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i A Little About Me

M.Sc. In Automatic Control, Ain Shams Univ., Egypt, 1994

Ph.D. in Computer Science, University of Michigan, 1999
= QoS Adaptation in Real-time Systems (Advisor: Kang Shin)

University of Virginia (Dept. of CS), 1999-2005

University of Illinois at Urbana Champaign, 2005-now

= Cyber-physical Computing Group

= ~ 10 Ph.D. students

= ~ 1-2 Postdocs and R&D Associates

= Part of the Embedded Systems Labs (Lead: Lui Sha, ~ 30 students)

Research interests: Computing systems that interact with the physical
world (and with people).



An Evolving Research
i Landscape

= Embedded systems (avionics, robotics, automotive, factory
automation, ...)

to:
= Cyber-physical systems (large embedded systems of
systems: coupling, complexity, composition challenges, ...)
to:
= Cyber-physical systems in social spaces (CPS that
massively interact with humans: quality of information,

uncertainty, robustness, non-determinism, “network
science”)




iThe Rise of Social Sensing

Analytics

Future Appllcatlons

Data




Social Sensing:
A Confluence of Three Trends

Mass Dissemination Media
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Cyber-Physical Computing:

From Engineered to Social Systems

Classical Emerging
Control, automation Data processing, decision making
Voatt st !
BEN g
Goals 2 Q
—* Controller > — \!/’ ;g
4 Physical or ' '
Engineered A C_omple>§
Process Data Socio-physical
_ System
Sensor [¢— Processing




An Architecture for Social
i Cyber-Physical Applications

Critical
Services



An Architecture for Social
i Cyber-Physical Applications

Mobiles

Critical
Services
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An Architecture for Social
i Cyber-Physical Applications

Critical

Services

Sensors




An Architecture for Social
iCyber-PhysicaI Applications
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Social Cyber-Physical Systems
On the Map
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Social Cyber-Physical Systems
On the Map

+

Safety-critical
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Formal verification
Worst-case analysis
Certification
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Social Cyber-Physical Systems
On the Map
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Powered by Proliferation of Common Sensors

i Social Sensing

= WWW - a gathering place around topics of mutual
interest

= Social sensing web - a gathering place around
mutually interesting data pools (and derived info)
= Feng Zhao: MSR Sensor Map

= Dave Clark: The future Internet will link more sensors
and embedded devices that traditional hosts

= Van Jacobson: Named-data networking paradigm (we
use the Internet as an information source not a
communication medium)



Personal Sensing
Human Activity Monitoring

Smart Jacket for Human
Activity Monitoring
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Personal Sensing
Sports and Entertainment

The Smart
Schematic
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Personal Sensing

iSmart Spaces
= Instrumented spaces for “aging in place”
= Reduce cost of long-term care by facilitating
independent living
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Personal Sensing
Health and Wellness (HealthVault)

= HealthVault (Microsoft): Fitness and biometric monitoring devices
automatically upload data to a central repository for safekeeping and
analysis
= A significant number of medical device vendors announced devices
compatible with healthVault
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Social Sensing
i Geo-tagging the World

= Phone-based geo-tagging
of events of interest
(UCLA)
= Crowds/pollution on beach
= Invasive species (weeds)

= Trucks in residential
neighborhoods

= Drinking fountains

Reprinted from UCLA/CENS



Social Sensing
Street Statistics: CarTel, BikeNet, ...

Clients = CarTel (MIT): An ad hoc network of

_ & vehicles with sensors
P .42“&22”"' = Measures road congestion

= Generates annotated maps

e ’ Opportunistic IP
Relaying via 802.11,

= Bikenet (Dartmouth
College): A self-selected
community of biking

o Cotecin trfic, CAN. info enthusiasts :

E*"mg*z.@,q = Shares bike route statistics & s

Reprinted from http://cartel.csail.mit.edu/overview.html



An Example Application:
iTransportation Energy Efficiency

In the US:
= 200 million light vehicles on the streets

= Each driven 12000 miles annually on
average

= Average MPG is 20.3 miles/gallon
= 118 Billion Gallons of Fuel per year!
= Savings of 1% = One Billion Gallons



