

GreenOrbs

Lessons Learned from Large Scale Sensor Network Deployment

Yunhao Liu

Tsinghua University Hong Kong University of Science & Technology

Computers are faster and cheaper

Client-Server Model

- Clients send request to servers
- Servers finish work and send back response to clients
- Small number of servers serve for large number of clients
- Example: web service

Peer-to-Peer Model

- P2P
 - Link the resources of all peers
 - Resources: storage, CPU cycles, content, etc.
 - All peers are servers and equal highly scalable
 - All peers are autonomous (different owners)
 - Peers are both clients and servers
- Examples: Napster, Gnutella, KaZaA, Bit-Torrent, E-Donkey...

Why P2P popular...

- 150 years ago...all performance was live!
- If you wanted music, the best way is you do it yourself... and almost everyone did.
- This all changed in 1877.

Arthur Sullivan: The Lost Chord

I can only say that I am astonished and somewhat terrified at the results of this evening's experiment -- astonished at the wonderful power you have developed, and terrified at the thought that so much hideous and bad music may be put on record forever.

But all the same I think it is the most wonderful thing that I have ever experienced, and I congratulate you with all my heart on this wonderful discovery

London, October 5, 1888

"People mutht be amuthed. They can't be alwayth a learning, nor yet they can't be alwayth a working, they an't made for it."

Mr. Sleary, in Charles Dickens' *Hard Times*, Book 3, Chapter 8, 1834

Pervasive Computing

Mark Weiser 1988

• From Mark Weiser's paper

- ...making many computers
 available throughout the physical environment, but making them effectively invisible to the user.
- The most profound technologies are those that disappear.
- -4A Service: Anytime, Anywhere, Any device, Any data!!

Where Computing is Done

Many Active Projects

- **MIT Oxygen Project**
- Microsoft EasyLiving
- **Stanford** Interactive Workspaces Project
- **IBM Blue Space**
- **IBM Dream Space**

What is a WSN?

 Wireless Sensor Network (WSN) is a wireless network consists of hundreds or even thousands of sensors

China National Strategic Plan

"Sensing China" : national focus!

Environment

Transportation

Smart Grid

Security

Green Building

Agriculture

Logistic and Supply Chain

Industry Monitoring

Health Care

IoT V.S. Sensor Network

Every item can be controlled

Not every item has sensing ability...

Research Projects at our Group

1, Coal Mine Monitoring

Across the desert (2004-2005)

Ready to go (2005)

14 kilometer dark tunnel (D.L. Coal Mine)

Mining Machines

Mining Field

Issues Addressed

Human navigation

- Navigate human beings out of field of emergent events
 - □ gas leakage, fire, water seepage, etc.

Human navigation

- Human navigation v.s. packet routing
 - packet loss
 - retransmission
 - human loss?
 - multipath routing
 - packet copies
 - human clone?
 - opportunistic routing
 - wireless multicast
 - human multicast?

Human navigation

Human movement v.s. packet delivery

- limited human speed
- dynamic conditions

Human beings may even move backwards to seek for safe paths.

Navigation on a road map

Building the road map

Navigation on a road map

Navigation on a road map

Maintenance of the road map

Maintenance of the road map

Maintenance of the road map

Publications

- Mo Li, and Yunhao Liu, "Rendered Path: Range-Free Localization in Anisotropic Sensor Networks with Holes", IEEE/ACM Transactions on Networking
- Mo Li, and Yunhao Liu, "Underground Coal Mine Monitoring with Wireless Sensor Networks", ACM Transactions on Sensor Networks
- Mo Li, Yunhao Liu, and Lei Chen, "Non-Threshold based Event Detection for 3D Environment Monitoring in Sensor Networks", IEEE Transactions on Knowledge and Data Engineering
- Mo Li, Yunhao Liu, Jiliang Wang, and Zheng Yang, "Sensor Network Navigation without Locations", IEEE INFOCOM
- Mo Li and Yunhao Liu, "Rendered Path: Range-Free Localization in Anisotropic Sensor Networks with Holes", ACM MobiCom
- Mo Li and Yunhao Liu, "Underground Structure Monitoring with Wireless Sensor Networks", ACM/IEEE IPSN

Best Innovation & Research

2, OceanSense

OceanSense Project (07-08)

- The first sea environment motoring sensor network system in China
 - More than 120 sensor nodes
 - Temperature, Light, Sea depth and the like
 - More than one year duration
 - Deployed on the Yellow sea near Qingdao

Sea Monitoring

Where is money

Ships need to wait...

