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Motivation 
  today’s embedded systems use complex networks 
  hundreds of  

functions 

  thousands of tasks 

  50+ ECUs 

  networked control 

  many suppliers 

  heterogeneous 

  networks are an  
efficient platform  
for systems integration  source: Daimler 

55 ECUs & 7 Buses of 4 types with gateways 
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Growing Network Complexity 

source: T. Bone, Daimler 
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Motivation 
 networks lead to component sharing and networks for different 

functions 

CAN2 

gateway 

ECU 4 
CAN 1 CAN 2 

CAN 3 

ECU 5 

ECU 6 

ECU 1 

ECU 2 

ECU 3 

ECU 8 
ECU 7 

local 
resources CPU2 

ECU2 

communication network 

RTE + HW interface 

application 1 
ECU 2 + 3 

application 2 
ECU 1 + 8 

local 
resources CPU1 

ECU1 

RTE + HW interface 
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Automotive design chain – Many players 

OEM 
- BMW, Daimler, GM, PSA, Toyota, … 

- global system, integration and network   

ECU - Supplier 
-  Bosch, Delphi, Valeo, … 
-  ECU responsibility Bosch Delphi Valeo 

RTE - Supplier 
-  Vektor, ETAS, Elektrobit,  
  Mentor, … HW Component - Supplier 

-  Infineon, Freescale, ST, Toshiba, … 

specs ECUs 

specs SoCs 
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Software standardization 

 objectives 
  reuse and portability of applications 
 system optimization  
 defined interfaces for supply chain with 

standardized methods and tools 

 example AUTOSAR 
 automotive standard software architecture 
 virtual functional bus for integration 
  run time environment (RTE) 

for specific ECUs 
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The safety challenge 

 embedded systems are increasingly used to  
  implement advanced system features 
  improve safety 

  in such cases, the embedded system inherits the safety and 
dependability requirements of the system function 
 safety related embedded systems 

 such functions are no longer simple  
 example: automotive electronics 
 electronic steering 
 camera based object recognition and tracking 
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source: Volkswagen 

Example 1: Electronic steering 
  standard equipment functions 

 steering power support, speed dependent 
 active centering and dampening 
 straight-running function … 

  upgrade equipment functions  
 park assist 
  lane-keeping assist 

 customizable adaptivity  - from sportive to an emphasis on comfort 
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Embedded systems architecture 

  two-computer system of the steering control unit  
 steering functions, motor control, and I/O handling are implemented on 

the main computer 
  the second computer monitors the main computer 
 communication via digital interface 
 exchange of high-frequency question-answer-sequences 
 both computers have an independent clock and energy supply 

 classification: fail-safe system function – SIL 3 (more later) 
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Example 2: Object recognition and tracking  

 may be used as safety feature (collision avoidance) – SIL3? 
 FPGA (or multi-core DSP) 
 more than 100 GOp/s (algorithmic)  
 power constrained (temperature) 

camera scene w.  
object motion vectors 

IMAPCAR DSP 
(source: Renesas) 

FPGA prototype 
source:              
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Safety functions are distributed 

Source: S. Kuntz, Continental 
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Distributed brake function 

Source: S. Kuntz, Continental 
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Avionics: Airbus 380 – AFDX based network 

Source: J-B. Itier. A380 Integrated Modular Avionics 
Artist2 meeting 2007 
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Safety critical applications extended to open 
networks – Example traffic (ARTEMIS SRA)    
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Integration covers several industrial sectors 
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Merging functions with different criticality levels 

  integration on one platform leads to systems with applications of 
different safety requirements 
 strict separation too expensive  
 mixed (safety) criticality systems 

 mutual dependency via platform and sensors/actuators requires 
safety concept and qualification/certification for all functions 
 data often missing for less safety critical functions 
 high cost for qualification process of all applications on a platform 
 significant limitation and costs for updates 

→  safety is highly relevant aspect in embedded systems integration 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 19  

Safety and time criticality 

 many safety critical systems have hard deadlines 
 such systems are both safety  

and time critical  
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Safety standards 

  the design of safety-related systems is driven by safety standards 
  safety standards contain 
  rules and regulations for all design system 
  recommended guidelines for the development process 

  safety standards cover all stages of the development process 
  specification 
  design 
  implementation 
  test  
  maintenance 

  objective of safety related design 
  avoid unacceptable risk 
  assure functional safety 

21 TU Braunschweig 
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  safety: Freedom from unacceptable risk of physical injury or of 
damage to the health of people  

  functional safety: refers to the safety of system functions  
  risk is characterized by two properties 
  frequency of hazardous events 
 severity of hazardous events 
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  The idea: frequency-severity tradeoff 
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Functional safety – a short overview 

 safety standards (IEC 61508, ISO 26262) classify systems according 
to frequency and severity of functional failures  

 a safe system can handle faults without causing severe functional 
failures 

  terminology  

FAULT 
  (error source,  
e.g. radiation) 

ERROR 
    (unexpected state) 

FAILURE 
     (function violation) 
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  IEC 61508 
  generic standard for safety-related systems 