GreenGPS: Fuel Efficient

i Routing

= Individuals share fuel
consumption values on

| S
S
c 3z

various streets at dlfferent B

times of the day

= Models of fuel efficient
routes are computed

= They differ from shortest or

fastest routes

= Congestion - shortest may

not be fuel efficient

= MPG lower at higher speeds

- fastest may not be fuel
efficient
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Shortest and fastest

iGreen GPS

Subscribers

OBDII-WiFi
Adaptor ($50) GPS Phone

Most fuel- /

efficient Vil R R
Green GPS
The fuel

efficient option

Saves 6% over shortest path
and 13% over fastest path

Fuel Data
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*Gas Prices in the US  tersssen
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Faster? Shorter? Try Cheaper, Greener

Program Gives Drivers the Most Fuel-Efficient Route

Tracy Cozzens

ost GPS devices in cars the engine’s fuel efficiency and cus-

today give the driver two tomizes navigation advice to the par-
choices: shortest route or ticular vehicle, Abdelzaher explained.
fastest route. GreenGPS provides a Thehest route comnuted by
third option: most fuel-efficient route.  Greer
With gas prices skyrocketing, many  may ¢

other.
about

e

drivers would be happy to spend a

ew more minutes on the road. or take

Hoped by University
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iSociaI Sensing Components

= Break-down the challenges
= Sensing -2 Modeling - Control

Pogtt ’r,v ' Driving

Goals: ‘ \t/’ f E’ Consumption

- Get there ' HEEEE

- Save = A _

- Be green TraffIC SYStem

and

Fuel Traffic State
Influence Prediction




Counter-insurgency (ARL):
iA Motivating Application

= Break-down the challenges
= Sensing -2 Modeling - Control

Social (friendly and | '
adversarial) networks . % \t/l/ ! ¥ Data

=4 Network
Goals —* i § ' > Models

Social System
and

Influence State

Tahrir Square, Cairo
during Egypt Unrest




GreenGPS:;
iA Motivating Application

= Break-down the challenges
= Sensing - Modeling - Control Social Sensing

! ,'n ’r,r * Driving
J/ data .
’ , | Consumption

Goals: — >

- Get there " ' Models

- Save >z _

- Be green Tl‘affIC SYStem

and

Fuel Traffic State
Influence Prediction




Sensing Challenges in Social
i Cyber-Physical Systems

= Privacy

= How to enable people to share data without
violating their privacy?

= "Fact finding” (from noisy data)
= How to determine reliability of data and sources?

= Modeling and prediction

= How to efficiently generalize from incomplete
data?

m Control (future work)




Social Sensing Challenge #1.:
i Data Source Privacy

= Clients do not necessarily wish to share their data
with the service

= "Who my cell phone spent the night with is my business”

= Data, even if anonymised, can reveal identify of
source

= Develop perturbation that preserves privacy of
individuals
= Cannot infer individuals’ data without large error

= Reconstruction of community distribution can be achieved
within proven accuracy bounds



i An Example

= Dieters want to share weight information to find
efficacy of the given diet, without revealing their
true weight, average, trend (loss or gain of

weight), etc...




i Perturb data? Add Noise?

[=—Real Weight '
——Perturbed Weight

——Real Weight
——Perturbed Weight
- - =Reconstructed Weight

Weight (Ib)
Weight (Ib)

T

Day

Weight curve perturbed by adding Estimation using PCA to breach
independent random noise privacy of user




Add Noise and Random
‘L Offset?

Weight (Ib)

Weight (Ib)

Day

Day

Estimation using PCA to estimate the

Weight curve perturbed by adding
data of the user

independent random noise
and a random offset
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i Problem Statement

= Develop perturbation that preserves privacy
of individuals
»« Cannot infer individuals’ data without large error

= Reconstruction of community distribution can be
achieved within proven accuracy bounds

» Perturbation can be applied by non-expert users




i Intuitive Approach

= Client adds noise time-series with co-variance that largely mimics
covariance of actual data (overlap in frequency domain)

Real user .- >< Can't reconstruct

\ Pertu rbed 7
" data curve
Virtual user /,




i Intuitive Approach

= Client adds noise time-series with co-variance that largely mimics
covariance of actual data (overlap in frequency domain)