Waiting Time Dominates Profit

Waiting ship; Digging ship; Detecting ship (watch a short video)

Publications

- Jie Lian, Yunhao Liu, K. Naik, and Lei Chen, "Virtual Surrounding Face Geocasting with Guaranteed Message Delivery for Ad Hoc and Sensor Networks", IEEE/ACM Transactions on Networking
- Zheng Yang, and Yunhao Liu, "Quality of Trilateration: Confidence based Iterative Localization", IEEE Transactions on Parallel & Distributed Systems
- Zheng Yang, Yunhao Liu, XiangYang Li, "Beyond Trilateration: On the Localizability of Wireless Ad-hoc Networks", IEEE INFOCOM
- Shi Li, Yunhao Liu, and XiangYang Li, "Capacity of Large Scale Wireless Networks Under Gaussian Channel Model", ACM MobiCom (Best Paper Award Candidate)
- Kebin Liu, Mo Li, Yunhao Liu, et al, "Passive Diagnosis for Wireless Sensor Networks", ACM SenSys
- Zheng Yang, Mo Li, and Yunhao Liu, "Sea Depth Measurement with Restricted Floating Sensors", IEEE RTSS

GreenOrbs 绿野千传

Atmospheric Carbon Dioxide (CO₂)

Forestry background

Global climate change

"The world has just ten years to bring greenhouse gas emissions under control before the damage they cause become irreversible."

Forest is "lung of the earth"

A critical component in global carbon cycle

Significant in resisting natural disasters

 CO_2

Existing WSN Systems

System (Affiliation)	Deployment manner	System Scale	Duratio n	
VigilNet (Uni. of Virginia)	Outdoor Battery power	200	3~6 months	
Motelab (Harvard Uni.)	Indoor Tethered power	190	N/A	
SensorScope (EPFL)	Outdoor Battery power	97	6 months	
Trio (UC Berkeley)	Outdoor Solar-powered	557	4 months	
Jindo Bridge	Outdoor Battery power	113 Nodes, 680 sensors	2-4 months	

GreenOrbs - building blocks (1)

Hardware

- TelosB mote with MSP430 processor and CC2420 transceiver
- Sensors

Sensor	Function	Software		
Sensirion Sht11	Temperature & Humidity	SensirionSht11C		
Hamamatsu S1087 Illuminance		HamamatsuS1087ParC		
Internal Voltage Sensor	MCU-Internal Voltage	VoltageC		
GE Telaire 6004	Content of CO2	Self-developed		

GreenOrbs - building blocks (2)

Software based on TinyOS 2.x.

- Low Power Listening
- Data collection: CTP
- Parameter dissemination: DRIP

GreenOrbs - deployments

Place	Area	Duration	Battery	Scale	Network Diameter	Duty Cycle	Data Volume
University woodland #1	20,000 m ²	1 month (2008)	800 mAh 1.5V	50	6 hops	No	15 Mbytes
University woodland #2	20,000 m ²	10 months (2009)	2200 mAh 1.2V	120	10 hops	5%	272 Mbytes
University woodland #2 and #3	40,000 m ²	Ongoing (2009.12~)	~8000mAh, 1.5V	330	12 hops	8% or No	140 Mbytes
Tianmu Mountain	200,000 m ²	1.5 months (2009)	~8000mAh, 1.5V	50	10 hops	5%	3 Mbytes
Tianmu Mountain	200,000 m ²	Ongoing (2009.10~)	~8000mAh, 1.5V	200	~ 20 hops	5%	10 Mbytes $\frac{57}{57}$

GreenOrbs testbed

- 50~150-node indoor experiments
- High speed serial programming
- Find-grained network configurations
- Testing, debugging, and diagnosis

W200P

HMP45C

A100R

LI820

CM11, CNR-1, LI190SB

SLSCWA-140

LI6262

CR5000

Canopy Closure Estimates

• Using WSN for forestry measurements

Lufeng Mo, Yuan He, Yunhao Liu, Jizhong Zhao, Shaojie Tang, Xiangyang Li, Guojun Dai, "Canopy Closure Estimates with GreenOrbs: Sustainable sensing in the Forest," **ACM SenSys 2009**.

