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An Evolving Research 
Landscape 

  Embedded systems (avionics, robotics, automotive, factory 
automation, …)  
  to: 

  Cyber-physical systems (large embedded systems of 
systems: coupling, complexity, composition challenges, …) 
  to:  

  Cyber-physical systems in social spaces  (CPS that 
massively interact with humans: quality of information, 
uncertainty, robustness, non-determinism, “network 
science”)  
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Social Sensing: 
A Confluence of Three Trends 
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Cyber-Physical Computing: 
From Engineered to Social Systems 
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Social Sensing 
Powered by Proliferation of Common Sensors 

  WWW  a gathering place around topics of mutual 
interest 

  Social sensing web  a gathering place around 
mutually interesting data pools (and derived info) 
  Feng Zhao: MSR Sensor Map 
  Dave Clark: The future Internet will link more sensors 

and embedded devices that traditional hosts 
  Van Jacobson: Named-data networking paradigm (we 

use the Internet as an information source not a 
communication medium) 
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Smart Jacket for Human 
Activity Monitoring 

Personal Sensing 
Human Activity Monitoring 



Personal Sensing 
Sports and Entertainment 

http://www.sensatex.com  

Nike -iPod 

Wii 

Spot 

GPS 



  Instrumented spaces for “aging in place” 
  Reduce cost of long-term care by facilitating 

independent living  

19 AlarmNet testbed at the University of Virginia 

Personal Sensing 
Smart Spaces 



Precision  
weight scale 

Glucose 
monitor 

Blood pressure 
monitor Pulse  

oximeter 

Pedometer 

Heart rate 
monitor 

  HealthVault (Microsoft): Fitness and biometric monitoring devices 
automatically upload data to a central repository for safekeeping and 
analysis 
  A significant number of medical device vendors announced devices 

compatible with healthVault 

Personal Sensing 
Health and Wellness (HealthVault) 



Social Sensing 
Geo-tagging the World 

  Phone-based geo-tagging 
of events of interest 
(UCLA) 
  Crowds/pollution on beach 
  Invasive species (weeds) 
  Trucks in residential 

neighborhoods 
  Drinking fountains 

Reprinted from UCLA/CENS 



Social Sensing 
Street Statistics: CarTel, BikeNet, … 

Reprinted from http://cartel.csail.mit.edu/overview.html 

  CarTel (MIT): An ad hoc network of 
vehicles with sensors 
  Measures road congestion 
  Generates annotated maps 

  Bikenet (Dartmouth 
College): A self-selected 
community of biking 
enthusiasts 
  Shares bike route statistics 



An Example Application: 
Transportation Energy Efficiency 

In the US: 
  200 million light vehicles on the streets 
  Each driven 12000 miles annually on 

average 
  Average MPG is 20.3 miles/gallon 
  118 Billion Gallons of Fuel per year! 
  Savings of 1% = One Billion Gallons  

Source: US EPA 



GreenGPS: Fuel Efficient 
Routing 

  Individuals share fuel 
consumption values on 
various streets at different 
times of the day 

  Models of fuel efficient 
routes are computed  

  They differ from shortest or 
fastest routes 
  Congestion  shortest may 

not be fuel efficient 
  MPG lower at higher speeds 
 fastest may not be fuel 
efficient 

Source: US EPA 
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Saves 6% over shortest path 
and 13% over fastest path  

Green GPS 



Gas Prices in the US  May 3rd: Story 
 “GreenGPS Saves”  





Social Sensing Components 
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Counter-insurgency (ARL):  
A Motivating Application 

Social System 
and 
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  Break-down the challenges 
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Network 
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Social (friendly and 
adversarial) networks 

Tahrir Square, Cairo 
during Egypt Unrest 
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Sensing Challenges in Social 
Cyber-Physical Systems 

  Privacy 
  How to enable people to share data without 

violating their privacy? 

  “Fact finding” (from noisy data) 
  How to determine reliability of data and sources? 

  Modeling and prediction 
  How to efficiently generalize from incomplete 

data? 

  Control (future work) 



Social Sensing Challenge #1: 
Data Source Privacy 

  Clients do not necessarily wish to share their data 
with the service  
  “Who my cell phone spent the night with is my  business” 

  Data, even if anonymised, can reveal identify of 
source 

  Develop perturbation that preserves privacy of 
individuals 
  Cannot infer individuals’ data without large error 
  Reconstruction of community distribution can be achieved 

within proven accuracy bounds 



An Example 

  Dieters want to share weight information to find 
efficacy of the given diet, without revealing their 
true weight, average, trend (loss or gain of 
weight), etc… 



Perturb data? Add Noise? 