= Users send their perturbed data to aggregation server

User communi
Real user .- ty

\ Pertu rbed A7 ™

data curve

. Pertu rb
Dlstrlb

Virtual user /,




i Intuitive Approach

Client adds noise time-series with co-variance that largely mimics
covariance of actual data (overlap in frequency domain)

= Users send their perturbed data to aggregation server

= Given perturbed community distribution and noise, server uses de-
convolution to reconstruct original data distribution at any point in time

User community

Real user . - \l / /
\ Pe rturbed \ |
data curve | Estimated
E | . Community
Virtual user I _ Distribution
/ ; Perturbed i Deconvolution
' Dlstrlb >

0.02}

Nmseiﬁ |




i Traffic Analyzer

Users share perturbed

speed data with
aggregation server 8
Server combines perturbed
speed data and uses de- ST S ! m—
convolution with noise = "m e W
model to compute original ~ ‘
speed distribution

Garmin GPS used for data

collection Dept. of
Results are from real data  Roads for which we want  Computer
collection in Urbana- to estimate average speed Science

Champaign in 2008



i Perturbing Speed

1800

60

----l-I o
o
©
-
o
= 1O
<t
-
z-----ﬁﬁl o
IIII.?II m
-
o
: 18
-8
C
©
+—
Q2
LILIC LI TE I I T RE 3 3T P on
l---lunnnu w
Q
Elo
u OH O
Lo
[&]
()]
C o
S 3
©
umu%
s nmmmnmnREe ..erumﬂau.
cC 3
8o
— 0 9
Sx 8o
- = 3HO
o< £«
S0 o
Ooaa
™
M
i L o
o o o o o o o o
3 2 8 2 T8 q
(ydw) paadg



Reconstruction of Average

* Speed
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Reconstruction of Community
Ll Speed Distribution
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i Perturbing Speed and Location

» Clients lie about both their location and
speed
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i Reconstruction Accuracy

= Real versus reconstructed speed

30

- -
Speed {mph aaad il

Real community distribution of Reconstructed community distribution
Speed of speed



More on Reconstruction

i Accuracy

= Real versus reconstructed speed on
Washington St., Champaign

Density
()

lity Densily

Probabilly
(=] [

P robab
(-]

25 30

Spead (mph Spead (mph

Real community distribution of Reconstructed community distribution
speed of speed



i How Many are Speeding?

= Real versus estimated percentage of speeding
vehicles on different streets (from data of users
who “lie” about both speed and location)

Real % Estimated %
Speeding Speeding

University Ave 15.6% 17.8%
Neil Street 21.4% 23.7%
Washington Street 0.5% 0.15%

Elm Street 6.9% 8.6%



Privacy and Optimal
i Perturbation

= Is the an optimal perturbation scheme?
= What is the measure the privacy?

= How can we generate the optimal
perturbation?

48



Privacy Measure

= We use the mutual information I(X;Y) to measure
the information about X contained in Y

= Minimal information leak under noise power
constraint P§ = min (X, X + 2)

subject to Py < Py

e X is the original data

e Y is the perturbed data

e / is the noise

e P is the power of Z



i Upper Bound on Privacy

= Lemma (Ihara, 78)

= The noise that minimizes the upper
bound on information leak is a Gaussian

noise

1 det( K K
I(X,Y) SI(Xg,Xg—I—ZG) — et(a X T ,“Z)

\ 2 /Aet (KZ )
Covariance of signal

Mutual Information (Leak)

Covariance of noise



i Finding the Optimal Noise

= Solving for the optimal noise’s covariance
matrix

K. = ar mz’nilo det(Kx + Kz)
2 %Z on 8 det(K z)

subject to

1
—trace(Kz) < Py

n
Kz =0
K 7 is Symmetric Toeplitz
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i —Real data
---Generated "noise"
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= The noise generation method can be seen as the
optimal allocation of noise energy in the
frequency domain



i Utility vs. Privacy Trade-off
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Social Sensing Challenge #2:
i Fact-finding from Noisy Data

= In social sensing applications, participants
may not be known or vetted a priori

= Some data may be incorrect and some
sources unreliable

= Non-numeric data: Human text, images,
etc.

