Year 3 Review Brussels, February 24th, 2011

Cluster

Achievements and Perspectives:

Operating Systems and Networks

arturt

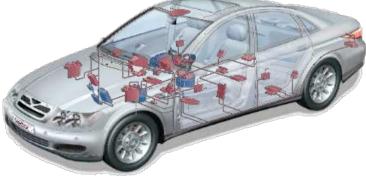
leader : Giorgio Buttazzo

Scuola Superiore Sant'Anna, Pisa, Italy

Outline of the Presentation

> Objectives

- Partners and activities
- > Achievements
- Future plan



Embedded Systems

are becoming more complex, and characterized by <u>dynamic behavior</u> and <u>distributed organization</u>

- artirt

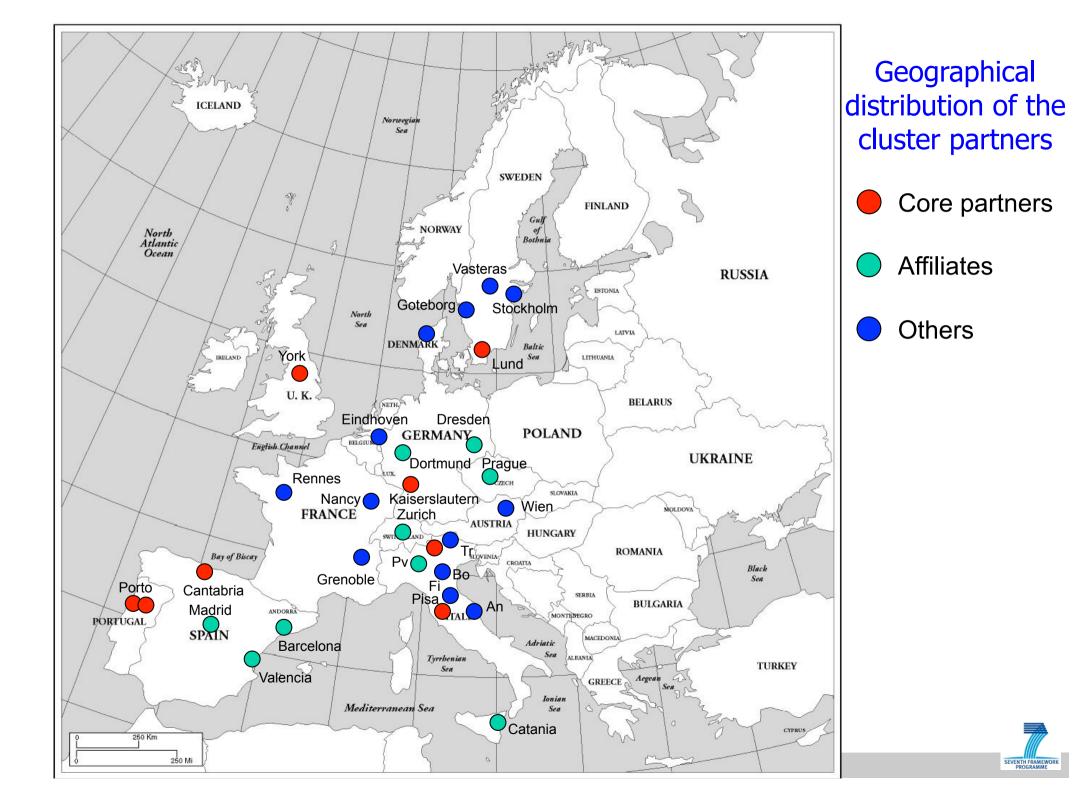
Cluster objectives

Provide a more efficient and predictable support (at the OS and Network level) to the development of future embedded systems. In particular:

- Allow simple and flexible <u>resource management</u> to cope with the growing complexity;
- Take advantage of <u>multi-core platforms</u>;

arturt

- Support <u>distributed computing</u> to deal with the ubiquitous nature of the computing infrastructure;
- Increase system <u>adaptivity</u> to react to environmental changes.



rin

Partners

Role

Core Partners SSSA, Pisa (leader) Univ. of Porto TU Kaiserslautern Univ. of Cantabria Univ. of York Univ. of York Univ. of Lund PI Porto IMEC	RT scheduling and RT kernels networking, distributed applications video streaming, off-line scheduling schedulability analysis and OS standards fixed priority scheduling real-time and control issues heterogeneous networks Low power and memory management
Affiliated Partners Windriver Microchip Technology NXP Evidence UP Catalonia Univ. of Catania Univ. of Catania Univ. of Dresden Univ. of Madrid Univ. of Pavia Univ. of Valencia EPFL Lausanne	RT operating systems Embedded applications QoS management in multimedia systems kernels and tools for RT systems control methodologies for RT systems distributed systems Microkernel architectures QoS and resource management RT applications and kernels Real-time and control issues Network protocols and distributed systems