Fire Risk Prediction

- Fire prediction vs. fire detection
- Microscopic vs. macroscopic prediction

Ecological Observation(Video)

 Study on the classical forestry theory of climax community

City Forest Planning

- City forest plays the role of
 - Natural cleaning-air machines
 - Noise barriers

Disasters Forecast

 Monitor the environment to forecast disasters like mud-rock flows and floods.

CitySee : City-Wide Urban Sensing

4000 Sensors in a City this year...

CitySee: City-Wide Urban Sensing

- First Phase deployment at Wuxi
 - 1100 nodes with temperature, humidity, light
 - 100 CO2 nodes
 - 4 Mesh nodes
 - 1.2 KM^2
- Missions: ~2011.12
 - 4000+ sensor nodes with temperature/humidity and light sensors
 - 500+ nodes with CO_2 sensor
 - Cover 20KM² urban area in Wuxi, China
- Eventually: 10,000 Nodes, 100 KM²

CitySee - Monitoring Areas

Power Plant

Industry Zone

Residential Quarter

The Tai Lake

High-tech Park

Railway Station

Applications

Environmental monitoring, Carbon sink/emission measurement, pollution detection

1, Measurement Study

Data Set

December 2009, 29 consecutive days, 2540000 data packets

Trace No.	Network Scale	Power level	Data Rate (pkts/hour)	Duration (hour)	Duty cycle
1	100	15	3	60	No
2	200	15	3	25	No
3	330	15	3	300	No
4	330	15	12	24	No
5	330	15	18	100	No
6	330	15	27	30	No
7	330	15	54	3	No
8	330	15	108	3	No
9	330	31	12	1	No
10	330	21	12	1	No
11	330	15	12	1	No
12	330	8	12	1	No
13	330	15	3	150	8%
14	330	15	60	12	8% ⁷³

Back-end Data Set

Routing trace

- Routing path
- Sensor reading

Link trace

- List of neighbor nodes
- RSSI, LQI, and ETX

Node statistic trace

• A large set of statistical information on each node

Out-band Measurement

Overhearing

 Multiple sniffers in the network to overhear the network traffic

Beaconing

Each node actively broadcast beacons periodically

Local logging

 The fine-grained local events on the nodes are recorded as a backup data set for diagnosis

Measures

Yield

• Measure the quantity of the collected data

Packet Reception Ratio / Loss Ratio

• Measure the quality of a link

Packet Delivery Ratio(PDR)

 The ratio of the amount of packets received by the destination to those sent by the source

Measures and Derivations

End-to-end delay

• The time difference between the sending time at the source node and the reception time at the sink

Correlation Coefficient

• A statistical measure of association between two variables

What limits the system scale?

- What is the dominant resource that is at the first depleted when the network workload scales?
- Is such resource appropriately used?
- Where are the places of resource depletion that bottleneck the entire network?
- How should existing protocols be improved to adapt to large-scale sensor network characteristics?

Three conjectures

- A small portion of nodes bottlenecks the entire network, and most of the existing network indicators may not accurately capture them
- The network dynamics mainly come from the inherent concurrency of network operations instead of environment changes
- The environment, although the dynamics are not as significant as we assumed, has an unpredictable impact on the sensor network

Three conjectures #1

- A small portion of nodes bottlenecks the entire network, and most of the existing network indicators may not accurately capture them
- The network dynamics mainly come from the inherent concurrency of network operations instead of environment changes
- The environment, although the dynamics are not as significant as we assumed, has an unpredictable impact on the sensor network

Does sink hole exist?