= How to tell good from bad sources?




amazoncom Hello, Dong Wang. We have recommendations for you. (Not Dong?)
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Customer Reviews
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Apollo: A General Fact-finding
i Service for Human-centric Sensing

= Human-centric sensing applications
= Use potentially unreliable or unverified sources

= May be plagued by noisy and incorrect data, especially
in large deployments with un-vetted participants

= Apollo:

= A “generic tool” for data cleaning and fact-finding

= Does not rely on application-specific methods for
distilling sensor data

= Works with a wide range of applications involving data
types ranging from time-series of sensor readings and
GPS location tags to image and text -



High-level Architecture

Network of
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Claim Credibility «— Front-end
Assessment |  Assertion | \_ /
Clusters
) | Sources | . s N
| @ ° Distance Image
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Fact-Finding
Optimal Assignment of Truth Values
to Sources and "Claims”

\

. (& 6
Source Assertions
Ranking Ranking
. Source
. Claim



i The Apollo Analytic Engine

= Formulates the fact-finding problem as one of
maximum likelihood estimation

= Solves it using the Expectation Maximization (EM)
algorithm

= Computes a bound on estimation accuracy (using
the Cramer Rao Bound)



True Assertions

False Assertions

T _
W

Math Formulation

[ 1
Reliability of -
Participant i —
i 1 4k
[ ]
Participant Reliability
t,=P(C.|S.C))
I S.C, : participant i claims assertion j
A
[ Speak Rateof
Participant ;
— o 4
Participant i speak with rate s,
— 5= P(SC,)
[




Math Formulation

a; = P(Sicj |C;)

[.XS.

1 1

True Assertion

Using Bayesian Theorem: a, =

where d is the overal prior that a randomnly

chozen assertion is true

g/




Math Formulation

[ ]
[ 1
False Assertion
[ ]
[ ]
[ 1 ,
b, =P(SZ.CJ. | C]. )
] Using Bayesian Theorem: b, = a _1 i ); il
here d 1s the overal prior that a randomnl
I P y
@ b; chozen assertion is true
/ — >
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\ [ —
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i Math Formulation

Log-likelihood Function of EM Scheme:

N

Z .

J

lem(x;H) = 3

7=l

+(1-z,)x [i (S.C, logh, +(1-5,C,)log(1-b,) + log(l—d))}

M
X [2 (SZ.CJ. loga, +(1-§,C;)log(1-a,)+ loga’)]

where z; =1 when measured variable j 1s true and 0 otherwise
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i Math Formulation

Our Goal 1s to find the Confidence Interval

of Particpant Reliability MLE: Confidence Interval !

LI

MLE [ MLE .
(tl. —c, L e ‘”) with ¢%

where ¢% 1s the confidence level of the estimation interval,

lower

upper
¢, and ¢ "“represents the lower and upper bound on the

MLE

[

estimation deviation from MLE ¢

64



Derivation of Confidence

ation and Statistic Background

Fisher information is defined as

I(0)=E, [qa(x;@) o(x;0)" ] ——> Fisher Information

Score vector @(x;0) for ak x 1 estimation vector 6 =[6,,6,,...,6,1

T
ol(x;0) dl(x;0 ol(x;0
@(X;H) = ( )9 ( )9'°'9 ( )
00, 00, 00,
Fisher Information Matrix can rewritten as (under regularity condition of EM) :
0°1(x;0)
1(0)), . =-F )
( ( ))z,J X aHlaH]

Cramer-Rao Bound (CRB) 1s defined as the inverse of Fisher information

CRB =17'(6) | —> Cramer-Rao Bound
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i Derivation

EM outputs the maximum likelihood estimation (MLE) of

participant reliability
Y Z K- Z;

J
~MLE  j&ST, I; MLE _ JESJ;

a4, =N i N
>z N-YZ;
J=1 J=1

where SJ. 1s the set of measured variables reported by participant S,

, Z; 1s the converged value of Z(¢, ) (1.e.,p(z, =1| Xj,H(’)) and K 1s the

number of observations from participants..
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* Derivation

Plugging /,, (x;6) into the Fisher Information Matrix:

(L(OmLE))i,;

0 =y
1 8 lem(m a;i)
— < _E [ 80, |a =a

—E [1 a2 lem(acb)

The 1nverse of above matrix is: l

_EX | 82167711\21: 1ag) |az—aAILE:| 1= ] S []"A‘[]
— ﬁ 8a2
—EBx | anemN(m;bi) |bi=6£\4LE] i =3 € (M,2M]

2
\ Bbz.