Weight curve perturbed by adding 
independent random noise 

Estimation using PCA to breach 
privacy of user 



Add Noise and Random 
Offset? 

35 

Weight curve perturbed by adding 
independent random noise  
and a random offset 

Estimation using PCA to estimate the 
data of the user 



Problem Statement 

  Develop perturbation that preserves privacy 
of individuals 
  Cannot infer individuals’ data without large error 
  Reconstruction of community distribution can be 

achieved within proven accuracy bounds 
  Perturbation can be applied by non-expert users 
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Intuitive Approach 

Real user 

Virtual user 

Perturbed 
data curve 

+ 

  Client adds noise time-series with co-variance that largely mimics 
covariance of actual data (overlap in frequency domain) 

  Users send their perturbed data to aggregation server 
  Given perturbed community distribution and noise, server uses de-

convolution to reconstruct original data distribution at any point in time  
User community 

Deconvolution 

Noise 

Perturbed 
Distrib. 

Estimated 
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Distribution 



Traffic Analyzer 

  Users share perturbed 
speed data with 
aggregation server 

  Server combines perturbed 
speed data and uses de-
convolution with noise 
model to compute original 
speed distribution  

  Garmin GPS used for data 
collection 

  Results are from real data 
collection in Urbana-
Champaign in 2008 

Dept. of 
Computer 
Science 

Roads for which we want 
to estimate average speed 



Perturbing Speed 



Reconstruction of Average 
Speed 



Reconstruction of Community 
Speed Distribution 

Real community distribution of 
speed 

Reconstructed community distribution 
of speed 



Perturbing Speed and Location 

  Clients lie about both their location and 
speed 



Reconstruction Accuracy 

  Real versus reconstructed speed 

Real community distribution of 
speed 

Reconstructed community distribution 
of speed 



More on Reconstruction 
Accuracy 

  Real versus reconstructed speed on 
Washington St., Champaign 

Real community distribution of 
speed 

Reconstructed community distribution 
of speed 



How Many are Speeding? 

Street Real % 
Speeding 

Estimated % 
Speeding 

University Ave 15.6% 17.8% 

Neil Street 21.4% 23.7% 

Washington Street 0.5% 0.15% 

Elm Street 6.9% 8.6% 

  Real versus estimated percentage of speeding 
vehicles on different streets (from data of users 
who “lie” about both speed and location) 



Privacy and Optimal 
Perturbation 
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  Is the an optimal perturbation scheme? 
  What is the measure the privacy? 
  How can we generate the optimal 

perturbation? 



Privacy Measure 
  We use the mutual information I(X;Y)  to measure 

the information about X contained in Y 
  Minimal information leak under noise power 

constraint 



Upper Bound on Privacy 

  Lemma (Ihara, 78) 
  The noise that minimizes the upper 

bound on information leak is a Gaussian 
noise 

Covariance of signal 

Covariance of noise 
Mutual Information (Leak) 



Finding the Optimal Noise 
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  Solving for the optimal noise’s covariance 
matrix 



Optimal Noise 

  The noise generation method can be seen as the 
optimal allocation of noise energy in the 
frequency domain 



Utility vs. Privacy Trade-off 

53 



Social Sensing Challenge #2: 
Fact-finding from Noisy Data 

  In social sensing applications, participants 
may not be known or vetted a priori 

  Some data may be incorrect and some 
sources unreliable 

  Non-numeric data: Human text, images, 
etc. 

  How to tell good from bad sources? 



The Problem 
Human are involved in the 
sensing and data fusion loop 

What to believe? Who to believe?  

Quantitatively? 
Detailed prior knowledge on source 
reliability is unknown. 

55 



Apollo: A General Fact-finding 
Service for Human-centric Sensing  

  Human-centric sensing applications  
  Use potentially unreliable or unverified sources 
  May be plagued by noisy and incorrect data, especially 

in large deployments with un-vetted participants 

  Apollo:  
  A “generic tool” for data cleaning and fact-finding 
  Does not rely on application-specific methods for 

distilling sensor data 
  Works with a wide range of applications involving data 

types ranging from time-series of sensor readings and 
GPS location tags to image and text 56 



High-level Architecture 
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Fact-Finding 
Optimal Assignment of Truth Values 
to Sources and “Claims” 
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The Apollo Analytic Engine 

  Formulates the fact-finding problem as one of 
maximum likelihood estimation 

  Solves it using the Expectation Maximization (EM) 
algorithm 

  Computes a bound on estimation accuracy (using 
the Cramer Rao Bound) 



