

The Modernization of the Aegis Fleet with Open Architecture

Andrew Winkler

Copyright © 2011 by Lockheed Martin Corporation Distribution Statement A: Approved for Public Release. Distribution is unlimited

Topics *Things to talk about...*

Background

- Aegis Overview
- Capability Upgrade Evolution
- Modernization Concept/Approach

Aegis Open Architecture

- Evolution to COTS Technologies and Products
- Incremental/Spiral Development Approach

Aegis Modernization

- Overall Scope/Impact
- Product Line Architecture
- Integration of Common STM / TS Components

• Summary

Aegis – The Shield of the Fleet

Copyright © 2011 by Lockheed Martin Corporation

Aegis Combat Systems Architecture

Aegis Capability Overview

12 Generations and Over 27 Years of Proven Success

Copyright © 2011 by Lockheed Martin Corporation

Aegis Modernization Concept

- I. Decouple Hardware and Software Upgrades Using COTS
 - Software Upgrades Every Two Years
 - Hardware Refresh Every Four Years
- II. Build on Fielded Baselines
- III. Integrate Navy Enterprise HW and SW Solutions
- IV. Transition Aegis to Navy Objective Architecture

Benefits of Aegis Modernization Concept

- More Capability to the Fleet Sooner
- Foster Collaboration and Competition
- Cost Savings from Commonality & Reuse
- Minimal Lifetime Spares
- Upgrades Backward Compatible

COTS & Open Architecture -While Maintaining Engineering Discipline

Aegis Open Architecture

AWS Computer Architecture Evolution

** Eliminated in Baseline 7 Phase IR

Copyright © 2011 by Lockheed Martin Corporation

COTS Technology and Products

Non-LM Hardware

Computing Platform

- VME Single Board Computer
- Network Switching
- SAN Storage
- Network File System
- Thin Client LCD Display
- Analog Hardware/Devices

Non-LM Software

- Real Time Operating
 System
 - Pub-Sub Communications
 - High Availability Middleware
 - Enterprise System Management
 - Human-Systems
 Software
- Network Management Tools

WIND RIVER

Smaller Footprint and Reduced Processor Costs

Incremental Development

"Build a little ... test a lot"

Open Architecture Foundation for Baseline 9 Developments

Where We are Today

	Technical Assessment	SPY		Open C2		Weapons/	VLS
		Signal Processing	Radar Control	Display	C&D	Fire Control	VL3
DDG-91	Hardware	Custom	SMP	Mainstream	Mainstream	SMP	Mainstream
2004	Software	Closed	Closed	Open	Open	Closed	Closed
CG-52	Hardware	Custom	Mainstream	Mainstream	Mainstream	Mainstream	Mainstream
2008	Software	Closed	Open	Open	Open	Open	Closed
CG-62/ DDG-51 2012	Hardware	Mainstream	Mainstream	Mainstream	Mainstream	Mainstream	Mainstream
	Software	Open	Open	Open	Open	Open	Open

Continuously Advancing the Aegis Combat System Forward

Today's Aegis Combat System

Surface Warfighting Electronics Architecture

Detect/Control/Engage View

✓ Federated, Tiered Architecture

✓ Efficient ACS Capability changes

✓ Well-Define Components and API's

System/Subsystem View

Supports Operational and Navy Business Model Objectives

Roadmap to Aegis Modernization (AMOD)-

(CG configuration) TI12 NIFC-CA ACS Element Upgrades	
MMSP JTM Alignment SM-6 AMOD ACB12 (TI1 COTS Based Infrastructure Image: Strain and Strain	
Image:	08)

AMOD Technical Scope

Way Ahead ... Baseline 9

Balancing Capabilities with Complex Combat System Integration Foundation Established for Transition to Objective Architecture

Implementing Open Architecture Layered Architecture Foundation

Upgrading Hardware and Software Independently

Top Level Objective Architecture

"Component View..."

Joint Track Management Alignment

- Align AMOD and SSDS Track Management to a Common Architecture
 - Provide Consistent Functional Allocation, Data Representation and Attributes
 - Incorporate Reusable <u>System Track Manager</u> and <u>Track Server</u> Components
- Provides Hierarchical Track File (System Level Source Level)
- Provides Standard Interfaces
 - Track Server Standard Access Interface for Client Applications
 - Track Manager Integrates Track Data Sources via Common Interface; Extensible for New Track Data Sources

Provides Two Complete Versions of Live Training Tracks:

- Allows Training Override of Multiple Attributes
- Training Tracks Can be Physically Relocated From Live Location

• **Provides Dual Ownship – Tactical and Training:**

Allows Training View to be Repositioned with No Impact to Tactical View

Aligning the Architecture for Future: <u>Common Components</u> Across Ship Classes

JTM Alignment Integration of Common STM and TS Components...