AILE] i=7j€[l, M]
6b2 Ibi:l;{’\/ILE] T ] e (A[, 2]\[]

U7 rrze))ig *
0 i #
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i Derivation

Substituing /™' (éML ) 1nto the normal distribution, the covariance matrix

Cov(éMLE) for MLE of EM scheme is:

(Cov(0mLE))i,j

Variance of MLE from EM!

i 7 j
i =7 € |1, M]
i =j € (M,2M]



Confidence Interval Derived

"MLE

Given a,= —t ) follows a norm distribution

with 0 mean and variance given by:
2

Var (i) = (i) Var (6%

S Desired
: oy eq- : : Confidence
Confidence Interval of reliability estimmation Intervall
of participant .S, (1 e, """ ) ﬁ

@MDE —c, \/Var (tiMLE ), ‘ MLE c, \/Var (ti MLE))

where 1s the standard score (z-score) of confidence level p

69



i Example Applications

Humans operate sensors:
PictureMe

Humans carry sensors:
Speed Mapping

Humans are the sensors:
Event and timeline
reconstruction from Tweets

s
-

70



Evaluation
i Estimation Error

= More accurate than state of the art fact-finders

o
N

"EM =
BayQSian RS
Sums

1 | O T T Average-Log ————

005 L MRl

20 30 40 50 60 70 80 90 100110
Number of Participants

()

Estimation Error of Participant Reliability
(&)



Evaluation

i Error Bound

= Empirical data suggests the confidence interval is

daccurate

Estimation Error of Participant Reliability

0.2

—=—Actual Estimation Error
——95% Confidence Bound on Estimation Error

& th

g,

M|

g

| U]

1 1 1
10 20 30 40 50 60

Number of Experiment:
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Apollo

Cleaning Noisy Speed Data
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Apollo
Cleaning Noisy Twitter Data

Fact | Media Tweet by Veritas

1 Google release speak2tweet | RT@googlearabia we are
technology for the people in | trying to spread these
Egypt numbers among  Egyp-

tians:  +16504194796 &
+390662207294. Speak
to Tweet. #jan25 #Tahrir
Square

2 Number of protesters in | RT @AJELive: Al Jazeera’s
Cairo’s Tahir Square are re- | correspondent in #Egypt's
vised to more than a million | Tahrir Square says that up
people to two million people are

protesting in the square and
surrounding areas.

3 Hosni Mubarak announce | RT @AJEnglish: Hosni
that he will on TV for a | Mubarak expected to speak
public address to soon. Tune in to #Al-

Jazeera to watch the cover-
age live: http://aje.me/ajelive
#mubarak ...

- Internet services partially re- | FLASH: Egypt internet starts

stored in Cairo working in Cairo, other cities
- users
5 Bursts of heavy gunfile early | RT @queen_iceis: Wow RT

aimed at anti-government
demonstrators in Tahrir leave
at least five poeple dead and
several wounded

@bencnn: Witness in #Tahrir
says pro-democracy people
being shot at from rooftops,
several dead. #Egypt #Jan25.

6 Hundred of thousands of | RT @sharifkouddous: Tahrir
anti-government  protesters | is getting packed. Ppl stream-
gather in Tahrir Square for | ing in. They are calling to-
what they have termed the | day "The day of departure”
"Day of Departure™ for Mubarak #Egypt

7 The leadership of Egypt's [ RT @BreakingNews: Pres-
ruling National Democratic | ident Hosni Mubarak
Party resign, including | resigns as head of Egypt’s
Gamal Mubarack, the son | ruling party, according
of Hosni Mubarak. Hos- | to state TV - Sky News
sam Badrawi, a member | http://bit.ly/fHvIRr
of the liberal wing of the
party, became the new
secretary-general