  ISO 26262 
  safety standard for automotive domain 

  DO 178B, DO 254 
  safety standards for aerospace domain 

  IEC 61511, IEC 62061 
  safety standards for factory automation domain 

  EN 50126, EN 50128, EN 50129, EN 50159-1, EN 50159-2 
  safety standards for rail domain 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 26  

IEC 61508 – Overview 

 provides methods to assess the risk of functions 
 based on metrics of severity and frequency of failures 

  introduction of safety in the lifecycle, which consists of 
 management of functional safety, e.g. enforcement of independent review 

processes of safety-related components 
 enforcement of verification and evaluation methods to assure functional 

safety 
 dedicated hardware and software development methods and processes  

  further parts of IEC 61508 
 glossary 
 application examples and guidelines 
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IEC 61508 – Metrics 

  reference standard that is used to derive other standards  
(e.g. ISO26262) 

 metric: “Safety Integrity Level” – SIL 
 defines four degrees of safety: from 1 (lowest) to 4 (highest) 
 specification of maximum failure rates for each level  

SIL Low demand mode: average 
probability of failure on demand 

High demand or continuous mode: 
probability of dangerous failures per 

hour 

1 > 10-2 to < 10-1 > 10-6 to < 10-5 

2 > 10-3 to < 10-2 > 10-7 to < 10-6 

3 > 10-4 to < 10-3 > 10-8 to < 10-7 

4 > 10-5 to < 10-4 > 10-9 to < 10-8 
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 basic principle: apply reliability analysis to verify that safety 
requirements are satisfied 
 assumption: required safety level is known a priori  hazard analysis 

and risk assessment not considered 

  IEC 61508 does not directly support mixed criticality systems 
 “An E/E/PE safety-related system will usually implement more than one 
safety function. If the safety integrity requirements for these safety 
functions differ, unless there is sufficient independence of 
implementation between them, the requirements applicable to the highest 
relevant safety integrity level shall apply to the entire E/E/PE safety-
related system.” 

  reliability analysis can help to close this gap! 
 more later 
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Functional safety – ISO 26262 

  ISO 26262 basically similar to IEC 61508  
  includes risk classification  
 defines development processes and method for saftey-critical automotive 

system 
  FMEA (failure mode and effect analysis), FTA (fault tree analysis) 

  ISO 26262 defines ASIL 1-4 (automotive SIL) analogous to IEC 
61508 SIL 

  includes risk analysis and ASIL assessment process according to 
parameters severity, exposure and controllability 
  risk as a function of frequency f and severity S: R = F (f, S) 
  frequency as a function of exposure E and controllability C: f = E x C 
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C1 C2 C3 

S1 

E1 QM QM QM 
E2 QM QM QM 
E3 QM QM A 
E4 QM A B 

S2 

E1 QM QM QM 
E2 QM QM A 
E3 QM A B 
E4 A B C 

S3 

E1 QM QM A 
E2 QM A B 
E3 A B C 
E4 B C D 

note: the class QM (Quality Management) denotes “no requirement” according to  
ISO 26262 
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  gap to IEC 61508: ISO 26262 provides no formal failure rate specification 
such as 61508 

  however: approximate mapping is possible based on the term of 
“observable incident rate” introduced in ISO 26262 

  the observable incident rate is based on relevant field data 
  basically observable incident rate is used for the proven in use argument  
 “Proven in use argument is an alternate means of compliance with 

ISO26262 requirements that may be used in case of reuse of 
existing items or elements when field data is available.” 

ASIL Observable incident rate 

D <10-8/h 

C <10-7/h 

B <10-7/h 

A <10-6/h 
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Embedded systems functional failures 
 embedded system (ES) functional failures are not necessarily 

catastrophic 
 effect depends on the importance of the failing function for the 

overall system 
  function criticality 

 criticality depends on the overall system functionality 
  fail safe  

if the ES function fails there is a safe function backup or a safe system 
state that avoids severe consequences 
(mechanical steering, hydraulic brake, emergency stop)  
 ES is not critical but important for quality 

  fail operational (fault tolerant)  
the function continues based on system redundancy or turns to an error 
mode with reduced functionality (graceful degradation) 
 ES function is critical, but possibly only needs a specific function 
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Safety and time criticality - Reminder 

 many safety critical systems have hard deadlines 
 such systems are both safety  

and time critical  
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Embedded system functional failures and timing  

 ES functions have different criticality 
 depending on the overall system  

 where timing is specified, it becomes part of the function criticality 
 ES timing failures are ES functional failures 

 switching to error modes is time critical 
 switching needs hard deadlines to guarantee overall system function 
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Safety challenges in ES integration 

 sharing resources is hard to avoide in cost efficient systems  
 shared  (open) network 
 shared on-chip network, shared memories, … 

  is it possible to integrate several subsystems and avoid 
interference? 
  this would be important for mixed criticality systems  
  non-critical parts are less verified and not designed for worst case 

 would reduce verification/certification/integration cost 

 standards require separation in case of shared resources 
 Reminder (IEC 61508)  