Component Framework Services

Common STM and TS Components Task Allocation...

LM Tasks:

- Update AMOD System Specs (A-level, B1, B5)
- Provide Legacy Aegis Requirements (e.g., STM, PDM, MNF) to SI/DA
- Validate Aegis Requirements Covered by Enterprise SRS's
- Remove STM/TS Functionality from Existing Components
- Modify C&D Sensor Managers IAW Functional Allocation (Design, Code, and Test)
- Modify Aegis Track Server Clients (Design, Code and Test)
- Design, Code and Test Aegis-Specific Component Framework
- Integrate STM/TS into AMOD
- Provide TOR/CPCRs
- Verify System Performance

Legend
New/Modified AWS
New Common

AMOD System

LM and Third party Joint Tasks:

- Establish linked classified development environment
- Establish and Track Progress and Dependencies via Joint IMS
- Participate in Navy-led Data Model and Component Framework Working Groups
- Support Functional Allocation
- Support Definition of Data Model, TS APIs, and Common Service APIs
- Support Definition of Enterprise-level Processes and Artifacts
- Support Enterprise ETRs and Enterprise SSR
- Support Enterprise CCB and Prioritization/Adjudication of TORs/CPCRs

Allocation and Governance Was Essential

SI/DA Tasks:

- Develop Enterprise SRSs for STM and TS from Aegis and SSDS
- Develop UML Models
- Auto-generate IDD and Interface Code from UML Models
- Design, Code and Test STM and TS Components
- Provide Interim and Final STM/TS Components to LM
- Implement CM and Change Control of STM/TS
- Implement CPCR Fixes to STM/TS Components
- Support Integration of STM/TS into AMOD
- Support SQT of STM and TS

Objective Architecture Roles and Responsibilities...

AMOD C&D Component Architecture

What We Learned

- Design/Integration Tools
- Software Development
- Test Environment

People

Process

- Skills / Expertise
- Organization

Technical

- Architecture
- Functional
- Performance

Programmatic

- Dependencies
- Risks
- Earned Value

Lessons Learned Address <u>Multiple Perspectives</u>

Aegis Open Architecture

Open Business Practices

Increased

Capabilities

• AAW/BMD

• JTM

SM-6
NIFC-CA
SBT

- Open Disclosure / Gov't
 Purpose Data Rights
- Increase Number of Players/ Opportunities

Glossary

Acronym	Description	Acronym	Description
ACB08	Advanced Capability Baseline 2008 LAN Local Area Network		•
ACB12	Advanced Capability Baseline 2012		Lockheed Martin
ACS	Aegis Combat System	LOT	Launch on TADIL
ADD	Architecture Definition Document		Multi-Mission Signal Processor
Aegis	(not an acronym) Greek Shield of Zeus		MicroSoft
ALIS	Aegis LAN Interconnect System	NIFC-CA	Naval Integrated Fire Control - Counter Air
AMOD	Aegis MODernization		Open Architecture
ΑΡΙ	Application Programming Interface	OAET	Open Architecture Enterprise Team
ASCM	Anti-Ship Cruise Missile	OASM	Open Architecture System Management
ASROC	Anti-Submarine ROCket	P/S	Publish/Subscribe
BL	Baseline	PIDS	Prime Item Development Specification
BMD	Ballistic Missile Defense	PIM	Platform Independent Model
C2	Command and Control	PSEA	Platform System Engineering Agent
ССВ	Configuration Control Board	PSM	Platform Specific Model
CEC	Cooperative Engagement Capability	Pub/Sub	Publish/Subscribe
CG	Guided Missile Cruisers	RF	Radio Frequency
CIWS	Close In Weapon System	SAD	System Architecture Document
СМ	Configuration Management	SAN	Storage Area Network
COTS	Commercial Off-the-Shelf	SBT	Sea-Based Terminal
CPCR	Computer Program Change Request	SI/DA	System Integrator / Design Agent
CR	COTS Refresh	SM	Standard Missile
CSEA	Combat System Engineering Agent	SMP	Symmetric MultiProcessor
CVN	Carrier Vessel Nuclear	SQT	System Qualification Test
DDG	Guided Missile Destroyer	SRS	System Requirements Specification
DDS	Data Distribution Service	SSDD	System/Segment Design Document
DM	Data Model	SSDS	Ship Self Defense System
DOORS	Dynamic Object-Oriented Requirements System	SSR	Software Specification Review
ESSM	Evolved Sea Sparrow Missile	STM	System Track Manager
ETR	Engineering Technical Review	SVC	Service
GCC	GNU Compiler	SW	Software
GFE	Government Furnished Equipment	SysML	Systems Modeling Language
HM&E	Hull, Mechanical and Electrical	T&E	Test and Evaluation
HW	Hardware	TADIL	TActical Digital Information Link
IAW	In Accordance With	ТІ	Technology Insertion
IDD	Interface Definition Document	TLAM	Tomahawk Land-Attack Missile
IDS	Interface Design Specification	TOR	Test Observation Report
IMS	Integrated Master Schedule	TS	Track Server
IPO	Input/Output/Process	UML	Unified Modeling Language
IR	Infrared	VLA	Vertical Launch ASROC
JTM	Joint Track Management	VLS	Vertical Launch System
KA	Kill Assessment	XML	eXtensible Markup Language

