

communication network 

application 1 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

application 2 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

safety level? 

safety critical 
components 

unsafe  
access 
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Separation - Principle 

communication network 

application 1 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

application 2 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

safety critical 
components 

 partitioning into certified/qualified core components that control 
the resources used for any of the critical applications 
 basic software incl. RTE 
 communication  
 shared resources used for critical applications 
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Automotive network – Affected system parts 

 application of safety standard 
affects large part of the system 
 single criticality on safety critical 

ECUs  
 mixed criticality on other parts 

gateway 

ECU 4 
CAN 1 

CAN 3 

ECU 5 

ECU 6 

ECU 2 

ECU 8 

ECU 1 

ECU 7 

ECU 3 

CAN2 
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Example Automotive - Communication 

 CAN  
 multi master, non synchronized 
  static priority non preemptive (SPNP) 
  needs formal analysis to guarantee arrival of critical messages 
  error handling protocol 

 FlexRay 
  fixed sequence of static segments with TDMA protocol and dynamic 

priority assigned  segments – cyclo-static repetition 
  time synchronized, multi master 
  guaranteed resource share for each communication channel 

 gateways 
  proprietary solutions 
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Separation on CAN  

 assumptions 
 all senders adhere to their priority i (message id)  
 no two messages of the same type or priority are on the bus  
  requires that latest deadline is at end of period 

 buses are not overloaded (U < 100%), messages don‘t miss deadlines 
  then (simplified): 

  for CAN: all Ci equal (constant frame size) 
⇒  worst case response times only influenced by higher priority messages 
⇒  critical communication independent of other communiation if 

  given higher priority     (no RMS ⇒ non optimal scheduling) 

•  Ri response time message i;  
Ti min. period 

•  Ci execution/frame transmission time 
•  hp(i) higher priority messages 
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Separation on FlexRay 

 assumptions 
 all senders adhere to the TDMA schedule 
 all clocks are synchronized  
 messages don‘t miss deadlines if TDMA schedule is regarded 
  then (simplified) for the static segment: 

⇒  worst case response times not influenced by any other message 
⇒  complete separation of logic channels 

Ri response time task i; tMi time   
Ci execution/frame transmission time 
tTDMA TDMA cycle time 

Bus   

frame separation 
tTDMA 

tM1 tM3 tM1 tM3 tM2 tM2 
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Separation on CAN and FlexRay 

 both bus protocols support separation of critical from non critical 
messages 
 FlexRay static segment enables separation of all messages, CAN 

provides an asymmetric separation 
 all senders must give guarantees 
 CAN: keep message priorities (hardware based conflict resolution) 
  FleyRay: adhere to global time and TDMA schedule 
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Separation in processing units 

 uses same scheduling principles as communication 
 static priority driven scheduling – automotive: OSEK/VDX and AUTOSAR 
 TDMA – avionics: ARINC 653 
 main principles used in (mixed-critical) practice  
  others proposed 
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Scheduling in OSEK/VDX and AUTOSAR 

 ECUs typically uses OSEK/VDX RTE 
 static priority preemptive scheduling  (SPP) 
  can be restricted to preemption points 

  three priority blocks  
  interrupt – scheduling – task level 

  task level w. periodic task execution  
 Rate Monotonic scheduling 
  offsets for load bounding 

 PCP protocol to bound  
blocking by resource arbitration 

 no standard memory access  
protection 

interrupt  level 
activated by interrupt 

logical  level 
scheduling activities 

task  level 

priority 

source: OSEK/VDX standard V2.2.3 
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Separation in processing units 

 ARINC 653 – Integrated Modular Architecture IMA 
 several systems with separate OS implemented on one CPU 
 separated address and memory spaces (requires MMU)  

Source: Wind River, 2008 
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Separation in processing units 

 ARINC 653 
 partitions are assigned to time windows TPi iterating over a major Time 

