
Ghaith Haddad and Gary T. Leavens 

Department of Electrical Engineering and Computer Science 

University of Central Florida 

 
 
 

This work is partially supported by NSF Grant CCF-0916350 



 Design Goals 
◦ Support SCJ 
◦ Specification of  functionality as in JML 
◦ Specification of execution time 
◦ Support both static verification and dynamic 

checking 
 Tool based on JastAdd  
   and JastAddJ Java Compiler 

 

2 



3 

public class Vector2d { 
 
    protected float x, y; 
 
    public void scale(float factor) { 
        this.x *= factor; this.y *= factor; 
    } 
} 

public class Vector3d extends Vector2d { 
 
    protected float z; 
 
    public void scale(float factor) { 
        super.scale(factor); this.z *= factor; 
    } 
} 



4 

public class Vector3d extends Vector2d { 
 
    protected /*@ spec_public @*/ float z; 
 

  /*@  also 
    @   public normal_behavior 
    @     requires !Float.isNaN(factor); 
    @     assignable z; 
    @     ensures z == \old(z) * factor; @*/ 
    public void scale(float factor) { 
        super.scale(factor); this.z *= factor; 
    } 
} 



5 

public class Vector2d { 
 
    protected /*@ spec_public @*/ float x, y; 
 
  /*@   public normal_behavior 
    @     requires !Float.isNaN(factor); 
    @     assignable x, y; 
    @     ensures x == \old(x) * factor 
    @           & y == \old(y) * factor;     @*/ 
     
     public void scale(float factor) { 
        this.x *= factor; this.y *= factor; 
    } 
} 



6 

public class Vector3d extends Vector2d { 
 
    protected /*@ spec_public @*/ float z; 
 
  /*@  also 
    @   public normal_behavior 
    @     requires !Float.isNaN(factor); 
    @     assignable z; 
    @     ensures z == \old(z) * factor; @*/ 
    public void scale(float factor) { 
        super.scale(factor); 
        this.z *= factor; 
    } 



7 

public class Vector2d { 
 
    protected /*@ spec_public @*/ float x, y; 
 
  /*@   public normal_behavior 
    @   . . . 
    @     duration 2 * (MultiplyTime + AssignTime); @*/ 
     
     public void scale(float factor) { 
        this.x *= factor; this.y *= factor; 
    } 
} 



 Subtype objects often contain more information 
than supertype objects 
◦ Vector3d    <:  Vector2d 
◦ FighterJet  <:  Aircraft 

 Overriding methods will often need more time 
than the methods they override 
◦ scale() 
◦ takeoffChecks() 

 How to specify methods to allow overriding in 
subtypes and still do timing analysis? 

 
8 



 Use different method names for subtypes 
◦ don’t use overriding 
◦ This is equivalent to declaring all methods to be final 
 
 
 

 Pessimistic Underspecification 
◦ allow maximum conceivable time for overrides 

9 

    public final void scale3(float factor) { 
        super.scale(factor); this.z *= factor; 

public class Vector2d { 
 ... 
@  duration MAXDimension * (MultiplyTime + AssignTime); 
@*/ 



 Modular reasoning with subtype polymorphism 
 Idea: Use specifications of static types in reasoning 
 Example 
◦ To verify 

{P} o.m(); {Q} 
◦ Use the specification of m associated with the static type 

of o 
 Soundness = Behavioral Subtyping 
◦ Types must be behavioral subtypes of their supertypes 
◦ I.e., all overriding methods must obey the specification of 

the method they override 

10 



 Parkinson uses predicate families that depend on 
the dynamic receiver’s types.  

 In Vector2d 
◦ Instead of 

duration 2*(MultiplyTime+AssignTime); 
  use 

duration scaleTime(); 
◦ scaleTime() is a pure model method in SafeJML 
◦ Override scaleTime() in each concrete type 

11 



12 

public class Vector2d { /* … */ 
  /*@   … 
    @     duration scaleTime() @*/ 
    public void scale(float factor) { /* … */ } 
 
/*@ 
  public pure model long scaleTime() { 
    return this.getDimensions() 
           *(MultiplyTime+AssignTime);  
  } 
 
   ensures \result >= 2; 
  public pure model int getDimensions() { return 2; }  
@*/ 



13 

public class Vector3d extends Vector2d { 
    … 
    // specification inherited 
    public void scale(float factor) { 
        … 
    } 
/*@ 
  public pure model int getDimensions() { 
    return 3; } 
@*/ 
 



 Parkinson et al. 
◦ Introduced the concept of abstract predicate families to 

modular reasoning of specifications 
 Krone et al. 
◦ duration clause for timing constraints, adopted by JML 
◦ Supports modular  verification of performance constraints  

 PERC Pico product from Atego 
◦ Verifies space specifications of a predefined set of 

subclasses 
 Schoeberl and Pedersen 
◦ describe a precise WCET for Java Systems based on the Java 

Optimized Processor (JOP) 

14 



 Complete implementation of the tool 
◦ Proof of concept can be found at 

http://tinyurl.com/28zllux 
 Evaluation and refinement of design 
◦ Case studies 

 Linking duration specifications to platform 
◦ Through model variables? 

 
 

15 

Questions? 
 Ghaith Haddad – haddad@ieee.org 
 Skype ID: ghaith_on_skype 

 
 
 

mailto:haddad@ieee.org�
mailto:haddad@ieee.org�


16 


	Specifying Subtypes in SCJ Programs
	SafeJML
	Illustration – From Vector2d to Vector3d
	SafeJML Example – Vector3d
	SafeJML – Vector2d - functionality
	SafeJML Example – Vector3d
	SafeJML – Vector2d – execution time
	Problem: Subtype Polymorphism
	Solutions to the Problem? 
	A better Solution: Supertype Abstraction
	Parkinson’s Abstract Predicates
	SafeJML Example Revisited – Vector2d
	SafeJML Example Revisited – Vector3d
	Related Work
	Future Work
	Backup Slides