Application of Java In AEGIS Weapons Control

Andrew Winkler Sept 28, 2011

Purpose

Overview of the use of Java in Aegis Weapons Control Open Architecture (WCOA)

- Language Selection
- Early Analysis
- Java Virtual Machine assessment
 - Overview
 - Latest Performance Results

Why Java?

- Faced with a language selection in 2004
 - Development team not trained in C++ or Java
 - Very aggressive schedule
 - Completely re-architect complex ~200 KSLOC shared memory based weapon control program from the top down
 - Complete AAW capability in 36 months.
- Perceived benefits based on initial language assessment (2004)
 - Increased productivity
 - Language features
 - Reduced defects
 - Tools
 - Libraries
- But would Java support performance requirements?
 - Initial Assessment performed in 2004

Early Results (2004)

- VM Run at RT Priority
- Periodic offset by ~10ms

- Can be set to hi-res but not used for this measurement
- The one outlier (~7ms) is the first 1st measurement
 - timer resolution?

Initial Assessment

Results indicated JVM performance was generally coupled with underlying OS

- Mainstream JVM on RTOS could exhibit some real time behavior
- Still issues and watch items
 - Garbage Collection
 - JVM Control (other JVM threads)
 - Threading (priority inheritance)
- Decision was made to proceed with Java
 - Early Data analysis indicated no major obstacles
 - The state of the market
 - Interest among mainstream vendors (BEA, Sun, IBM) for higher performance/deterministic JVMs
 - RT Java support from small vendors (Aicas, Aonix)
 - The emergence of RTSJ

WCOA JVM Technical Requirements

Required

- Ability to map Java thread priorities to underlying OS priorities
- Ability to set Real-time scheduling policy (SCHED_FIFO, SCHED_RR)
- Control over VM threads (e.g. priority, enable/disable)
 - Garbage collection, optimization
- Deterministic behavior
 - Priority inheritance for synchronization
 - Deterministic GC
 - Low Jitter
- Different Compilation options/control
 - Ahead-of-Time compilation
 - Just-in-Time compilation
- Desirable
 - Support for Real-Time Specification For Java (RTSJ)

Performance Data

Collected data for several JVMs

- Examined Behavior of GC
 - 50ms periodic thread under load (~50%)
 - CPU load produced by creation and collection of objects
 - Examined instances where periodic ran long
 - Overruns typically caused by GC or another JVM thread such as optimization thread
- Jitter
 - Examine the deterministic behavior of an application over a long period of time (100,000+ data points)
 - Ran 20ms periodic thread under load (~50%)
 - CPU load produced by creation and collection of objects
- Tactical Testing
 - Examined critical timelines running WCOA tactical code

Non-Deterministic Garbage Collection

Non-Deterministic Garbage Collection (Continued)

🔆 NightTrace: blade0208 kernel (Unsaved) :0	-D×
Eage Search Summary Graph Event Edit Zoom Mew	Help
□ ₩ M Σ ± 𝔄 𝔄 ⇐ ↑ ↓ ★ ☎ ↔ × № ₩ Ⅲ 𝔍 Q №	
Around the 792903rd trace event you selected 2 trace events Around the 792972nd trace event you selected 3 trace events Around the 793104th trace event you selected 3 trace events Around the 793104th trace event you selected 3 trace events offset=793178 id=IRQ_ENTRY pid=24925 thr=24925 cpu=0 time=4.3355950005 Interrupt times (IRQ=512); arg1=0x200 arg2=0x1 arg3=0x20	
Periodic Should Have Run Here blade0208 CPU 0 timer Page-Fault futex 24929 IR0_EXIT blade0208 CPU 1 idle SCHEDCHANCE Interrupt Exception \$yscall	
Start Time: ¥.284886949s Time Length: D.084866351s End Time: ¥.369753301s Ourrent Time: ¥.367598648s Start Event: 788157 Event: Count: £137 End Event: 794293	