Additional International Partners

- University of Illinois at Urbana-Champaign
 - Contacts:Lui Sha, Tarek Abdelzaher, Marco CaccamoTopics:Sensor networks, RT scheduling and control

University of Virginia

artırt

Contacts:	John Stankovic, Sang Son
Topics:	Sensor networks and RT data management

University of North Carolina at Chapel Hill

Contacts:	Sanjoy Baruah, James Anderson, Kevin Jeffay
Topics:	Multi-processor scheduling, multimedia systems

Carnegie Mellon University

Contacts:	Ragunathan Rajkumar, John Lehoczky
Topics:	Resource reservations, QoS management

University of Pittsburgh

Contacts:	Daniel Mossé,
Topics:	Energy-Aware Scheduling

orturi

Real-Time Networks

Scheduling and Resource Management

Resource Aware Operating Systems

Portist Spreading Excellence – Year 3

Workshops and Conferences

Events initiated and steered by the cluster

- •OSPERT: Workshop on Op. Sys. Platforms for Emb. RT applications
- •RTN: Int. Workshop on RT Networks
- •APRES: Int. Workshop on Adaptive and Reconfigurable Systems

Events strategically steered by the cluster

- •ECRTS: Euromicro Conference on Real-Time Systems
- •RTSS: IEEE Real-Time Systems Symposium
- •RTAS: IEEE RT and Embedded Tech. and Appl. Symposium
- •ETFA: IEEE Int. Conf. on Emerging Tech. and Fact. Automation
- •HSCC: ACM Int. Conf. on Hybrid Systems: Computation and Control
- •CRTS: Int. Wks. on Compos. Theory and Tech. for RT Emb. Systems

Major conferences have Special Issues on the International Journal of Real-Time Systems (Springer)

Cluster outcomes – Year 3

- > 152 publications from individual groups (A1: 38, A2: 87, A3: 27)
- > 53 joint publications (A1: 16, A2: 16, A3: 21)
- > 7 Keynote speeches

artirt

- > 14 Workshops/Tutorials
- 6 Educational activities (summer schools and graduate courses)
- 3 tool-integration activities
- > 15 student exchanges
- **6 joint projects** (ACTORS, IRMOS, PREDATOR, FRESCOR, WASP, ILAND)

Industrial collaborations

artirt

Avionics: Airbus, Embraer Automotive: Bosch, Magneti Marelli, TTTech Railway systems: Ansaldo **Robotics:** ENSA (Equipos Nucleares) Video surveillance: Visual Tools Healthcare: Trialog, CAEN Consumer electronics: Ericsson, Philips, NXP **RTOS producers:** *Wind River, Evidence, CISCO* **Platforms:** ARM, Microchip Technology Embedded systems: Intecs, Embedded Solutions

Industrial impact:

artirt

- Resource reservation is used by **Ericsson** (ACTORS project)
- Limited preemption by **Airbus** and **Bosch** (PREDATOR project)
- ERIKA kernel will be used by Merloni for washing machines.
- ERIKA multi-core kernel considered by Magneti Marelli for automotive applications
- FTT-SE Ethernet protocol is used by **Trialog** (iLAND project)
- MARTE OS is used by Equipos Nucleares

Year 3 Review Brussels, February 24th, 2011

Achievements and Perspectives:

artirt

Resource-Aware Operating Systems

Activity leader: Giorgio Buttazzo Scuola Superiore Sant'Anna Pisa, Italy

artin

Investigate novel kernel methodologies to make operating systems more

- predictable (in terms of timing behavior)
- efficient (in terms of resource usage)
- robust (to tolerate overload conditions)
- easy to use (to simplify user interface)

Main Technical Achievements (1)

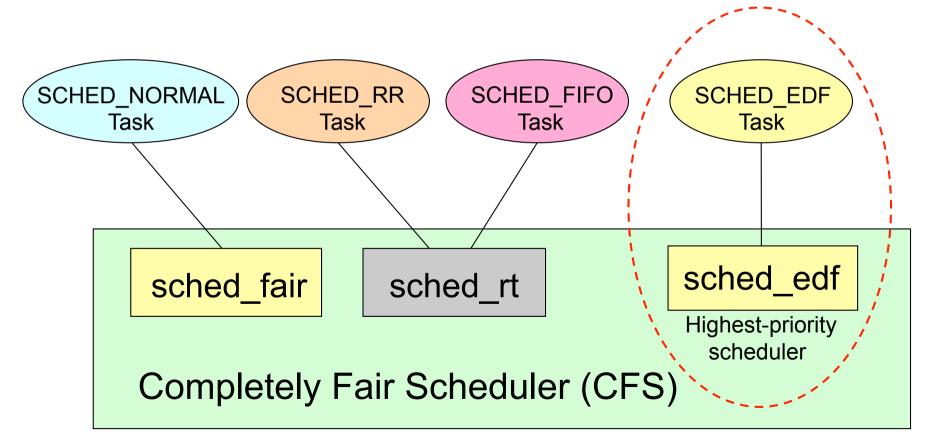
Deadline Scheduling on Linux (*Pisa, Evidence*)