Window MAF 
 execution can exceed single time window 
 supports scheduling hierarchies 

source: Ch. Ficek, Symtavision 
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Separation in RTOSs 

  timing separation similar to communication examples 
 separation of memory and device usage requires access control 
 approaches: virtualization or memory (address) protection 

 consequence 
 all RTOS mechanisms needed for separation must be subject to the 

highest level of criticality in the system 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 51  

Virtualization - principle 

  decoupling of virtual and physical resources 
  a virtual machine monitor (VMM) administers physical resources such as 

processors (CPU time), memory, peripherals 
  In classical desktop/server virtualization the VMM splits the physical 

computing platform into independent virtual platforms 
  some use cases 
 consolidation of services on one physical platform 
  running different/legacy Oses on the same platform 
 containment of services in its own virtual platform 
 architectural abstraction: a virtual machine can  

easily be migrated 

HW 
VMM 

OS OS 
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Virtualization techniques 

 paravirtualization 
 explicit API interface between guest OS and VMM  
  example XEN: guest OS calls HYPERVISOR_mmu_update  Xen 

updates the MMU 
  (proprietary) guest OS must be ported to the VMM API 
  hardware emulation required  fast 

  full/hardware virtualization 
  relies on Hardware Support (Intel VT/ AMD Pacifica) 
 VMM emulates the standard hardware (e.g. chipset, ethernet) 
 when an IOMMU is present: phyical peripherals can be mapped into the 

guest OS 
 slower than paravirtualization, but supports legacy/propriatary OSs 
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Virtualization in embedded systems 

  integration of mixed-critical applications supported by 
virtualization 

 challenges 
 VMM introduces additional timing latency 
 Shared resources on multi-core architectures (memory, IO) 
 Additional cache misses and additional IRQ sources 

 see ARINC653 

HW 
VMM 

OS RTOS 

UI 
RT App 

timing isolation 
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Mixed critical applications in  
multi-core architectures 

local 
res. 

core1 local 
res. 

core2 

shared 
res. safety critical 

components 

safety level? 

certification? 

MC-ECU 

application 1 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

application 2 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

safety 
critical 

non  
safety  
critical 
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Multi-core separation - Principle 

 partitioning into certified/qualified core components that control 
the resources used for any of the critical applications 
 basic software incl. RTE 
 communication  
 shared resources used for critical applications 

local 
res. 

core1 local 
res. 

core2 

on-chip communication network 

basic software  

application 1 application 2 SW architecture 

HW architecture 
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Separation in multi-core architecture 

 standard approach for  
separation - isolation 
 separate address  

spaces and cores 
  possibly controlled  

by hypervisor  
(virtualization) 

 only allow event and  
data flow from higher  
criticality to lower  
criticality  
 (safety requirement) 

  is this sufficient? 

Multi-core example: Freescale MP5565 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 57  

Multi-core example continued 

 assumption 
  two cores integrating applications  

with different criticality levels 

  isolated address space 

 CPU2 cannot interfere with CPU1 
data  

  Independent core scheduling 

  tasks access local and global shared 
resources (e.g. shared SRAM) 

 consequence 
  functions are isolated 

 but is timing isolated, as well? 

Core1 Core2 

Multi-Core 
Processor 

Local 
memory 

Local 
memory 

Shared 
memory 

Safety-Critical 
(qualified) 

CPU1 Local 
memory 

Non-Safety-Critical 
(not qualified) 

CPU2 Local 
memory 
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Example: Multi-core Cell Broadband Engine 

PPE: 64 bit Power (5) processor with 2 level cache architecture as main controller 
SPE: Synergistic Processor Element – specialized processor 
MFC: Memory Flow Control (DMA) 
EIB: Element Interconnect Bus- high speed ring bus 
MIC: Memory Interface Controller;  IOC: IO Controller  Source: IEEE Micro 
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CBE memory model – Local and global memory maps 

SPU 
register file 

local 
memory 

MMU 

local physical 
addresses of 
SPU 

DMA 
address 
translation  

EIB 
global addresses 
of CBE 

MFC 

  isolation of address space 
 SPEs work on local memory 
 global address translation 

controlled by global processor (PPE) 

 but: all cores share the 
same bus and external 
memory 
 mutual timing  

influence  
(complicated)   
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A closer look at timing: Single-core execution 