Deterministic Garbage Collection

NightTrace: session_0.page_0 :0		
Eage Search Summary Graph Event	Edit Zoom Mew	Ыар
	↓ * 🛥 🕂 🗙 🐘 🗉	. ♥, ♥, ₽ ,
1 time from mark = 0.050021295s		No Overrun Periodics
	50ms Periodic	
blade0208 CPU 0 local_timer Page-Fault rt_sigtimedwait idle SCHEDCHANGE blade0208 CPU 1 local_timer Page-Fault futex 10305 IRQ_EXIT Interrupt Exception Syscall	GC Thread	
Signal Remetevent		
Start Timer 🕌 4.427110273s Time Leng Start Event: 📲 117681 Event Cou		\$.203828115s Ourrent Time \$.200030825s 1403112

Deterministic Garbage Collection (Continued)

NightTrace: session_0.page_0 :0
Eage Search Summary Graph Event Edit Zoom Mew Help
□ ₩ ₩ Σ ± ♀ ₹ ≠ ↑ ↓ ₩ ™ + × № ₩ Ⅲ ९ ९ ₽
13 offset=1192784 id=PR0CESS pid=10303 thr=10303 cpu=0 time=4.667362227 Wake process 10363; arg1=6 arg2=10363 arg3=1 14 offset=1192784 id=PR0CESS pid=10303 thr=10303 cpu=0 time=4.667362227 Wake process 10363; arg1=6 arg2=10363 arg3=1 15 offset=1192789 id=2 pid=pvm_10299 thr=Benchmark cpu=?? time=4.667375285 16 offset=1192789 id=2 pid=pvm_10299 thr=Benchmark cpu=?? time=4.667375285
Signal to Wake Periodic Thread blade0208 CPU 0 local_timer Page-Fault futex 10363 SYSCALL_EXIT blade0208 CPU 1 local_timer Page-Fault Page-Fault idle IRQ_EXIT Interrupt Exception 4,66734s 4,66735s 4,66734s 4,66735s 4,66735s 4,66735s 4,66735s
Syscall KernelEvent
Start Time #.667329921s Time Length D.000055061s End Time #.667384982s Ourrent Time #.667382280s Start Event: 1192758 Event Count: 33 End Event: 1192790 Image: 1192790 Copyright © 2011 by Lockheed Martin Corporation Event Count: 33 End Event: 1192790 Image: 1192790

Product 'A' JVM Jitter Data

Product 'B' JVM Jitter Data

Max Deviation < 1ms: Supports WCOA Requirements

Testing in Tactical Environment

- Performed significant testing using three JVMs using WCOA tactical programs
 - Allowed study of different JVM features in a realistic environment
 - Analyzed Impact of JVM threads/features to critical timelines
 - JIT adversely impacted certain critical timelines running under two of the JVMs (one RT and one non-RT)
 - \odot AOT or JIT at initialization solved problem for the RT JVM
 - \odot JIT at init slows application initialization significantly
 - One JVM's Optimization thread interfered with application health-checking – causing application to be terminated
 - \odot Disabling optimization resolved problem
 - **GC** tuning essential even for Deterministic GC.
 - Poorly tuned RT JVM runs as poorly as NRT counterparts
 - Prevent out of memory conditions paramount

Java Performance Verified In Tactical Testing

What about benefits of using Java?

Did we get the benefits we were hoping for?

- Ada programmers adapted quickly to Java
 - Tools like Eclipse helped transition
- Developed ~150 KSLOCs in 18 months
 - Portability of Java allowed desktop testing & verification on Windows Platform
 - Verified 3500 Requirements in 5 months
 - •89% 1st time pass rate
- Java Performance
 - Java can support soft real-time, mission critical applications
 - Meets WCOA Performance Requirements
- Looking forward
 - Keeping an eye on safety critical Java work and it's implications for a mission critical profile
 - Development must keep in mind value proposition for users

Team Realizing Huge Benefits by Switching to Java