Throughput bottleneck around the sink?

 Current goodput of data reception is far less than 250 Kbps (the upper bound data rate of TelosB mote)

Does sink hole exist?

A large portion of the packet losses occur around the sink?

• If sink hole exists, all the packets are likely to be equally dropped around the sink, due to the contention or congestion.

Traffic distribution : balanced in CTP?

5% nodes account 80% traffic.

90% nodes have low traffic.

The traffic distribution is relatively stable over time.

Causes of packet loss

- Link loss (61%) vs. Node drops (39%) ullet
- Faulty behavior on forwarding nodes •

Cumulative distribution of packet loss Causes of packet loss on sensor nodes

Limitations of Network Indicator (ETX)

- Current network indicators, e.g. ETX only focuses on link quality
- The result : Cannot capture nodes dr packet behavior
- Consider more:

-...

-Accurate link estimator -Node's forwarding quality

The packet reception, forwarding, and drop at node 25 within 20 hours

Three conjectures #2

- A small portion of nodes bottlenecks the entire network, and most of the existing network indicators may not accurately capture them
- The network dynamics mainly come from the inherent concurrency of network operations instead of environment changes
- The environment, although the dynamics are not as significant as we assumed, has an unpredictable impact on the sensor network

Dynamics caused by Environment or the Network itself?

Link loss rate seems independent from the traffic load.

```
Question 1:
Caused by environment dynamics?
```

Dynamics caused by Environment or the Network itself?

Different settings of transmission power

Increasing power does not show improvement.

Question 2: Caused by protocol design?

Link quality in the wild

- 1. Relatively stable in the wild
- 2. Monotonic with distance
- 3. Weakly related with RSSI
- Significant loss near the receive sensitivity

Global view of dynamics

Local view of dynamics

Three conjectures #3

- A small portion of nodes bottlenecks the entire network, and most of the existing network indicators may not accurately capture them
- The network dynamics mainly come from the inherent concurrency of network operations instead of environment changes
- The environment, although the dynamics are not as significant as we assumed, has an unpredictable impact on the sensor network

Environment Characteristics

- Each environment has unique characteristics
 - Inherent irregularity
 - Weather condition
 - External interference

- Adequately learning environments' unique characteristics is helpful to protocols to have better performance
 - Event-based static routing structure

Some Open Issues in Our Mind....

GreenOrbs' Topology

Network-wide routing topology VS Local topology with different criterions

Spatial Dimension of Topology

Spatial Dimension of Topology

Link quality changes with humidity, temperature and time.

Temporal Dimension of Topology

The logistic topology of reachable links at an interval of two weeks.

The Dynamics of Routing Topology

Traditionally: Routing to transmitting

First sensing, then routing

Stable routing in uniform environment.

First sensing, then routing

Separate Sensing and Routing -> Data supports routing

Traditional routing

- Extra broadcast cost for link quality detection.
- Large routing table.

WSN routing

- Limited link resource. (Transmission data supports routing.)
- Limited node resource.(Week state routing.)

New routing scheme?

- Sensing -> Routing Sensing promotes routing.
- Data -> Routing

Data supports routing.

Nodes -> Routing

Links and nodes codetermine routing.

ZigBee Applications and Characteristics

Can ZigBee satisfies all these requirements?

Is 250Kbps enough?

250Kbps is just the theoretic peak

• Applications require much more

- Break the flat network structure?
- Seek high-performance data compression methods?
- Design the next generation transfer technology with high data transfer rate and low-energy consumption?
- Design the transfer protocol which increases the throughput? [B. Raman etc., SENSYS 2010],[S. Kim etc., SENSYS 2007]

What is the proper transmission radius?

- •Separated transmission and sensing
- Layered network structure
- •Graded data
- Classified applications

2, Localization

Locating end users may be just another app for wireless technology—or it may be the awaited killer app.