“… If the safety integrity requirements for these safety functions differ, 
unless there is sufficient independence of implementation between them, 
the requirements applicable to the highest relevant safety integrity level 
shall apply to the entire E/E/PE safety-related system.” 
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Reminder – Automotive network  

gateway 

ECU 4 
CAN 1 CAN2 

CAN 3 

ECU 5 

ECU 6 

ECU 2 

ECU 8 

ECU 1 

ECU 7 

communication network 

application 1 

ECU 1 ECU 8 

RTE + HW  
interface 

RTE + HW  
interface 

application 2 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

safety critical non safety critical ECU 3 
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Critical application using network - Consequence 

application 1 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

application 2 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

safety 
critical 

non  
safety  
critical 

communication network 

application 1 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

application 2 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

safety level? 

safety critical 
components 

unsafe  
access 
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Separation - Principle 

communication network 

application 1 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

application 2 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

safety critical 
components 

 partitioning into certified/qualified core components that control 
the resources used for any of the critical applications 
 basic software incl. RTE 
 communication  
 shared resources used for critical applications 
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Automotive network – Affected system parts 

 application of safety standard 
affects large part of the system 
 single criticality on safety critical 

ECUs  
 mixed criticality on other parts 

gateway 

ECU 4 
CAN 1 

CAN 3 

ECU 5 

ECU 6 

ECU 2 

ECU 8 

ECU 1 

ECU 7 

ECU 3 

CAN2 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 42  

Example Automotive - Communication 

 CAN  
 multi master, non synchronized 
  static priority non preemptive (SPNP) 
  needs formal analysis to guarantee arrival of critical messages 
  error handling protocol 

 FlexRay 
  fixed sequence of static segments with TDMA protocol and dynamic 

priority assigned  segments – cyclo-static repetition 
  time synchronized, multi master 
  guaranteed resource share for each communication channel 

 gateways 
  proprietary solutions 
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Separation on CAN  

 assumptions 
 all senders adhere to their priority i (message id)  
 no two messages of the same type or priority are on the bus  
  requires that latest deadline is at end of period 

 buses are not overloaded (U < 100%), messages don‘t miss deadlines 
  then (simplified): 

  for CAN: all Ci equal (constant frame size) 
⇒  worst case response times only influenced by higher priority messages 
⇒  critical communication independent of other communiation if 

  given higher priority     (no RMS ⇒ non optimal scheduling) 

•  Ri response time message i;  
Ti min. period 

•  Ci execution/frame transmission time 
•  hp(i) higher priority messages 
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Separation on FlexRay 

 assumptions 
 all senders adhere to the TDMA schedule 
 all clocks are synchronized  
 messages don‘t miss deadlines if TDMA schedule is regarded 
  then (simplified) for the static segment: 

⇒  worst case response times not influenced by any other message 
⇒  complete separation of logic channels 

Ri response time task i; tMi time   
Ci execution/frame transmission time 
tTDMA TDMA cycle time 

Bus   

frame separation 
tTDMA 

tM1 tM3 tM1 tM3 tM2 tM2 
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Separation on CAN and FlexRay 

 both bus protocols support separation of critical from non critical 
messages 
 FlexRay static segment enables separation of all messages, CAN 

provides an asymmetric separation 
 all senders must give guarantees 
 CAN: keep message priorities (hardware based conflict resolution) 
  FleyRay: adhere to global time and TDMA schedule 
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Separation in processing units 

 uses same scheduling principles as communication 
 static priority driven scheduling – automotive: OSEK/VDX and AUTOSAR 
 TDMA – avionics: ARINC 653 
 main principles used in (mixed-critical) practice  
  others proposed 
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Scheduling in OSEK/VDX and AUTOSAR 

 ECUs typically uses OSEK/VDX RTE 
 static priority preemptive scheduling  (SPP) 
  can be restricted to preemption points 

  three priority blocks  
  interrupt – scheduling – task level 

  task level w. periodic task execution  
 Rate Monotonic scheduling 
  offsets for load bounding 

 PCP protocol to bound  
blocking by resource arbitration 

 no standard memory access  
protection 

interrupt  level 
activated by interrupt 

logical  level 
scheduling activities 

task  level 

priority 

source: OSEK/VDX standard V2.2.3 
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Separation in processing units 

 ARINC 653 – Integrated Modular Architecture IMA 
 several systems with separate OS implemented on one CPU 
 separated address and memory spaces (requires MMU)  

Source: Wind River, 2008 
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Separation in processing units 

 ARINC 653 
 partitions are assigned to time windows TPi iterating over a major Time 

Window MAF 
 execution can exceed single time window 
 supports scheduling hierarchies 

source: Ch. Ficek, Symtavision 
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Separation in RTOSs 

  timing separation similar to communication examples 
 separation of memory and device usage requires access control 
 approaches: virtualization or memory (address) protection 

 consequence 
 all RTOS mechanisms needed for separation must be subject to the 

highest level of criticality in the system 
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Virtualization - principle 

  decoupling of virtual and physical resources 
  a virtual machine monitor (VMM) administers physical resources such as 

processors (CPU time), memory, peripherals 
  In classical desktop/server virtualization the VMM splits the physical 

computing platform into independent virtual platforms 
  some use cases 
 consolidation of services on one physical platform 
  running different/legacy Oses on the same platform 
 containment of services in its own virtual platform 
 architectural abstraction: a virtual machine can  