Preemption Cache Miss / Stalling 

SRAM 

CPU1 

Execution 

Single-Core  
execution 

Task Activation 

ThighPriority 

TmediumPriority 

  on CPU1 
  when a task is waiting for the SRAM the 

processor is stalled (“micro lock”) 

  ThighPriority and TmediumPriority initiate requests for 
the SRAM and have to wait for the required data 
 causes additional delays on the execution 

of other local tasks  

Safety-Critical 
(qualified) 

WCRT (Thigh) 
WCRT (Tmedium) 
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Application timing dependencies in multi-core 

preemption 
stalling 

single core 
execution 
(with stalling) 

memory 

CPU1 

increased worst-case response time!! 

memory 

CPU1 

CPU2 

multi-core 
execution 

execution competing accesses to shared resources 
challenge worst-case execution time 
assumptions! 

time 
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Single core 
Multi-core 

Single core 

Multi-core 

Preemption Cache Miss / Stalling 

SRAM 

CPU1 

SRAM 

CPU1 

CPU2 

Execution 

ThighPriority 

TmediumPriority 

ThighPriority 

TmediumPriority 

TlowPriority 

 (WCRT: worst-case 
response time) 

TmediumPriority experiences 
a new preemption by the 
higher priority local task. 

single core  
execution 

multi-core execution  
(SRAM is shared) 

WCRT (Thigh) 

WCRT (Tmedium) 

WCRTs of the high 
priority tasks on 
CPU1 increase 
due to shared 

SRAM conflicts! 

CPU1 has to wait if CPU2 
has ongoing requests. 

Task Activation 

Competition for shared resources – a closer look 
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Example - System parameters 

Scheduling Mapping Task Priority  
P(1)>P(3)>P(5)>P(6) 

Activation 
Period 

WCET # Memory 
Accesses per 

execution 

Memory 
Arbitration 

SPP Core 1 T1 1 250 50 5 FCFS 

Core 1 T3 3 800 360 12 

SPP Core 2 T5 5 1500 500 5 

Core 2 
(after 

update) 

T6 6 10000 1200 10 

Modeled and analyzed with: 
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Integrate safety critical and non safety critical 
cores – SW update  
 update on Core 2 challenges timing on 

Core1 

W
or

st
-C

as
e 

R
es

po
ns

e 
Ti

m
e 

(T
1)

 

Distance between memory requests 
Initiated by task T6 

Total Memory Access Times in % * execution (T6) 

Safety-Critical 
(qualified) 

Non-Safety-Critical 
(not qualified) 

T6 

Update on the Non-Safety-Critical 
Core  

 Low priority task T6 also 
accesses the Shared Memory 

(e.g. performs burst of requests to 
the shared memory ) 

In case requests initiated by T6 
are close and the size of all  

memory accesses is larger than 
20% of the execution of T6 the 
system is not-schedulable !!! 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 65  

Timing hazards when using shared resources 1/2 

 common use of the SRAM among cores – observed effects 
 SRAM accesses by low priority tasks on one CPU may slow down other 

tasks on another CPU 
  affects low and high priority tasks likewise 
  counters priority assignment on the cores - priority inversion 

 WCRT may even increase super-linearly due to additional preemptions 
(shown for Tmedium priority in the example) 

 as CPUs are stalled when tasks are waiting for the shared memory the 
load on these CPUs will increase 

 problem demonstrated for accesses to shared SRAM, but the same 
reasoning applies to semaphore protected critical sections and other 
shared resources 
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Timing hazards when using shared resources 2/2 

 example shows high potential impact of non-critical on safety 
critical task despite high task priority and isolation 
 dangerous if software bugs in non-critical system with lower verification 

requirements (e.g. infinite loop w. memory access) 
  requires physical separation or (re-)certification including non-critical 

part 
  extra cost! 