The Linux kernel has been extended to support:

arturt

•<u>Earliest Deadline First (EDF)</u> scheduling of periodic tasks (POSIX compliant scheduling class)

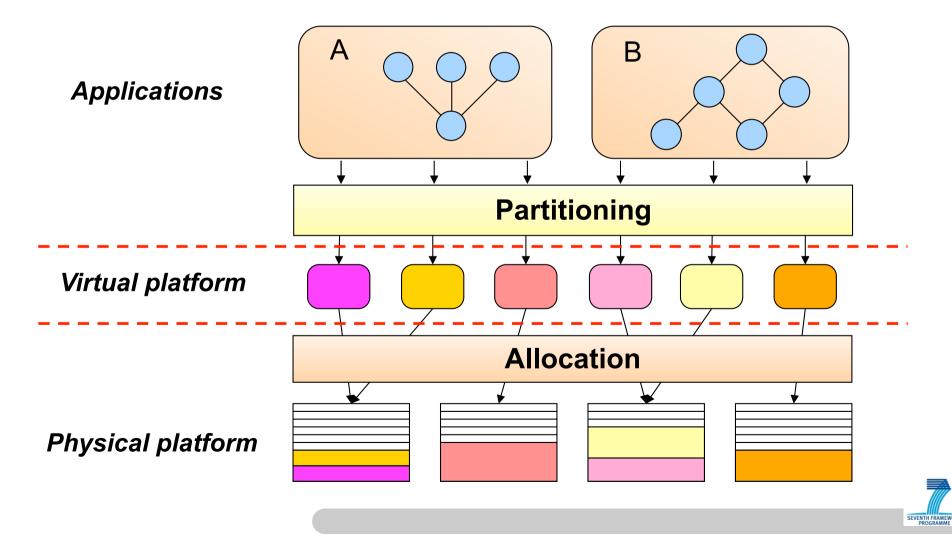
•<u>Resource Reservations</u> and <u>Bandwidth Control</u>, through a Constant Bandwidth Server (CBS).


These mechanisms are going to be integrated into the main line distribution!! LIVE DEMO

Main Technical Achievements (1)

Deadline Scheduling on Linux (Pisa, Evidence)

artirt



Main Technical Achievements (2)

ortirt

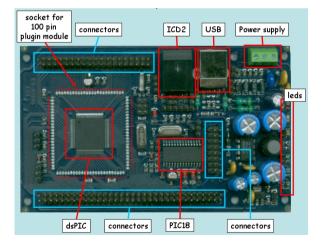
Partitioning applications on multi-core platforms

Portist Spreading Excellence – Year 3

Summer School

Graduate Course on Embedded Control Systems: Theory and Practice

Scuola Superiore Sant'Anna, Pisa, Italy – June 14-18, 2010


•Giorgio Buttazzo - Scuola Superiore Sant'Anna, Italy

•Pau Martì – University of Catalonia, Spain

•Manel Velasco – University of Catalonia, Spain

Educational Platform for Embedded Control Systems

Pisa, Pavia, Evidence, Microchip Technology, Embedded Solutions

- Fast prototyping RT control applications
- Facing RT scheduling issues
- Handling resource management
- Used in graduate courses

ortist Summary of outcomes – Year 3

Activity: Resource-Aware Operating Systems

- 38 publications from individual groups
- 16 joint publications
- > 2 Keynote speeches
- > 3 Workshops/Tutorials
- 2 Educational activities
- > 3 Tool-integration activities
- 5 student exchanges

- Continue the development of software modules to support real-time control applications on the educational kit.
- Investigate hierarchical scheduling to support composability of heterogeneous platforms.
- Consider the effect of shared resources and nonpreemptive regions in resource reservations.
- Evaluate partitioning algorithms on multi-core platforms, and investigate the allocation of dynamic applications with highly variable resource requirements.

Year 3 Review Brussels, February 24th, 2011

Scheduling and Resource Management

artist

Activity leader: Alan Burns University of York York, UK

Objectives

> Provide Policies

artir

For effective resource usage

Provide Analysis

- For predicting system behaviour
- Simulation, scheduling analysis, measurement, model checking

> Provide Models

- For composing systems
- Time triggered and event-triggered work flow
- For static and dynamic usage patterns

To move from single processor platforms to <u>multiprocessor</u>, <u>multi-core</u>, <u>FPGA</u>, etc.