easily be migrated 

HW 
VMM 

OS OS 
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Virtualization techniques 

 paravirtualization 
 explicit API interface between guest OS and VMM  
  example XEN: guest OS calls HYPERVISOR_mmu_update  Xen 

updates the MMU 
  (proprietary) guest OS must be ported to the VMM API 
  hardware emulation required  fast 

  full/hardware virtualization 
  relies on Hardware Support (Intel VT/ AMD Pacifica) 
 VMM emulates the standard hardware (e.g. chipset, ethernet) 
 when an IOMMU is present: phyical peripherals can be mapped into the 

guest OS 
 slower than paravirtualization, but supports legacy/propriatary OSs 
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Virtualization in embedded systems 

  integration of mixed-critical applications supported by 
virtualization 

 challenges 
 VMM introduces additional timing latency 
 Shared resources on multi-core architectures (memory, IO) 
 Additional cache misses and additional IRQ sources 

 see ARINC653 

HW 
VMM 

OS RTOS 

UI 
RT App 

timing isolation 
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Mixed critical applications in  
multi-core architectures 

local 
res. 

core1 local 
res. 

core2 

shared 
res. safety critical 

components 

safety level? 

certification? 

MC-ECU 

application 1 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

application 2 

ECU 2 ECU 3 

RTE + HW  
interface 

RTE + HW  
interface 

safety 
critical 

non  
safety  
critical 
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Multi-core separation - Principle 

 partitioning into certified/qualified core components that control 
the resources used for any of the critical applications 
 basic software incl. RTE 
 communication  
 shared resources used for critical applications 

local 
res. 

core1 local 
res. 

core2 

on-chip communication network 

basic software  

application 1 application 2 SW architecture 

HW architecture 
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Separation in multi-core architecture 

 standard approach for  
separation - isolation 
 separate address  

spaces and cores 
  possibly controlled  

by hypervisor  
(virtualization) 

 only allow event and  
data flow from higher  
criticality to lower  
criticality  
 (safety requirement) 

  is this sufficient? 

Multi-core example: Freescale MP5565 
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Multi-core example continued 

 assumption 
  two cores integrating applications  

with different criticality levels 

  isolated address space 

 CPU2 cannot interfere with CPU1 
data  

  Independent core scheduling 

  tasks access local and global shared 
resources (e.g. shared SRAM) 

 consequence 
  functions are isolated 

 but is timing isolated, as well? 

Core1 Core2 

Multi-Core 
Processor 

Local 
memory 

Local 
memory 

Shared 
memory 

Safety-Critical 
(qualified) 

CPU1 Local 
memory 

Non-Safety-Critical 
(not qualified) 

CPU2 Local 
memory 
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Example: Multi-core Cell Broadband Engine 

PPE: 64 bit Power (5) processor with 2 level cache architecture as main controller 
SPE: Synergistic Processor Element – specialized processor 
MFC: Memory Flow Control (DMA) 
EIB: Element Interconnect Bus- high speed ring bus 
MIC: Memory Interface Controller;  IOC: IO Controller  Source: IEEE Micro 
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CBE memory model – Local and global memory maps 

SPU 
register file 

local 
memory 

MMU 

local physical 
addresses of 
SPU 

DMA 
address 
translation  

EIB 
global addresses 
of CBE 

MFC 

  isolation of address space 
 SPEs work on local memory 
 global address translation 

controlled by global processor (PPE) 

 but: all cores share the 
same bus and external 
memory 
 mutual timing  

influence  
(complicated)   
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A closer look at timing: Single-core execution 

Preemption Cache Miss / Stalling 

SRAM 

CPU1 

Execution 

Single-Core  
execution 

Task Activation 

ThighPriority 

TmediumPriority 

  on CPU1 
  when a task is waiting for the SRAM the 

processor is stalled (“micro lock”) 

  ThighPriority and TmediumPriority initiate requests for 
the SRAM and have to wait for the required data 
 causes additional delays on the execution 

of other local tasks  

Safety-Critical 
(qualified) 

WCRT (Thigh) 
WCRT (Tmedium) 
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Application timing dependencies in multi-core 

preemption 
stalling 

single core 
execution 
(with stalling) 

memory 

CPU1 

increased worst-case response time!! 

memory 

CPU1 

CPU2 

multi-core 
execution 

execution competing accesses to shared resources 
challenge worst-case execution time 
assumptions! 

time 



07-09-2011 | R. Ernst, ARTIST Summer School 2011 | Seite 62  

Single core 
Multi-core 

Single core 

Multi-core 

Preemption Cache Miss / Stalling 

SRAM 

CPU1 

SRAM 

CPU1 

CPU2 

Execution 

ThighPriority 

TmediumPriority 

ThighPriority 

TmediumPriority 

TlowPriority 

 (WCRT: worst-case 
response time) 

TmediumPriority experiences 
a new preemption by the 
higher priority local task. 

single core  
execution 

multi-core execution  
(SRAM is shared) 

WCRT (Thigh) 

WCRT (Tmedium) 

WCRTs of the high 
priority tasks on 
CPU1 increase 
due to shared 

SRAM conflicts! 

CPU1 has to wait if CPU2 
has ongoing requests. 

