

High-Level Objectives
●  Limitations of increasing clock speeds any further

 focus on using MP platforms, in particular MPSoCs
- increased importance since proposal writing, industrially relevant‏

●  Different from multi-core situation: Multiple applications,
heterogeneous processors, and multiple objectives

●  MP platforms pose threats to timing predictability;
- develop MP/MPSoC design principles for maximal predictability
- develop models/methods for timing analysis of parallel software

●  Efficient design + software synthesis also in the scope
(see deliverables; coordination with other projects)

●  Partners contribution to transversal clusters
(e.g. for predictability: WCC)

Building Excellence
●  Rheinfels workshop, St. Goar, June 2008/09/10 (Incorporating external

experts), TA meetings, Tutorials, summer schools, teaching at ALARI,
WESE, Software Synthesis Workshop (2nd year), …

●  84 publications (14 joint)
●  Textbook, slides, video recorded lectures (

http://ls12-www.cs.tu-dortmund.de/~marwedel/es-book/slides10/)

Overall Assessment and Vision at Y0+3
What went well:

●  Extension toward software synthesis

●  Abundant amount of results on resource-efficiency

●  Successful formation of tool chains for timing analysis

●  New timing-predictable architectures

●  Energy efficiency issues beyond processors

●  While ArtistDesign partners acted as a core, the involvement of
researchers went far beyond ArtistDesign

●  Extension of well-visible workshop

●  Results from mapping tools

Scientific Highlights: Mapping to MPSoCs
Several tools for mapping applications to MPSoCs have

become available
●  MAPS (RWTH Aachen)

Huawei has consulted RWTH Aachen to develop a
3-years technology roadmap on their MPSoC
programming flow. The roadmap was tailored to
future directions for Huawei wireless products.

●  MPMH/Mnemee-Integration (IMEC, Dortmund,
Eindhoven, Athens)

●  SystemCoDesigner (U. Erlangen-Nuremberg)
●  Daedalus (U. Leiden)
●  HOPES (Seoul National University)

Timing Analysis and Compiler Techniques
WCET-aware C Compiler WCC: Overall structure
•  Tight integration of WCET analyzer aiT into

compiler backend
•  WCET timing data available in compiler: WCET of

program, function, basic blocks; worst-case
execution frequencies; cache hits/misses; ...

•  Flow facts required by aiT can be specified directly
in the source code or auto-generated by Loop
Analyzer; they are kept correct during all compiler
optimizations.

•  Back-Annotation makes WCET timing data
available for high-level optimization

•  Properties of memory hierarchies (e.g. cache
sizes, associativity, scratchpad sizes, ...) can be
specified and are respected during optimization and
WCET analysis.

•  WCET-aware code optimization at two abstraction
levels: high-level optimization of ANSI-C code (ICD–
C), and low-level optimization of assembly code
(LLIR)

WCET-aware superblock optimizations
•  Superblocks: well-known concept from compilers dating back to 1991
•  WCC’s superblocks: are proposed for the very first time at high-level ANSI-C code, and

rely on WCET timing data
•  WCET-aware superblock optimizations: Standard compiler optimizations (Common

Subexpression Elimination (CSE) and Dead Code Elimination (DCE)) were ported to
WCC’s superblocks

•  Superblock activity received 3 awards

Timing Analysis and Compiler Techniques

Timing Analysis and Compiler Techniques
WCET-aware, ILP-based register allocation
•  Register allocation: considered the most important compiler optimization since

exploitation of processor registers is crucial to achieve high performance
•  Problem: current register allocators are unaware of a program’s timing and have no idea

of the impact of spill code on WCETs.
•  Year 2: WCET-aware graph coloring leads to large WCET reductions, compared to

traditional graph coloring
•  Now: first ILP-based WCET-aware register allocator; the cost of spill code in terms of

WCET cycles is taken into account

Y3 Y2

Timing Analysis and Compiler Techniques
Automatic Pareto-optimal trade-off between WCET, ACET and code size
•  Motivation: compilers apply optimizations in a fixed sequence, with very few

opportunities for compiler user to steer optimizations.
•  Problem: Optimizations can influence each other; sequence matters; different

positive/negative impact on different criteria like e.g. WCET or ACET
•  Joint work of Dortmund and ETHZ: use evolutionary algorithms to find highly

specific sequences of optimizations for aggressive reduction of one criterion;
statistical assessment and detection of Pareto-optimal optimization sequences
trading one criterion with the other.