 Note: Virtualization alone does NOT help! 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 67  

Controlled separation for many-core systems 

 separation must include NoC and on-chip memories 
 suggested approaches typically use strict resource separation  
 example: NXP Aetheral NoC , … 
 challenge: efficiency (performance loss) 

 possible improvement 
 budgeting 
 channel separation 
 arbitration control for service guarantees 

Hard-RT Soft-RT 

General- 
purpose 
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The missing links  

 efficient separation of critical NoC traffic with minimized negative 
effect on non-critical traffic 
 avoid crossbar to enable many-core ICs 

  include resource access protection  
 avoid resource overutilization by non critical applications 

 example: IDAMC 
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Integrated Dependable Architecture for Many 
Cores (IDAMC) 
  general purpose system with 

support for mixed-criticality 
  safety-critical real-time 
  timing guarantees 

  best-effort, e.g. office, games,  
  latency sensitive 

  4-64 nodes 
 mesh NoC with QoS 
  up to four tiles per Node 

  hardware mechanisms for 
  virtualization at NoC-Level 
 monitoring (timing and power) 
  on-chip data transport, c2c communication Image: Synopsys 
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Tiles 

 each tile is a complete system 
 AMBA bus 
 LEON3 CPU and/or memory, peripherals 

 network interface (NI) connects to NoC 

LEON3 
Processor 

Debug Support 
Unit 

JTAG Debug 
Link  

AHB 

APB 

High Bandwidth 
Peripherals 

On-Chip 
Memory 

IDA NI AHB 
Controller 

AHB/APB 
Bridge 

Memory 
Controller 

Interrupt 
Controller 

Low Bandwidth 
Peripherals SDRAM I/O PROM IDA NoC 
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Network Interface (NI) - Architecture 

  interface to AMBA bus 
 system-virtualization of 

remote resources 
 Address remapping  
  Interrupt mapping 
 Routing 
 Virtual Channel selection 

 configured by trusted central 
system controller 

 monitoring 
 error detection and isolation 

Master Interface Slave Interface 

Output Buffer 

Paketization 

Address 
Translation and 

Routing 

Depacketization 

Input Buffer 

M
onitoring 

C
ontrol 

AMBA AHB Bus 

IDA NoC 
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System domain address translation 

Node S 

W

N 

E R 

Virtual 

MMU 

Physical SDAT 
IDA NI 

  translate tile-local physical address to system-wide address 
  flags to limit access (e.g. read-only) 
  route = address to remote tile 
  target address = base address in remote tile 

Route T. addr. 0000 

Region Offset 

Route T. addr. 0001 
Route T. addr. … 
Route T. addr. 1111 

Local tile (physical) address 

Base A. Offset 
Destination tile address 

Packetization 

F
F
F
F
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IDAMC – NoC  
characteristics of application/traffic classes 

 best-effort applications 
 most existing applications, major role in user 

experience 
 unpredictable and bursty resource usage 
  latency-sensitive: Application performance 

degrades with higher latency 

  real-time streaming applications 
  require resource and timing guarantees 
  resource sharing must be under control for 

efficient co-execution 
  regular access patterns  latency-tolerant: 

performance does not degrade with higher 
latency (up to a certain latency bound) 

Utility 
(~Performance) 

Latency 
Utility 

Latency 

Hard RT 

Soft RT 

Best effort 
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Input Unit 
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QoS-Support for traffic isolation in the router 1/2 

 manage contention at router’s 
outputs 
 static isolation 
  e.g. time-division multiple-access 

(AEthereal [Goossens], SuperGT [Marescaux]) 
  service independent of other streams 

 dynamic isolation 
  e.g. prioritization 

(MANGO [Bjerregaard], QNoC [Bolotin], [AlFaruque], 
Globally-Synchronized Frames [Lee]) 

  service depends on the behavior of 
other streams 
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QoS-support for traffic isolation in the router 2/2 

 existing QoS do guarantees first! 
 best-effort traffic = “second-class 

citizen” 
 BE traffic suffers from high latency 
 RT traffic has no benefit from 

reduced latency (deadline driven) 
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Solution: QoS support for latency sensitive traffic 

  idea:  
exploit latency tolerance of RT 
streaming applications to improve 
BE latency 

 approach: prioritize BE as long as 
guaranteed throughput (GT) traffic 
makes sufficient progress  
 Distributed Traffic Shaping (DTS) 
 Back Suction (BS) 
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Goal: Guarantees and low BE latency 