Task Activation 

Competition for shared resources – a closer look 
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Example - System parameters 

Scheduling Mapping Task Priority  
P(1)>P(3)>P(5)>P(6) 

Activation 
Period 

WCET # Memory 
Accesses per 

execution 

Memory 
Arbitration 

SPP Core 1 T1 1 250 50 5 FCFS 

Core 1 T3 3 800 360 12 

SPP Core 2 T5 5 1500 500 5 

Core 2 
(after 

update) 

T6 6 10000 1200 10 

Modeled and analyzed with: 
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Integrate safety critical and non safety critical 
cores – SW update  
 update on Core 2 challenges timing on 

Core1 

W
or

st
-C

as
e 

R
es

po
ns

e 
Ti

m
e 

(T
1)

 

Distance between memory requests 
Initiated by task T6 

Total Memory Access Times in % * execution (T6) 

Safety-Critical 
(qualified) 

Non-Safety-Critical 
(not qualified) 

T6 

Update on the Non-Safety-Critical 
Core  

 Low priority task T6 also 
accesses the Shared Memory 

(e.g. performs burst of requests to 
the shared memory ) 

In case requests initiated by T6 
are close and the size of all  

memory accesses is larger than 
20% of the execution of T6 the 
system is not-schedulable !!! 
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Timing hazards when using shared resources 1/2 

 common use of the SRAM among cores – observed effects 
 SRAM accesses by low priority tasks on one CPU may slow down other 

tasks on another CPU 
  affects low and high priority tasks likewise 
  counters priority assignment on the cores - priority inversion 

 WCRT may even increase super-linearly due to additional preemptions 
(shown for Tmedium priority in the example) 

 as CPUs are stalled when tasks are waiting for the shared memory the 
load on these CPUs will increase 

 problem demonstrated for accesses to shared SRAM, but the same 
reasoning applies to semaphore protected critical sections and other 
shared resources 
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Timing hazards when using shared resources 2/2 

 example shows high potential impact of non-critical on safety 
critical task despite high task priority and isolation 
 dangerous if software bugs in non-critical system with lower verification 

requirements (e.g. infinite loop w. memory access) 
  requires physical separation or (re-)certification including non-critical 

part 
  extra cost! 

 Note: Virtualization alone does NOT help! 
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Controlled separation for many-core systems 

 separation must include NoC and on-chip memories 
 suggested approaches typically use strict resource separation  
 example: NXP Aetheral NoC , … 
 challenge: efficiency (performance loss) 

 possible improvement 
 budgeting 
 channel separation 
 arbitration control for service guarantees 

Hard-RT Soft-RT 

General- 
purpose 
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The missing links  

 efficient separation of critical NoC traffic with minimized negative 
effect on non-critical traffic 
 avoid crossbar to enable many-core ICs 

  include resource access protection  
 avoid resource overutilization by non critical applications 

 example: IDAMC 
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Integrated Dependable Architecture for Many 
Cores (IDAMC) 
  general purpose system with 

support for mixed-criticality 
  safety-critical real-time 
  timing guarantees 

  best-effort, e.g. office, games,  
  latency sensitive 

  4-64 nodes 
 mesh NoC with QoS 
  up to four tiles per Node 

  hardware mechanisms for 
  virtualization at NoC-Level 
 monitoring (timing and power) 
  on-chip data transport, c2c communication Image: Synopsys 
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Tiles 

 each tile is a complete system 
 AMBA bus 
 LEON3 CPU and/or memory, peripherals 

 network interface (NI) connects to NoC 

LEON3 
Processor 

Debug Support 
Unit 

JTAG Debug 
Link  

AHB 

APB 

High Bandwidth 
Peripherals 

On-Chip 
Memory 

IDA NI AHB 
Controller 

AHB/APB 
Bridge 

Memory 
Controller 

Interrupt 
Controller 

Low Bandwidth 
Peripherals SDRAM I/O PROM IDA NoC 
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Network Interface (NI) - Architecture 

  interface to AMBA bus 
 system-virtualization of 

remote resources 
 Address remapping  
  Interrupt mapping 
 Routing 
 Virtual Channel selection 

 configured by trusted central 
system controller 

 monitoring 
 error detection and isolation 

Master Interface Slave Interface 

Output Buffer 

Paketization 

Address 
Translation and 

Routing 

Depacketization 

Input Buffer 

M
onitoring 

C
ontrol 

AMBA AHB Bus 

IDA NoC 
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System domain address translation 

Node S 

W

N 

E R 

Virtual 

MMU 

Physical SDAT 
IDA NI 

  translate tile-local physical address to system-wide address 
  flags to limit access (e.g. read-only) 
  route = address to remote tile 
  target address = base address in remote tile 

Route T. addr. 0000 

Region Offset 

Route T. addr. 0001 
Route T. addr. … 
Route T. addr. 1111 

Local tile (physical) address 

Base A. Offset 
Destination tile address 

Packetization 

F
F
F
F
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IDAMC – NoC  
characteristics of application/traffic classes 

 best-effort applications 
 most existing applications, major role in user 

experience 
 unpredictable and bursty resource usage 
  latency-sensitive: Application performance 

degrades with higher latency 

  real-time streaming applications 
  require resource and timing guarantees 
  resource sharing must be under control for 

efficient co-execution 
  regular access patterns  latency-tolerant: 

performance does not degrade with higher 
latency (up to a certain latency bound) 