•  WCC’s internals: turned into an adaptive compiler where optimizations can be
applied in any arbitrary sequence; WCC’s adaptive optimizer consisting of 41
standard, WCET-unaware optimizations, coupled with ETHZ’s tool box of
evolutionary algorithms (EAs); ETHZ’s evolutionary algorithms coupled with
WCET analyzer aiT and cycle-true simulator to get WCET/ACET per EA
individual.

Timing Analysis and Compiler Techniques
Automatic Pareto-optimal trade-off between WCET, ACET and code size
•  Result 1: trade-off WCET ↔ ACET reveals that (for the considered standard optimizations)

WCET performs similar to ACET; achieved WCET and ACET reductions are very similar

•  Result 2: trade-off between WCET and code size more interesting – aggressive WCET
reduction implies huge code size increases;
Interesting: function inlining and procedure cloning are frequently included in optimization
sequences for code size reduction
Interesting, too: loop unrolling is never applied when optimizing for reduced code size

Scientific Highlights: Timing Predictability
●  Cooperation with OS cluster strengthened

●  Cache-aware scheduling (U. Saar, SSSA)

●  Timing analysis for multi-core systems with caches

●  Projects on tradeoffs between real-time issues and reliability
supported by Deutsche Forschungsgemeinschaft

●  L. Thiele, R. Wilhelm: Architectural Aspects of Deriving
Performance Guarantees, ISCA 2010

Scientific Highlights: Early WCET analysis
●  WCET analysis typically applied late in the design chain (timing

verification)

●  If timing requirements are not met, costly redesigns may be needed

●  A need to estimate WCET earlier, to direct design decisions

●  Will have to give up safety (otherwise too pessimistic estimates)

●  Two approaches:
–  Exploring different HW configurations through fast, approximate WCET analysis

–  Approximate source level timing models for WCET analysis

●  Initial results indicate that 0-20% deviation is achievable

Scientific Highlights: WCET Challenge
●  A tool evaluation event: WCET tools are evaluated on a

set of common benchmarks

●  Initiated during 2010, evaluation takes place right now

●  Nine tools on the starting line (academic & commercial)

●  This time, we use real embedded code from Daimler for
the evaluation

●  See http://www.mrtc.mdh.se/projects/WCC/2011/

Joint Technical Meetings (1)
●  Course: Retargetable Compilation, Lugano, Switzerland, Feb. 16-19 &

Feb 23-25, 2010
●  ICT 4 Energy Efficiency, Brussels, Belgium – Feb. 23rd, 2010
●  Cebit, Hannover, Germany – March 9th, 2010
●  DATE 2010: Brief meeting; Session: Cool MPSoC Design; Posters
●  Winter school course: Rainer Leupers, Cool MPSoC Design, ASCI

Winter School 2010, Soesterberg, The Netherlands – Mar 16-18, 2010
●  Industrial Workshop, Stockholm, Sweden – April 12th, 2010
●  Tutorial: SystemC for Holistic System Design, Anaheim, CA – June

18th, 2010
●  Workshop: Software & Compilers for Embedded Systems (SCOPES)

2010, St. Goar, Germany – June 28-29, 2010, incl. keynote by R.
Leupers

●  Meeting: 3rd Workshop on Mapping Applications to MPSoCs, 2010,
St. Goar, Germany – June 29-30, 2010, incl. Mnemee tutorial

Joint Technical Meetings (2)
●  Workshop: 10th International Workshop on Worst-Case Execution

Time Analysis, 2010, Brussels, Belgium – July 6th, 2010, in connection
with ECRTS 2010

●  Tutorial: Model-Based Embedded Systems Design, Rabat, Morocco –
July 12th, 2010

●  Tutorial: Invasive Computing - Basic Concepts and Foreseen Benefits,
Autrans, France, September 7th, 2010

●  Tutorial: Scottsdale MNEMEE tutorial ,Scottsdale, US – October 24th,
2010

●  Workshop: 6th Workshop on Embedded Systems Education, 2010,
Scottsdale, US, – October 28th, 2010

●  Workshop: 2nd Workshop on Software Synthesis, 2010, Scottsdale,
US, – October 29th, 2010

●  R. Wilhelm: Timing Analysis and Timing Predictability, ARTIST
DESIGN Summer School, Beijing, 2010

Plans for Y4
Workshops:

• 14th Workshop on Software and Compilers for
Embedded Systems

• 4th Workshop on Mapping of Applications to MPSoCs

• 7th Workshop on Embedded Systems Education 2011

• 3rd Workshop on Software Synthesis

• Workshop PPES 2011: Bringing Theory to Practice:
Predictability and Performance in Embedded Systems,
March 18, 2011, Grenoble

• WCET Tool Challenge 2011

Research & Integration as per deliverable