Utility 

Latency 

Hard RT 

Soft RT 

Utility 

Latency 

Real-time Traffic Best-Effort Traffic 

Throughput guarantees 

Limited prioritization 
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Back Suction (BS) 

 Prioritize RT traffic based on downstream buffer occupancy 
 Threshold Module at every VC 
 Forward back suction signal on low occupancy towards upstream 
 Threshold determines how early prioritization of RT propagates 

towards sink  

 Limit rate (to guaranteed rate) at which sink may assert back suction 

Thr. Thr. 

Rate 
Limit 

Arbiter Thr. Arbiter Thr. 
Back 

Suction 

Router 1 Router 2 Sink 

RT VC RT VC 
GT stream 
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Formal timing analysis for BS and DTS 

  formally analyze routers iteratively (starting at sink) 

 analysis guarantees GT timing if back suction enforced 
 uses Compositional Performance Analysis  

- based on SymTA/S tool 

  future work: admission control performed on-line  
as part of resource management process 

Router 1 Router 1 Sink 1 

Sink 2 

Source 

Application 
model 

Mapping 

Constraint 
validation 

Enforcement 
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Result: Guarantees and improved BE latency 

 mechanism provides throughput guarantees to individual real-time 
streams 

 BE latency is improved significantly 
 application runtime improves accordingly 

~ 30% latency 
improvement over 
standard prioritization 
scheme 

Improve application 
performance by 
>10% 
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IDAMC - Summary 

 efficient separation of critical NoC traffic with minimized negative 
effect on non-critical traffic 
 back suction gives priority to non-critical traffic granting the 

requirements of critical traffic 
 exploits full qualification of critical process that includes accurate 

requirement definition 

  include resource access protection  
 external access control protects against accesses from non-critical 

applications 
 overutilization by non-critical applications constrained by NoC QoS 

control  

 consequence  
 all NoC components and central access and traffic control must be 

qualified at the highest criticality level in the system 
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 motivation  
 safety critical embedded system design 
 networks and multi-core systems for mixed time and safety critical 

applications 
  reliable systems for higher safety requirements 
 example projects 
 conclusion 

Overview 
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Technology trends – Reliability issues 

  reliability is an important challenge in future technology 
generations 
 growing system complexity combined with continuous technology 

downscaling   increasing error rates 

 appropriate techniques necessary to prevent failures 
  fault isolation 
 error detection and correction 
  bus/network: message retransmission, forward error correction 
 CPU/ECU:  redundancy, rollback techniques, microarchitectural 

measures 

 problem: predictability of system reliability 
 how does the system behave in case of errors? 
 what are consequences for the user / for the environment? 
 what is the failure probability? 

83 TU Braunschweig 
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Fault handling for higher criticalities 

  for higher safety requirements separation is necessary but not 
sufficient 
  isolation still requires correct hardware function 
 hardware failures must be included when hardware is less reliable than 

safety requirements 
 embedded systems trend  
  reliability of technology ↓ 
  safety requirements ↑ 
  hot industrial topic! 
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Fault handling for higher criticalities 

 handling of static and transient hardware faults required 
  reliability requirements are often quantified 
  requires predictable failure bounds 

  IEC 61508 
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From ES faults to ES failures 

 distinguish static and transient ES errors 
 static errors have permanent effects requiring redundancy for repair 
  transient errors are usually more frequent (EMC, new semiconductor 

technologies, …) but can often be masked when detected   
  transient error masking can cause timing errors  

Unexpected 
internal state 

 ERROR 

Result/Service 
within the 
specification 

Result/Service 
violates the  
specification 

 FAILURE 

Violation of functional  
specification 
 incorrect functionality 

Violation of temporal 
specification 
 incorrect timing 

1 0 
3+4=7 3+4=8 

Deadline 
t 

FAULT 
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Transient error handling 

  transient error handling known from communication 
 example: CAN (automotive) 

 CAN has error detection capabilities (CRC) 
  repeats message in case of transmission error using defined protocol 
 CAN functional fault tolerance increases timing and load! 