Utility 
(~Performance) 

Latency 
Utility 

Latency 

Hard RT 

Soft RT 

Best effort 
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Input Unit 

Crossbar 

Output 
Unit 

Routing 
VC 

Allocator 

Switch 
Allocator 

Output 
Unit 

● 
● 
● 

● 
● 
● 

Input Unit 

● 
VC 
● 

● 
VC 
● 

QoS-Support for traffic isolation in the router 1/2 

 manage contention at router’s 
outputs 
 static isolation 
  e.g. time-division multiple-access 

(AEthereal [Goossens], SuperGT [Marescaux]) 
  service independent of other streams 

 dynamic isolation 
  e.g. prioritization 

(MANGO [Bjerregaard], QNoC [Bolotin], [AlFaruque], 
Globally-Synchronized Frames [Lee]) 

  service depends on the behavior of 
other streams 
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Input Unit 

Crossbar 

Output 
Unit 

Routing 
VC 

Allocator 

Switch 
Allocator 

Output 
Unit 

● 
● 
● 

● 
● 
● 

Input Unit 

● 
VC 
● 

● 
VC 
● 

QoS-support for traffic isolation in the router 2/2 

 existing QoS do guarantees first! 
 best-effort traffic = “second-class 

citizen” 
 BE traffic suffers from high latency 
 RT traffic has no benefit from 

reduced latency (deadline driven) 
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Input Unit 

Crossbar 

Output 
Unit 

Routing 
VC 

Allocator 

Switch 
Allocator 

Output 
Unit 

● 
● 
● 

● 
● 
● 

Input Unit 

● 
VC 
● 

● 
VC 
● 

Solution: QoS support for latency sensitive traffic 

  idea:  
exploit latency tolerance of RT 
streaming applications to improve 
BE latency 

 approach: prioritize BE as long as 
guaranteed throughput (GT) traffic 
makes sufficient progress  
 Distributed Traffic Shaping (DTS) 
 Back Suction (BS) 
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Goal: Guarantees and low BE latency 

Utility 

Latency 

Hard RT 

Soft RT 

Utility 

Latency 

Real-time Traffic Best-Effort Traffic 

Throughput guarantees 

Limited prioritization 
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Back Suction (BS) 

 Prioritize RT traffic based on downstream buffer occupancy 
 Threshold Module at every VC 
 Forward back suction signal on low occupancy towards upstream 
 Threshold determines how early prioritization of RT propagates 

towards sink  

 Limit rate (to guaranteed rate) at which sink may assert back suction 

Thr. Thr. 

Rate 
Limit 

Arbiter Thr. Arbiter Thr. 
Back 

Suction 

Router 1 Router 2 Sink 

RT VC RT VC 
GT stream 
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Formal timing analysis for BS and DTS 

  formally analyze routers iteratively (starting at sink) 

 analysis guarantees GT timing if back suction enforced 
 uses Compositional Performance Analysis  

- based on SymTA/S tool 

  future work: admission control performed on-line  
as part of resource management process 

Router 1 Router 1 Sink 1 

Sink 2 

Source 

Application 
model 

Mapping 

Constraint 
validation 

Enforcement 
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Result: Guarantees and improved BE latency 

 mechanism provides throughput guarantees to individual real-time 
streams 

 BE latency is improved significantly 
 application runtime improves accordingly 

~ 30% latency 
improvement over 
standard prioritization 
scheme 

Improve application 
performance by 
>10% 
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IDAMC - Summary 

 efficient separation of critical NoC traffic with minimized negative 
effect on non-critical traffic 
 back suction gives priority to non-critical traffic granting the 

requirements of critical traffic 
 exploits full qualification of critical process that includes accurate 

requirement definition 

  include resource access protection  
 external access control protects against accesses from non-critical 

applications 
 overutilization by non-critical applications constrained by NoC QoS 

control  

 consequence  
 all NoC components and central access and traffic control must be 

qualified at the highest criticality level in the system 
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 motivation  
 safety critical embedded system design 
 networks and multi-core systems for mixed time and safety critical 

applications 
  reliable systems for higher safety requirements 
 example projects 
 conclusion 

Overview 
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Technology trends – Reliability issues 

  reliability is an important challenge in future technology 
generations 
 growing system complexity combined with continuous technology 

downscaling   increasing error rates 

 appropriate techniques necessary to prevent failures 
  fault isolation 
 error detection and correction 
  bus/network: message retransmission, forward error correction 
 CPU/ECU:  redundancy, rollback techniques, microarchitectural 

measures 

 problem: predictability of system reliability 
 how does the system behave in case of errors? 
 what are consequences for the user / for the environment? 
 what is the failure probability? 