Location, ocation

Range-based localization

Ranging Techniques

- Time of Arrival (TOA)
 - radio, ultrasound etc.
 - GPS
 - high synchronization
- Time Difference of Arrival (TDOA)

 — Your Sive and Difficult

 – usually directional
- Radio Signal Strength (RSS)
 - receiving signal strength
 - signal irregularity
- Angel of Arrival (AOA)
 - antenna array

Rang-free Techniques (1): More Seeds

- APIT [MobiCom' 03]
- MCL [MobiCom' 04]
- MDS [MobiHoc' 03]
- SVD [INFOCOM' 05]

Rang-free techniques (2)

DV-Hop *Telecommunication Systems, 2003*

Isotropic network

Fail in Anisotropic Networks

Challenges

- High link loss rate and poor measurement accuracy: Range-free
- Extremely difficult environment: Constant number of seeds, as few as the lower bound 3 seeds only
- Sensors are not uniformly deployed, or even deployed that way, they might change: Distance mismatch in anisotropic network with holes

Rendered Path (REP)

Rendered paths

REP Principle (basic)

REP Principle

Distinguishable from the path rendering

REP Principle (convex hole)

 $\overrightarrow{st} = \overrightarrow{sa} + \overrightarrow{ab} + \overrightarrow{bt}$

REP Principle (convex hole)

REP Principle (convex hole)

REP Principle (convex holes)

Type 1

REP Principle (convex holes)

Type 2

REP Principle (concave holes)

REP in practice (several issues)

The impact of different virtual hole radii

Virtual path alternation

Reducing overhead under multi-hole situations

REP Performance (location estimations)

3, Diagnosis and Management

Why difficult compared with Internet?

1, Wireless VS Wired

Single hop VS Multi-hop

2, Larger number and heterogeneous

3, Tough Application Scenarios

Why not SNMP?

Our Approach: Passive Diagnosis

- Sporadically marking the packets
- Probabilistic inference model
- Integrated analysis

4, Security

- Sensitive data
 - Coal Mine: personal security
 - Ocean Sense: national security
- Protect WSNs from attacking
 - Cheating
 - Forging
 - Wormhole attacking

Problem

External channel Malicious behaviors

Symptom of distance mismatch

• Symptom of time mismatch

- Symptom of neighborhood mismatch
- Symptom of graph mismatch
- Symptom of traffic flow mismatch

Critical assumptions Extra cost

•One hop link v.s. multiple hop link

Problem Reformulation

– Two endpoints v.s. multiple endpoints – "Wormhole mesh"

Topological Method

- Topological impact
- No critical assumptions
 - UDG
 - Location
 - Synchronization
 - etc.
- Accurate detection

Topological Methods

- In computer science
 - Concurrency theory
 - Computational algebraic topology
 - Visualization and image analysis
 - Distributed computing
- In sensor networks

. . .

- Homotopy of shortest paths in the detection of holes (同伦)
- Homology for detection of coverage holes (同调)
- Morse-Smale complex and flow complex in network segmentation and signal analysis

What is Topology?

 Informally, topology studies *properties* of an *object* that remain unaffected under deformation.

Topological space

Topological invariant

Homeomorphism

topologically equivalent between a coffee cup and a donut.

Topological Space

- A *topological space* is a pair (*X*, *T*), where *X* a set and a *topology* (structure) *T* on the set.
 - A collection T of subsets of X is a topology on X, if
 - Empty set and X are in T.
 - Union or intersection of elements of *T* are in *T*.

- Examples of topologies:
 - The collection of all subsets of X.
 - If X is the set of real numbers, the collection of all open intervals and unions of intervals. (Euclidean spaces)

Topological Space

- Manifolds are a type of topological space
 - A generalization of Euclidean spaces.
 - Intuitively, a manifold is locally Euclidean.
- Examples: 2-D manifold
 - A 2-D manifold is *locally flat*: locally, it looks like a plane.
 - Formally, every point has a neighborhood homeomorphic to an open disk

Homeomorphism

- A *homeomorphism f* is a function between two topological spaces *X* and *Y*.
 - if $f: X \rightarrow Y$ is a bijection, f and f^{-1} is continuous
- Example: classification of the homeomorphic letters

			+	0	Q	Φ	\bigcirc	\bigcirc
CGI	Е	Н	Х	D	Ρ	Q	А	В
JLM	F	K		Ο			R	
NSU	Т							
VWZ	Y							

Homeomorphism

- Poincaré Conjecture is about objects being homeomorphic to a 3dimensional sphere.
 - If a compact 3-dimensional object has the property that every simple closed curve within the object can be deformed continuously to a point, does it follow that it is homeomorphic to the 3-sphere? Yes.