- To integrate various resources and abstract views of the overall system
 - Integrate policies

artin

- Integrate analysis
- Integrate models
- Static and Dynamic, peer-to-peer and hierarchical

Problems Tackled in 2010

- Extend the taxonomy
- Extend the use of contract-based scheduling
- Produce effective scheduling and placement algorithms for multiprocessor systems
- Determine an effective way to undertake architectural tradeoffs
- Define adaptive resource management
- Extend sensitivity analysis
- Resource management software in programming languages

Overall Assessment and Vision

- Remains a very active area in EU
- 29 technical achievements in deliverables
- 103 papers many joint authored or result of collaborations
- Wiki has been used to collect results, but has not itself fostered deeper integration
 - Transfer to Wikipedia in 2011?
 - > Or look to continue existing wiki after ArtistDesign?

A highlight – task splitting

artır

- Two themes to scheduling multiprocessor and multicore platforms
 - Statically allocation: bin packing + single processor scheduling
 - Dynamic allocation: potentially more effective, new theory needed, overheads are an issue
- Discussions between Porto, York, CMU, Pisa, UNC and others opened up a middle way
 - Most tasks are statically allocated, N-1 are split between processors (for N CPUs)

- One task splitting scheme for EDF scheduling has a task split so that first part has C=D
 - The second part then has maximum time to execute on second processor
- Often 100% utilisation is achievable (when overheads are ignored)
 - But overheads are potentially low
- General performance is very good

artır

- People in Paris (INRIA) have performing a comparison with other schemes results are good!
- Pisa is currently implementing on their Linux platform

Plans for Year 4

Consolidate information on the wiki

artin

- Continue to work on the issues and problems identified in previous years
- Resource-aware communication middleware
- QoS aware scheduling in real-time Java and other programming languages
- More attention to power and energy issues
- More attention to distributed issues
- Mixed criticality systems

Year 3 Review Brussels, February 24th, 2011

Real-Time Networks

Activity leader: Luis Almeida University of Porto Portugal

- artirt

> Managing complexity in networked embedded systems

- QoS adaptation and graceful degradation
- higher integration

> Towards (real-time) wireless everywhere

- > WSN, MANETs, cooperating embedded systems
- Reduce communication—related energy consumption

Networking technology outreach

courses, seminars, schools, standards, joint R&D projects

Challenges

(Real-time) wireless everywhere (WSN)

- Synchronisation and routing
- High real Timeliness and energy in agement c
 Long life Management c
 - Long life, rugn scalability and data aggregation
- Managing complexity (NES)

artur

- QoS adaptation araceful degradation
 - Resilience Flexibility, robusto topology changes, adaptati and efficiency in NES Provide real-time and composition - Resiliend ther reconfigurations
- - Provide real-time and competition
 - » Efficient temporal partitioning and dynamic, end-to-end resource reservation

Highlights from Year 3

Timeliness and energy in WSN

artur

- TDMA MAC with energy-aware elastic scheduling
- Continued support for OpenZB

Flexibility, robustness and efficiency in NES

- Functional composition for real-time service-oriented middleware
- Providing flexible virtualisation in Ethernet switches

*****Specific application domains

- DDS and ICE based video transmission with RT and QoS support
- Wired/wireless integration in industrial networks with chain protocols
- Distributed computer vision in Intelligent Transportation Systems

Summary of outcomes from Year 3

- > 27 publications from individual groups (4 in journals + 3 thesis)
- > **21 joint publications** (5 in journals + 1 thesis)
- 4 workshops/confs (RTN, SOCNE, WARM, ICESS)
- > 8 special sessions/tracks (ETFA, HSI, ICIT, INDIN, IECON)
- > 4 tutorials/seminars (3 in schools, 1 in specific event)
- Continued participation in the TinyOS Net2 Working Group (OpenZB stack)
- 6 joint international projects FP6/7-STREP (FlexWARE, MADES, WASP), ARTEMIS (iLAND, EMMON, INDEXYS), all with strong industrial participation plus 3 joint national (HARTES-P, CANbids-E, IPERMOB-I)

Industrial collaborations with

artırı

Critical Software (P), Visual Tools (E), Trialog (F), Magneti-Marelli (I), Evidence (I), STMicroelectronics (I), NXP (NL), EADS (D), Softeam (F), X/ Open (UK), TXT E-solutions (I),

Plans for Y4

Continue with the taxonomy on real-time WSNs and MANETs

- organize specific meeting

- Summer school on RT Networks and/or participation in other similar schools.
- Continue the sequence of networking related workshops co-located with major events in the Real-Time and Embedded communities (RTN, APRES...)
- Contributions to communication protocols and middleware, their application and analysis

WSN: RT and energy, data aggregation and scalability, mobility... **NES:** RT support to distribution middlewares, support for dynamic adaptation / reconfiguration, composability ...

Towards a real-time connected world