83 TU Braunschweig 
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Fault handling for higher criticalities 

  for higher safety requirements separation is necessary but not 
sufficient 
  isolation still requires correct hardware function 
 hardware failures must be included when hardware is less reliable than 

safety requirements 
 embedded systems trend  
  reliability of technology ↓ 
  safety requirements ↑ 
  hot industrial topic! 
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Fault handling for higher criticalities 

 handling of static and transient hardware faults required 
  reliability requirements are often quantified 
  requires predictable failure bounds 

  IEC 61508 
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From ES faults to ES failures 

 distinguish static and transient ES errors 
 static errors have permanent effects requiring redundancy for repair 
  transient errors are usually more frequent (EMC, new semiconductor 

technologies, …) but can often be masked when detected   
  transient error masking can cause timing errors  

Unexpected 
internal state 

 ERROR 

Result/Service 
within the 
specification 

Result/Service 
violates the  
specification 

 FAILURE 

Violation of functional  
specification 
 incorrect functionality 

Violation of temporal 
specification 
 incorrect timing 

1 0 
3+4=7 3+4=8 

Deadline 
t 

FAULT 
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Transient error handling 

  transient error handling known from communication 
 example: CAN (automotive) 

 CAN has error detection capabilities (CRC) 
  repeats message in case of transmission error using defined protocol 
 CAN functional fault tolerance increases timing and load! 

ECU1 
fault detection (HW/SW) 
bus 
fault detection (HW/SW) 
ECU2 
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Reliability analysis – General concept 

τ2 

τ1 τ1,2 τ1,1 τ1,3 

error tree  
analysis 

working 
set W5 

probability 
analysis 

P[S1,1] 
P[S2,1] 
P[S3,1] 
P[S1,2] 
P[S2,2] 

P[S3,2] 
P[S1,3] 

R1(t) = P[S1,1S1,2S1,3] 

τ2,2 

τ3 

a)  timing prediction 

b)  success probability calculation 

c)  reliability probability composition 

error tree  
analysis 

working 
set W5 

probability 
analysis 

error tree  
analysis 

working 
set W5 

probability 
analysis 

error tree  
analysis 

working 
set W5 

probability 
analysis 

error tree  
analysis 

working 
set W5 

probability 
analysis 

error tree  
analysis 

working 
set W5 

probability 
analysis 

error tree  
analysis 

working 
set W5 

probability 
analysis 

τ2,1 

τ3,1 τ3,2 a) 

b) c) 

R2(t) = P[S2,1S2,2] 
R3(t) = P[S3,1S3,2] 
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 SAE benchmark frame set  
 periodic system, deadline end of period 
 approximately 5 x 106 activations per hour 
 bus load approx. 70 % (CAN at 150 kbit/s) 

 error model 
 BER = 10-7 [Ferreira, 2004] 
  residual errors according to [Charzinksi, 1994] 

MTTFfunc  2 x 1012 h 

MTTFtime  1,8 x 105 h 

SIL 4 

SIL 1 
7 orders of magnitude more likely to miss end-of-period deadline! 
(for single error fault model) 
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Lessons to be learned from communication 

  functional errors can efficiently be detected 
  redundancy in time (message resend) is efficient 

  timing failures can be much more likely than residual errors 
 even at moderate load  
 due to failures at points with peak load  

 consider peak load situations! 
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 communication can easily incorporate fault-tolerance 
 EDC + retransmission (CRC, parity, hashes) 
 ECC (Hamming, Turbo, … ) 

 computation is much harder to protect 
 entire processor affected 
 control and data flow (including IP cores) 
 errors can propagate 
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VLSI failure modes and fault-tolerance 
  different failure modes of transistors 
  permanent errors (electromigration  stuck-at-error) 
  soft errors (SEUs, cosmic-radiation, thermal neutrons) 
  stress induced transient errors (transistor variability, NBTI, PBTI  Vt shift) 

  soft errors and transient effects are expected to dominate  
  all fault tolerance methods are based on redundancy 
  spatial redundancy 
  dual modular redundancy (DMR): (single) errors will be detected 
  triple modular redundnacy (TMR): (single) errors can be corrected  

  temporal redundancy (e.g. reevaluation on the same processor) 
  slightly worse coverage (permanent errors not detected) 
  high impact on timing (additional workload) 
  can also be used for recovery (checkpointing & rollback) 
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Traditional DMR (e.g. lockstep architecture) 2/2 

 DMR does not scale for mixed-critical systems 
 not all applications need fault tolerance 

 mixed-criticality example 
 2 critical, 3 uncritical applications 
 system lockstep: total overhead factor 2 
 overhead caused by uncritical apps: 1.6 

non critical 

critical 
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Task level DMR (fine grained)  
  replicate individual tasks only where needed 
  comparisons is based task state (e.g. comparison at output) 
  result can be verified if results from both instances are available 
  DMR creates feedback from core1 on core2 and vice versa 

  redundant copies induce higher load on other tasks 
  additional overhead through core-to-core communication (comparison) 
  timing analysis is necessary to prove correctness 

free resources can 
be used by other 
uncritical apps 

result result result result 
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Fingerprinting 

 compact state to “fingerprint” reduce core-to-core communication and 
comparison overhead 

 compare execution fingerprints (Smolens et al., 2004) 
 efficient, low bandwidth, high coverage 