Poincaré Conjecture, 2-dimensional case

Topological Invariant

- How to prove whether two objects are topologically equivalent or not?
 - But sometimes it is hard, we need more

tools.

Two objects are homeomorphic

They have the same topological invariants

- A topological invariant is a property which remain unaffected by homeomorphism.
- Examples of topological invariants
 - Euler characteristic, Connectedness, Betti number, Genus

Topological Invariant

- Genus: "number of holes"
 - Classifying such surfaces
 - Genus of a surface is the maximal number of *nonintersecting simple closed curves* that can be drawn on the surface without separating it.
- Example:
 - Genus 0: point, line, sphere
 - Genus 1: torus

Topological Invariant

- Betti number
 - give a count of basic topological features: components, holes, etc.
 - for an object in 2-dimensional space
 - b_0 is the number of components
 - b_1 is the number of holes
 - for an object in 3-dimensional space
 - b_0 is the number of components
 - b_1 is the number of tunnels or handles
 - *b*₂ is the number of voids or cavities
 - in higher dimensions
 - b_k measures the *k*-dimensional connectivity of X
 - $b_k(X) = \dim(H_k(X)), H(X)$ is the homology groups

 $b_0 = 1, b_1 = 2, b_2 = 1$

• Two paths f_0 and f_1 are *homotopic* (written $f_0 \approx f_1$) if one loop can be continuously deformed into the other.

Formally, a *homotopy* from f_0 to f_1 is a continuous function $h:[0,1]x[0,1] \rightarrow M$ where $h(0,t)=f_0(t)$, $h(1,t)=f_1(t)$, and $h(s,0)=x_0$, $h(s,1)=x_1$

- Homotopy equivalent
 - A map $f: X \rightarrow Y$ is called a *homotopy* equivalence if there is a map $g: Y \rightarrow X$, such that $f \circ g \approx 1_Y$ and $g \circ f \approx 1_X$. Then, X and Y are *homotopy equivalent* and have the same *homotopy type*, denoted as $X \approx Y$.

Homotopy equivalent

Topologicall y equivalent Homotopy equivalent

- Contractible, non-contractible, non-separating cycles in surfaces.
 - A cycle is *contractible* if it is homotopic to a constant a point; otherwise it is *non-contractible*.

Come Back to Wormhole Detection...

nodes on the same isolines form a circle in the endpoint of wormhole link

Isoline Detection Fails

When the endpoint of wormhole locate at the inner or outer boundary of the network, it will not form the circle

Topological Impact of Wormhole

• A wormhole will add a genus to the network topology.

Two simple wormholes add tow genus to original network topology, The right graph shows the real shape of the left graph, which is folded, like a two torus with a big hole. "genus" is a topology terminology, "亏格" in chinese.

Characterize Wormholes

Topological Impact of Wormhole

Non-contractible cycles and contractible cycles

contractible and non-contractible cycles (loops)

How to Detect and Locate Genus

• We need to find the circles that characterize the genera.

There must exist two circles be associated to a genus, the red and green. (homotopy basis or homology basis).

How to Detect and Locate Genus

The Method

- 1. flood the network from an arbitrary node
- 2. determine the nodes that form the non-contractible cycles (Contract a cycle to be shortest, *maybe optional*)

These nodes witness the candidate cycles

Validate three non-contractible cycles

- 3. select a non-contractible cycle, partition the network along the the cycle.
- 4. flood towards two sides of the non-contractible cycle, they must meet (discuss it later), we get a circle around the genus.

Topological Impact of Wormhole

(a)

(b)

(c)

Conclusions

Future Directions: Smart Road

With UIUC: Bridge Monitoring (Borrowed From Bill Spencer)