8 Al Jazeera correspondent Ay- | RT @DominiqueRdr: RT
man Mohyeldin is detained | @evanchill: We can now tell
by the Egyptian military. you that our Cairo correspon-

dent, @aymanM, has been
in military custody for four
hours. Please RT #Jan25

9 Ayman Mohyeldin is re- | RT @bencnn: #AJE's @Ay-
leased seven hours later. manM has been released!

#freeayman

10 Wael Ghonim, a Google ex- [ RT @bencnn Wael

ecutive and political activist [ @Ghonim has been re-

arrested by the state authori-
ties since Jan 28 is released

leased.
#Jan25

#Tahrir #Egypt




Social Sensing Challenge #3
iModeIing: One Size Does Not Fit All

= Regression modeling:
= Problem: one size does not fit all. Who says that Fords and
Toyotas have the same fuel consumption model?
= Regression model per car?
= Problem: How to use data collected by some cars to
predict fuel consumption of others?
= Challenge: Must jointly determine both (i) regression
models and (ii) their scope of applicability, to cover
the whole data space with acceptable modeling
error.



i Generalization and Modeling

= Complex general system models with a large
number of parameters are hard to train (need a
lot of training data) and have a high inference cost
(need a lot of inputs)

= Poor cost/quality trade-off
= Main idea: Break-up complex general models
into trees of simpler (but more specialized models)
= Model has fewer parameters
—> less run-time data collection cost
= Model may fit special case better
- higher accuracy
- Improved cost/quality trade-off!




The Participant Data Modeling

i Challenge

s A phenomenon is sampled by participants
in spatial and temporal dimensions

= Sampling is sparse (at least in conditions of
partial adoption)

= The phenomenon is high-dimensional

= Question: how to generalize models
obtained from the limited samples to cover
the high-dimensional phenomenon space?’




Sampling Regression Modeling

Framework
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i Fuel Consumption Model

= Simple model for fuel consumption derived from
physics principles

= Approximate based on easily measurable
parameters (e.g. stop signs, speed limits)
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i A Generalization Hierarchy

= Goal: predict fuel consumption

= Group by make, model, or year

Model Moclel Make

Modé&l, Y Year[
'//_ ./Base

Year Make, Year




i Regression Cubes

= Data cells correspond to models derived from
corresponding data subsets. In each cell, c:

= Model output ¥, = {y,;}
= Model inputs x;;, ..., x; X.={x;}

A

Yc — Xcﬁc

= Regression modeling error:

E?“Tc — (Yc — Xcﬁc)T(Yc — Xcﬁc)



The Challenge of Regression

i Cubes

= Main challenge: compute cuboid measures,
the model and error, recursively (without
reprocessing raw data)

= Model parameters and estimation error at
cell ¢
= Not distributive
Y. = X
Brr. = (Ye— Xce)' (Yo — Xefe)




i Efficient Representation

= Compressed representation of a cell ¢:
= p.=Y1y, :scalar value
= v.=X"Y. : vector of size k& (number of inputs)
» 0.=x7Xx.: kbyk matrix
= n_ . humber of samples

C

= A cell c may be the union of several
smaller cells (e.g., all Toyota cars):

m m m m

Pe = E 0i Ve = E V; O, = E O©; Ne = E Ne,
i—1 1=1 1=1 =1



Efficient Model Parameter and
i Error Computation

m

m m
Pe = E i Ve = E V; @C: E @z Ne = E Nec,

=1
s Model coefficients:
he = (X! X)) ' X2 Y. =0."v
m Error:
Erre = (Yo — Xeie)' (Yo — Xefie) =

YCTYC — (ch]c)TYc — }/cTXcﬁc + (Xcﬁc:)TXcﬁc —
A T A~ AT A
Pe — Ne Ve — Ve Ne + 1), @cnc



i GreenGPS Regression Cubes

= Goal: predict fuel consumption

Model and modeling
error are efficiently
computed for each
possible generalization.




i Model Reduction

= Independently find a subset of attributes for each cell, such that:
= The cell is reliable

= Corresponding error is minimized Attributes
= Exponential number of possible subsets Velocity (v)
o Mass (m)
= Our heuristic: Frontal area (4)
Error || Reliable Stop signs (S)

L ={v}| 0.031 yes
L = {m} 0.152 yes
L = {A}|| 0.043 yes
L = {S} 0.056 yes




i Model Reduction

Attributes

Velocity (v)
Mass (m)
Frontal area (4)
Stop signs ()