Core 

fault tolerant interconnect 

… 
MPSoC IF 

ID 

EXE 

MEM 

WB 
Fingerprint 

Register 

+ 

Pipeline 

fault tolerant memory 

Core Core 
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Recovery – Typical methods 

 system reset  
 usually infeasible in hard real-time systems 

 switch to fail-safe mode (e.g failed active steering  fallback to 
mechanical solution) 

 checkpointing and rollback recovery 
 save state in regular intervals and store it on reliable memory 
  in case of errors, restore most recent state 
  impact on timing on all (lower priority) tasks in case of errors 

  recovery methods lead to timing overhead! 
 cp. resend in communication  
 use timing analysis 
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Modeling of fine grained redundancy 

  task τi is split into n segments 
  identical replications of task is distributed among e.g. k cores (e.g. 2)  
 voting on intermediate result (fingerprint) is performed in  

arbitrary (but known) intervals 
 use an equivalent task graph as a model 
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Recovery operations 

 non-matching fingerprints  recovery required 
 we model checkpointing and rollback 
 right before each segment, the state is saved to ECC protected 

memory 
 in case of an error, a correct state is restored 
 overhead for checkpointing and restoration: tcov, trov  

te + tcov 
te + trov 
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Timing failures – Re-execution example (simplified) 

T2	
  

T1	
  

T1	
  

T3	
   Preemption 

Execution 

Activation 

Reexecution 

comparison of intermediate results 

Recovery 
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Accuracy – comparision with Monte Carlo analysis 

Task Priority – Mapping 
core1/core2 T C Checkpoints Creation Recovery 

T0 3/2 300 60 2 10 20 
T1 4/- 250 50 - 
T2 2/- 100 10 - 
T3 -/1 300 50 - 
T4 1/3 600 40 2 10 20 

Overhead 
•  Checkpoint Creation 
•  Recovery 

λ1,2 = 1/10 sec 
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Design tradeoffs - Checkpointing 

  checkpointing itself can be a „critical 
section“ 

  for this experiment we assume, that an 
error during checkpointing causes a 
system failure 

λ = 1/week 

  assume fault-tolerant checkpointing 
  implementation 

  e.g. ECC memory protection & 
bus EDC  

  dual (redundant) DMA engines 

λ = 1/week 
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Redundant DMA engines for checkpointing 

DMA 
unit 1 

DMA 
unit 1 

Memory 1 

Memory 2 

DMA 
unit 2 

DMA 
unit 2 

DMA 
unit 2 

DMA 
unit 2 

checkpoint is copied by two different DMA engines to different memories 

DMA 
unit 1 

DMA 
unit 1 
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Tradeoffs – No. of checkpoints 1/2 

 experiment 1: low checkpointing overhead: 0.1ms 
 R(t) increases with the amount of checkpoints 
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 experiment 2: high checkpointing overhead: 1ms 
 R(t) decreases with the amount of checkpoints 

Tradeoffs – No. of checkpoints 2/2 
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The cost of safety 

 multi-core for highly safety critical functions require major 
hardware overhead 

 systems with mixed criticality bare the risk of non manageable 
requirements 
 vastly different design quality for safety and non-safety function 

integrated on the same platform 
  function isolation must be complemented by costly fault tolerance  

 efficient methods for function isolation and predictable fault 
tolerance are needed 

 example: Project RECOMP 
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 motivation  
 safety critical embedded system design 
 networks and multi-core systems for mixed time and safety critical 

applications 
  reliable systems for higher safety requirements 
 example projects 
 conclusion 

Overview 
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RECOMP 

  “Reduced Certification Costs Using Trusted Multi-core Platforms” 

  multi-core architectures for mixed safety critical systems  
  flexible tradoff between development, certification, and hardware cost  
  requires configurable core-to-core communication and separation/virtualization 

technologies 

  objective 
  develop HW and SW architectures, design methods, and tools to efficiently design 

and (re-)certify MpSoCs for mixed critical systems 

  European ARTEMIS project, 41 partners, 25 Mio € budget, 2010-2013 
  covers whole design chain 
  semiconductors, RTOS, suppliers, integrators (OEMs) 

  several industries 
  automotive, aerospace, industrial 

  www.recomp-project.eu 
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 “Internet of Energy (IoE) for Electric Mobility” 
 objective 
 develop hardware, software and middleware to use the Internet for future 

smart energy grids incl. new applications (electric mobility) 
  European ARTEMIS project, 42 partners, 45 Mio € budget, 2011-2014 
 complex mixed criticality requirements 
 grid stability, individual energy service, … 
 economic security 

  large economic  
challenges 
 power efficiency 
 network efficiency …  

IoE 
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 motivation  
 safety critical embedded system design 
 networks and multi-core systems for mixed time and safety critical 

applications 
  reliable systems for higher safety requirements 
 example projects 
 conclusion 

Overview 
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Conclusion 

 merging safety critical functions on an embedded platform typically 
leads to mixed critical platform components 

 mixed criticality is a serious certification cost driver and limits 
update capabilities of non-critical functions 

 no silver bullets for integration available 
 potential integration technologies span broad design space but still 

lack coherence and completeness 
 project consortia dedicated to the mixed criticality challenge in 

local (RECOMP) to widely distributed (IoE) systems 
 much further research needed 

Thank you! 
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