True Assertions 

False Assertions 

Reliability of 
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All 
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True Assertion 

ai 

Math Formulation 



False Assertion 

bi 

Math Formulation 



Math Formulation 

63 



Math Formulation 

Confidence Interval ! 
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Derivation of Confidence 

Fisher Information 

Cramer-Rao Bound 
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Derivation 
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Derivation 

Diagonal Matrix! 
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Derivation 

Variance of MLE from EM! 68 



Confidence Interval Derived 

Desired 
Confidence 
Interval! 
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Example Applications 

  Humans operate  sensors: 
PictureMe 

  Humans carry  sensors: 
Speed Mapping  

  Humans are  the sensors: 
Event and timeline  
reconstruction from Tweets 70 



Evaluation  
Estimation Error 

  More accurate than state of the art fact-finders 



Evaluation 
Error Bound 

  Empirical data suggests the confidence interval is 
accurate 



Apollo  
Cleaning Noisy Speed Data 

Ground 
 Truth Apollo Average 



Apollo  
Cleaning Noisy Twitter Data 



Social Sensing Challenge #3  
Modeling: One Size Does Not Fit All 

  Regression modeling:  
  Problem: one size does not fit all. Who says that Fords and 

Toyotas have the same fuel consumption model? 

  Regression model per car? 
  Problem: How to use data collected by some cars to 

predict fuel consumption of others? 

  Challenge: Must jointly determine both (i) regression 
models and (ii) their scope of applicability, to cover 
the whole data space with acceptable modeling 
error. 



Generalization and Modeling 

  Complex general system models with a large 
number of parameters  are hard to train (need a 
lot of training data) and have a high inference cost 
(need a lot of inputs) 
  Poor cost/quality trade-off 

  Main idea:  Break-up complex general models 
into trees of simpler (but more specialized models) 
  Model has fewer parameters  
             less run-time data collection cost 
  Model may fit special case better  
             higher accuracy 
 Improved cost/quality trade-off!  



The Participant Data Modeling 
Challenge 

  A phenomenon is sampled  by participants 
in spatial and temporal dimensions 

  Sampling is sparse (at least in conditions of 
partial adoption) 

  The phenomenon is high-dimensional 
  Question: how to generalize models 

obtained from the limited samples to cover 
the high-dimensional phenomenon space?  



Sampling Regression Modeling 
Framework 

Fuel consumption of 16 
cars driven on a few roads 

Predict fuel consumption of 
any car on any road 



Fuel Consumption Model 

  Simple model for fuel consumption derived from 
physics principles 

  Approximate based on easily measurable 
parameters (e.g. stop signs, speed limits) 



A Generalization Hierarchy 

  Goal: predict fuel consumption 

  Group by make, model, or year  



Regression Cubes 

  Data cells correspond to models derived from 
corresponding data subsets. In each cell, c:  
  Model output Yc = {yi}  

  Model inputs xi1, … , xik , Xc={xij} 

  Regression modeling error:  



The Challenge of Regression 
Cubes  

  Main challenge: compute cuboid  measures, 
the model and error, recursively (without 
reprocessing raw data)  

  Model parameters and estimation error at 
cell c 
  Not distributive 



Efficient Representation 

  Compressed representation of a cell c: 
                 : scalar value  
                 : vector of size k  (number of inputs)  
                 : k by k matrix 
     nc  : number of samples 

  A cell c may be the union of several 
smaller cells (e.g., all Toyota cars): 



Efficient Model Parameter and 
Error Computation  

  Model coefficients: 

  Error: 



GreenGPS Regression Cubes  

  Goal: predict fuel consumption 

Model and modeling 
error are efficiently 
computed for each 
possible generalization. 



Model Reduction 

  Independently find a subset of attributes for each cell, such that: 
  The cell is reliable 
  Corresponding error is minimized 
  Exponential number of possible subsets 

  Our heuristic:  

Velocity (v) 
Mass (m) 

Frontal area (A) 
Stop signs (S) 

L = {v} 
L = {m} 
L = {A} 
L = {S} 

Attributes 

0.031 
0.152 
0.043 
0.056 

yes 
yes 
yes 
yes 

Error Reliable 
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yes 
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Error Reliable 



Model Reduction 

L = {v, m} 
L = {v, A} 
L = {v, S} 

0.021 
0.030 
0.028 

no 
yes 
yes 

Error Reliable 

L = {v} 
L = {m} 
L = {A} 
L = {S} 
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Model Reduction 

L = {v, m} 
L = {v, A} 
L = {v, S} 

0.021 
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Error Reliable 

L = {v} 
L = {m} 
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Model Reduction 