ECU1 
fault detection (HW/SW) 
bus 
fault detection (HW/SW) 
ECU2 
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Reliability analysis – General concept 

τ2 
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 SAE benchmark frame set  
 periodic system, deadline end of period 
 approximately 5 x 106 activations per hour 
 bus load approx. 70 % (CAN at 150 kbit/s) 

 error model 
 BER = 10-7 [Ferreira, 2004] 
  residual errors according to [Charzinksi, 1994] 

MTTFfunc  2 x 1012 h 

MTTFtime  1,8 x 105 h 

SIL 4 

SIL 1 
7 orders of magnitude more likely to miss end-of-period deadline! 
(for single error fault model) 
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Lessons to be learned from communication 

  functional errors can efficiently be detected 
  redundancy in time (message resend) is efficient 

  timing failures can be much more likely than residual errors 
 even at moderate load  
 due to failures at points with peak load  

 consider peak load situations! 
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 communication can easily incorporate fault-tolerance 
 EDC + retransmission (CRC, parity, hashes) 
 ECC (Hamming, Turbo, … ) 

 computation is much harder to protect 
 entire processor affected 
 control and data flow (including IP cores) 
 errors can propagate 
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VLSI failure modes and fault-tolerance 
  different failure modes of transistors 
  permanent errors (electromigration  stuck-at-error) 
  soft errors (SEUs, cosmic-radiation, thermal neutrons) 
  stress induced transient errors (transistor variability, NBTI, PBTI  Vt shift) 

  soft errors and transient effects are expected to dominate  
  all fault tolerance methods are based on redundancy 
  spatial redundancy 
  dual modular redundancy (DMR): (single) errors will be detected 
  triple modular redundnacy (TMR): (single) errors can be corrected  

  temporal redundancy (e.g. reevaluation on the same processor) 
  slightly worse coverage (permanent errors not detected) 
  high impact on timing (additional workload) 
  can also be used for recovery (checkpointing & rollback) 
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Traditional DMR (e.g. lockstep architecture) 2/2 

 DMR does not scale for mixed-critical systems 
 not all applications need fault tolerance 

 mixed-criticality example 
 2 critical, 3 uncritical applications 
 system lockstep: total overhead factor 2 
 overhead caused by uncritical apps: 1.6 

non critical 

critical 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 94  

Task level DMR (fine grained)  
  replicate individual tasks only where needed 
  comparisons is based task state (e.g. comparison at output) 
  result can be verified if results from both instances are available 
  DMR creates feedback from core1 on core2 and vice versa 

  redundant copies induce higher load on other tasks 
  additional overhead through core-to-core communication (comparison) 
  timing analysis is necessary to prove correctness 

free resources can 
be used by other 
uncritical apps 

result result result result 
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Fingerprinting 

 compact state to “fingerprint” reduce core-to-core communication and 
comparison overhead 

 compare execution fingerprints (Smolens et al., 2004) 
 efficient, low bandwidth, high coverage 

Core 

fault tolerant interconnect 

… 
MPSoC IF 

ID 

EXE 

MEM 

WB 
Fingerprint 

Register 

+ 

Pipeline 

fault tolerant memory 

Core Core 
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Recovery – Typical methods 

 system reset  
 usually infeasible in hard real-time systems 

 switch to fail-safe mode (e.g failed active steering  fallback to 
mechanical solution) 

 checkpointing and rollback recovery 
 save state in regular intervals and store it on reliable memory 
  in case of errors, restore most recent state 
  impact on timing on all (lower priority) tasks in case of errors 

  recovery methods lead to timing overhead! 
 cp. resend in communication  
 use timing analysis 
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Modeling of fine grained redundancy 

  task τi is split into n segments 
  identical replications of task is distributed among e.g. k cores (e.g. 2)  
 voting on intermediate result (fingerprint) is performed in  

arbitrary (but known) intervals 
 use an equivalent task graph as a model 
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Recovery operations 

 non-matching fingerprints  recovery required 
 we model checkpointing and rollback 
 right before each segment, the state is saved to ECC protected 

memory 
 in case of an error, a correct state is restored 
 overhead for checkpointing and restoration: tcov, trov  

te + tcov 
te + trov 
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Timing failures – Re-execution example (simplified) 