L = {v}
L ={m}
L = {A}

L = {S}

Error || Reliable
0.031 yes
0.152 yes
0.043 yes
0.056 yes




i Model Reduction

Attributes

Velocity (v)
Mass (m)
Frontal area (4)
Stop signs ()

Error || Reliable

L ={v} L = {v, m}| 0.021 no
L={m}~>|L=1{v,A}|| 0.030 yes
L = {A} L ={v, S} 0.028 yes
L = {S}




i Model Reduction

Attributes

Velocity (v)
Mass (m)
Frontal area (4)
Stop signs ()

L = {v}
L ={m}
L = {A}

L ={v, m}
L ={v, A}
L ={v, S}

Error || Reliable
0.021 no
0.030 yes
0.028 yes

L = {S}




i Model Reduction

Attributes

Velocity (v)
Mass (m)
Frontal area (4)
Stop signs ()

L ={v}
L ={m}
L ={A}
L ={S}

L ={v, m}
L ={v, A}
L ={v, S}

Error || Reliable
L={v, S, m} |0.024 no
L={v, S, A} |0.026 no




i Model Reduction

Attributes

Velocity (v)
Mass (m)
Frontal area (4)
Stop signs (S)

L = {v} L={v,m} |L={v,S, m} Reduced Model: {v, S}
L={m¥>|L={v, A L={v,S, A}
L=A{A} |L=AvS}
L = {S}




i Accuracy Results

= The sampling regression cube improves prediction
accuracy significantly
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Model Performance
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= Experiment:

= Given shortest and fastest routes, GreenGPS predicts best route.
= Driver drives both routes repeatedly and compares average fuel

consumption of the two.

Honda Accord H1 to Mall Shortest

2001 H1 to Gym Shortest

Ford Taurus 2001  H2 to Restaurant Shortest

Toyota Celica 2001 H2 to Work Fastest

Nissan Sentra H3 to CUPHD Fastest
2009

Honda Civic 2002 Grad to Work Fastest

i Fuel Savings Evaluation

31.4
19.7
26
10.1

8.4

18.7



Comment #1.
i Privacy - Revisited

= Can we offer privacy without data
perturbation (or encryption)?

= The Problem: It is desired to derive a
model (e.qg., fuel-efficiency of a car) from
inputs and outputs that are private
= The model itself is not private
= The inputs and outputs are!




Reminder:
i Efficient Representation

= Compressed representation of a cell ¢:
= p.=Y1y, :scalar value
= v.=X"Y. : vector of size k& (number of inputs)
» 0.=x7Xx.: kbyk matrix
= n_ . humber of samples

C

= A cell c may be the union of several
smaller cells (e.g., all Toyota cars):

m m m

m
Pe = E pi Ve = E Vi O, = E O, Ne= E e,
i—1 1=1 1=1 =1



Reminder: Model Parameter
i and Error Computation

m

IOCZZ,&L VCZZVZ' @C:i@z nc:chi
; 1=1 1=1

=1
s Model coefficients:
he = (X! X)) ' X2 Y. =0."v
m Error:
Erre = (Yo — Xeie)' (Yo — Xefie) =
YCTYC — (ch]c)TYc — }/cTXcﬁc + (Xcﬁc:)TXcﬁc —
A T A~ AT A
Pe — Ne Ve — Ve Ne + 1), @cnc



Evaluation (Privacy-preserving

i Regression vs. Perturbation)

= No additional error is introduced into modeling

v — Pert urlmtliou
= o =(ur approad
- Car Car Car | Our Appr. | Perturh.
2 10" Make Model | Year | % error % error
-:r Honda Accord | 2003 046 7 86
S Ford Contour | 1999 (.58 2.12
= Tovota Corolla | 2009 0.36 6.52
;:‘ 10 Ford Focus 2009 0.11 2.25
FrrengratnatanguundenGnnnis =S Hyundai | Santa Fe | 2008 0.39 243
Ford Taurus | 2001 0.18 1.75
10" - : L. i
10" 10° 10" 10° Better prediction of gas consumption for

pg

T o ¢ 29
Noise energy (o} /o,

Lower total modeling error

1) individual vehicles




Evaluation (Privacy-preserving
i Regression vs. Perturbation)