L = {v, m} 
L = {v, A} 
L = {v, S} 

L = {v} 
L = {m} 
L = {A} 
L = {S} 

L = {v, S, m} 
L = {v, S, A} 

0.024 
0.026 

no 
no 

Error Reliable 

Velocity (v) 
Mass (m) 

Frontal area (A) 
Stop signs (S) 

Attributes 



Model Reduction 

L = {v, m} 
L = {v, A} 
L = {v, S} 

L = {v} 
L = {m} 
L = {A} 
L = {S} 

L = {v, S, m} 
L = {v, S, A} 

Reduced Model: {v, S} 

Velocity (v) 
Mass (m) 

Frontal area (A) 
Stop signs (S) 

Attributes 



Accuracy Results 
  The sampling regression cube improves prediction 

accuracy significantly 

    Sparse sampling 
challenge: A 
regression cube 
without model 
reduction is worse 
than a single “one-
size fits-all” model! 



Model Performance 

    All driven paths are split 
into smaller segments  to 
capture variations in fuel 
consumption on individual 
streets 

Segment 1                Segment 2   Segment 3 



Long Path Error 

    Reduction in cumulative error with increasing path length 



Fuel Savings Evaluation 
  Experiment:  

  Given shortest and fastest routes, GreenGPS predicts best route. 
  Driver drives both routes repeatedly and compares average fuel 

consumption of the two. 

Car Details Landmarks Route Savings % 

Honda Accord 
2001 

H1 to Mall Shortest 31.4 

H1 to Gym Shortest 19.7 

Ford Taurus 2001 H2 to Restaurant Shortest 26 

Toyota Celica 2001 H2 to Work Fastest 10.1 

Nissan Sentra 
2009 

H3 to CUPHD Fastest 8.4 

Honda Civic 2002 Grad to Work Fastest 18.7 



Comment #1: 
Privacy - Revisited 

  Can we offer privacy without data 
perturbation (or encryption)? 

  The Problem: It is desired to derive a 
model (e.g., fuel-efficiency of a car) from 
inputs and outputs that are private 
  The model itself is not private 
  The inputs and outputs are! 



Reminder: 
Efficient Representation 

  Compressed representation of a cell c: 
                 : scalar value  
                 : vector of size k  (number of inputs)  
                 : k by k matrix 
     nc  : number of samples 

  A cell c may be the union of several 
smaller cells (e.g., all Toyota cars): 



Reminder: Model Parameter 
and Error Computation  

  Model coefficients: 

  Error: 



Evaluation (Privacy-preserving 
Regression vs. Perturbation) 

  No additional error is introduced into modeling 

Lower total modeling error 

Better prediction of gas consumption for 
individual vehicles 



Evaluation (Privacy-preserving 
Regression vs. Perturbation) 

  Single-stream reconstruction accuracy 

3-parameter model 4-parameter model 



Comment #2: 
Cost-sensitive Regression 

  What if data collection had costs? Is it 
possible to derive models that are cost 
sensitive? 



A1 

A5 

A2 

A3 

A4 

T 

Ai Sorted Attribute Ai used 

Aj Unsorted Attribute Aj 
used 

T 
Terminal 

T 

T T 

T T T 

T 

Used Attribute {A1, 
A2, A3, A5} 

Cost is sum of Cost
{A1, A2, A3, A5} 

Cost Budget Imposed: Where shall we predict? 

Cost  
Budget 

Cost-sensitive Regression 



A1 

A5 

A2 

A3 

A4 

T T 

T T 

T T T 

T 

Parent level 

Generate children  to parent 
if children cannot meet 
cost budget  at terminal 
level 

Within  
Budget 

Beyond  
Budget 

Cost  
Budget 

Cost-sensitive Regression 



Evaluation on GreenGPS 

Method Used Prediction Error 
(%) 

Cost 

Single Model* 
(Cost-insensitive) 

34.39% 35 

Cube Model  
(Cost-insensitive)  

21.25% 33 

Cost-insensitive Hybrid 
Regress Tree 

19.47% 34 

Cost-sensitive Hybrid Regress 
Tree 

18.88% 23 

*Single Model: use all data (without splitting into subspaces) to build a 
single regression model to predict 



Conclusions 

  Social sensing systems are becoming ubiquitous 
  Some problems become more important 

  Privacy, fact-finding (data cleaning), quality of information, 
modeling, robustness, … 

  Needed:  
  Analytic results for collection and use of social sensing data 

(accuracy estimation, privacy-preserving perturbation, 
modeling, control, …) 

  A tool set to embody the analytic results (obfuscation 
tools, fact-finders, modeling libraries, …) 

  Planned deployment: GreenGPS on 100 cars 
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