T2	  

T1	  

T1	  

T3	   Preemption 

Execution 

Activation 

Reexecution 

comparison of intermediate results 

Recovery 
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Accuracy – comparision with Monte Carlo analysis 

Task Priority – Mapping 
core1/core2 T C Checkpoints Creation Recovery 

T0 3/2 300 60 2 10 20 
T1 4/- 250 50 - 
T2 2/- 100 10 - 
T3 -/1 300 50 - 
T4 1/3 600 40 2 10 20 

Overhead 
•  Checkpoint Creation 
•  Recovery 

λ1,2 = 1/10 sec 
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Design tradeoffs - Checkpointing 

  checkpointing itself can be a „critical 
section“ 

  for this experiment we assume, that an 
error during checkpointing causes a 
system failure 

λ = 1/week 

  assume fault-tolerant checkpointing 
  implementation 

  e.g. ECC memory protection & 
bus EDC  

  dual (redundant) DMA engines 

λ = 1/week 
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Redundant DMA engines for checkpointing 

DMA 
unit 1 

DMA 
unit 1 

Memory 1 

Memory 2 

DMA 
unit 2 

DMA 
unit 2 

DMA 
unit 2 

DMA 
unit 2 

checkpoint is copied by two different DMA engines to different memories 

DMA 
unit 1 

DMA 
unit 1 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 103  

Tradeoffs – No. of checkpoints 1/2 

 experiment 1: low checkpointing overhead: 0.1ms 
 R(t) increases with the amount of checkpoints 
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 experiment 2: high checkpointing overhead: 1ms 
 R(t) decreases with the amount of checkpoints 

Tradeoffs – No. of checkpoints 2/2 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 105  

The cost of safety 

 multi-core for highly safety critical functions require major 
hardware overhead 

 systems with mixed criticality bare the risk of non manageable 
requirements 
 vastly different design quality for safety and non-safety function 

integrated on the same platform 
  function isolation must be complemented by costly fault tolerance  

 efficient methods for function isolation and predictable fault 
tolerance are needed 

 example: Project RECOMP 
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RECOMP 

  “Reduced Certification Costs Using Trusted Multi-core Platforms” 

  multi-core architectures for mixed safety critical systems  
  flexible tradoff between development, certification, and hardware cost  
  requires configurable core-to-core communication and separation/virtualization 

technologies 

  objective 
  develop HW and SW architectures, design methods, and tools to efficiently design 

and (re-)certify MpSoCs for mixed critical systems 

  European ARTEMIS project, 41 partners, 25 Mio € budget, 2010-2013 
  covers whole design chain 
  semiconductors, RTOS, suppliers, integrators (OEMs) 

  several industries 
  automotive, aerospace, industrial 

  www.recomp-project.eu 
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 “Internet of Energy (IoE) for Electric Mobility” 
 objective 
 develop hardware, software and middleware to use the Internet for future 

smart energy grids incl. new applications (electric mobility) 
  European ARTEMIS project, 42 partners, 45 Mio € budget, 2011-2014 
 complex mixed criticality requirements 
 grid stability, individual energy service, … 
 economic security 

  large economic  
challenges 
 power efficiency 
 network efficiency …  

IoE 
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Conclusion 

 merging safety critical functions on an embedded platform typically 
leads to mixed critical platform components 

 mixed criticality is a serious certification cost driver and limits 
update capabilities of non-critical functions 

 no silver bullets for integration available 
 potential integration technologies span broad design space but still 

lack coherence and completeness 
 project consortia dedicated to the mixed criticality challenge in 

local (RECOMP) to widely distributed (IoE) systems 
 much further research needed 

Thank you! 
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