= Single-stream reconstruction accuracy
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Comment #2:
i Cost-sensitive Regression

= What if data collection had costs? Is it
possible to derive models that are cost
sensitive?
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i Evaluation on GreenGPS

Tree

Method Used Prediction Error Cost
(%)

Single Model* 34.39% 35

(Cost-insensitive)

Cube Model 21.25% 33

(Cost-insensitive)

Cost-insensitive Hybrid 19.47% 34

Regress Tree

Cost-sensitive Hybrid Regress | 18.88% 23

*Single Model: use all data (without splitting into subspaces) to build a
l! single regression model to predict

R ETNOr
SDCTA



i Conclusions

= Social sensing systems are becoming ubiquitous

= Some problems become more important

= Privacy, fact-finding (data cleaning), quality of information,
modeling, robustness, ...

s Needed:

= Analytic results for collection and use of social sensing data
(accuracy estimation, privacy-preserving perturbation,
modeling, control, ...)

= A tool set to embody the analytic results (obfuscation
tools, fact-finders, modeling libraries, ...)

= Planned deployment: GreenGPS on 100 cars




i Publications (1/4)

Green GPS

= Raghu Ganti, Nam Pham, Hossein Ahmadi, Saurabh
Nangia, Tarek Abdelzaher, "GreenGPS: A
Participatory Sensing Fuel-Efficient Maps

Application," Mobisys, San Francisco, CA, June
2010.

= Tarek Abdelzaher, "Green GPS-assisted Vehicular
Navigation," Handbook of Energy-Aware and Green

Computing, Chapman & Hall/CRC, expected in
2011.




i Publications (2/4)

Privacy

Hossein Ahmadi, Nam Pham, Raghu Ganti, Tarek Abdelzaher, Suman Nath, Jiawei
Han, "Privacy-aware Regression Modeling of Participatory Sensing Data," Sensys,
Zurich, Switzerland, November 2010.

Nam Pham, Tarek Abdelzaher, Suman Nath, "On Bounding Data Stream Privacy in
Distributed Cyber-physical Systems," IEEE International Conference on Sensor
Networks, Ubiquitous, and Trustworthy Computing (IEEE SUTC), Newport Beach,
CA, June, 2010. (Invited)

Nam Pham, Raghu Ganti, Md. Yusuf Uddin, Suman Nath, Tarek Abdelzaher,
"Privacy-Preserving Reconstruction of Multidimensional Data Maps in Vehicular
Participatory Sensing," European Conference on Wireless Sensor Networks
(EWSN), Coimbra, Portugal, February, 2010.

Raghu Ganti, Nam Pham, Yu-En Tsai, Tarek Abdelzaher "PoolView: Stream Privacy
for Grassroots Participatory Sensing," Sensys, Raleigh, NC, November 2008.



i Publications (3/4)

Data Cleaning

= Dong Wang, Tarek Abdelzaher, Hossein Ahmadi, Jeff
Pasternack, Dan Roth, Manish Gupta, Jiawei Han, Omid
Fatemieh, Hieu Le, Charu Aggrawal, "On Bayesian
Interpretation of Fact-finding in Information Networks," in
Proc 14th International Conference on Information Fusion
(Fusion '11), Chicago, IL, July 2011.

= Dong Wang, Tarek Abdelzaher, Lance Kaplan, Charu
Aggarwal, “"On Quantifying the Accuracy of Maximum
Likelihood Estimation of Participant Reliability in Social
Sensing,” 7th International Workshop on Data
Management for Sensor Networks, 2012, August 2011




i Publications (

Modeling

4/4)

= Dong Wang, Hossein Ahmadi, Tarek Abdelzaher, Harsha
Chenji, Radu Stoleru, Charu Aggarwal, "Optimizing Quality-
of-Information in Cost-sensitive Sensor Data Fusion," IEEE
DCoSS, Barcelona, Spain, June 2011.

= Hossein Ahmadi, Tarek Abc

elzaher, Jiawei Han, Raghu

Ganti and Nam Pham, "On Reliable Modeling of Open

Cyber-physical Systems anc
Transportation,” ICCPS, Chi

its Application to Green
cago, IL, April 2011.



