
Resource Sharing in RTSJ and
SCJ Systems

Andy Wellings, Charlie Lin and
Alan Burns

2 - 23

Structure

 Motivation and Background
 Single Processor Resource Control
 Multiprocessor Policies
 Summary of Protocols
 Application to RTSJ and SCJ
 Nested Resources and Deadlock
 Adding Flexibility

3 - 23

Motivation and background

 RTSJ Version 1.1 provides more explicit
support for multiprocessor systems

 Global, partitioned and cluster scheduling
are all allowed

 Resource sharing is still largely unresolved
 Consider

 current literature in RT resource sharing
 impact this could have on the specification

4 - 23

Single Processor Resource Control

 Well understood:
 Priority inheritance
 Priority ceiling protocols
 Non preemptive critical sections
 Stack resource policy

 Usual assumption:
 No self suspension holding a resource
 Not enforced by Java

5 - 23

Multiprocessor Policies

 Multiprocessor Priority Ceiling Protocol
(MPCP)

 Distributed Priority Ceiling Protocol (DPCP)
 Multiprocessor Stack Resource Policy (MSRP)
 Flexible Multiprocessor Locking Protocol

(FMLP)
 Parallel Priority Ceiling Protocol (PPCP)
 O(M) Locking Protocol (OMLP)

6 - 23

Summary of Protocols
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

MPCP Partitioned Yes No Ceiling
(priority
boosting)

Suspends
(priority
queue)

7 - 23

Summary of Protocols
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

MPCP Partitioned Yes No Ceiling
(priority
boosting)

Suspends
(priority
queue)

DPCP Partitioned Yes Yes Ceiling
(priority
boosting)

Suspends
(priority
queue)

8 - 23

Summary of Protocols
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

MPCP Partitioned Yes No Ceiling
(priority
boosting)

Suspends
(priority
queue)

DPCP Partitioned Yes Yes Ceiling
(priority
boosting)

Suspends
(priority
queue)

MSRP Partitioned Yes No Non
Preemptive

Spins (FIFO
queue)

9 - 23

Summary of Protocols
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

MPCP Partitioned Yes No Ceiling
(priority
boosting)

Suspends
(priority
queue)

DPCP Partitioned Yes Yes Ceiling
(priority
boosting)

Suspends
(priority
queue)

MSRP Partitioned Yes No Non
Preemptive

Spins (FIFO
queue)

FMLP Partitioned
and Global

No Group Locks Short : Non
preemptive

Long:
Inheritance

Short: Spins
(FIFO queue)

Long:
Suspends
(priority
queue)

10 - 23

Summary of Protocols Cont.
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

PPCP Global No No Inheritance Suspends
(priority
queue)

11 - 23

Summary of Protocols Cont.
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

PPCP Global No No Inheritance Suspends
(priority
queue)

OMLP Partitioned
and Global

Yes Group
Locks

Global:
inheritance

Partitioned:
preemptive

Suspends (in
token
contention
and priority
queue)

Suspends (in
FIFO and
priority
queue)

12 - 23

Summary of Protocols Cont.
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

PPCP Global No No Inheritance Suspends
(priority
queue)

OMLP Partitioned
and Global

Yes Group
Locks

Global:
inheritance

Partitioned:
preemptive

Suspends (in
token
contention
and priority
queue)

Suspends (in
FIFO and
priority
queue)

Cluster
OMLP

Clustered No Group
Locks

Priority
donation

Suspends
(FIFO queue)

13 - 23

 Application to RTSJ and SCJ
RTSJ
 Allows self suspension

 Nested resources allowed
 Clusters allowed
 A single approach not

possible?

SCJ
 Does not allow self

suspension
 Nested resources allow
 Level 1: Partitioned only

 DPCP
 but how to do migration?

 Level 2: Clusters allowed
 Cluster OMLP?
 But how to deal with

nested resources?

14 - 23

Nested Resources and Deadlock

 For deadlock to occur
 mutual exclusion
 hold and wait
 no preemption
 a circular chain

 Dealing with deadlock
 deadlock prevention
 deadlock avoidance (Group locks)
 deadlock detection and recovery

15 - 23

Ceiling Priorities and Deadlock

 On a single processor (deadlock prevention)
 Ceiling of nested resource must be greater than

ceiling of calling resource
 breaks the circular wait

 Priority used for
 execution eligibility
 preemption control
 resource ordering

16 - 23

EDF and deadlock with SRP

 Deadline is used for execution eligibility
(dynamic priority)

 Preemption levels used for
 preemption control
 ordering

17 - 23

Multiprocessors

 Often priority is used to get non-preemption
 Therefore need to separate out order property
 Is their a GlobalPriorityCeilingEmulation

protocol?
 Local resources: usual priority ceiling emulation
 Global: non preemptive, order attribute ensures

no circular chains
 But introduces transitive block chains

18 - 23

Adding Flexibility

 It seems a single monitor control policy will
not fit all multiprocessor applications

 Can obviously add a
GlobalPriorityCeilingEmulation policy

package java.realtime;
public class GlobalPriorityCeilingEmulation extends
 PriorityCeilingEmulation {
 public int getPartialOrder();
 public static GlobalPriorityCeilingEmulation
 instance(int partialOrder);
}

19 - 23

Global Priority Ceiling Emulation

package java.realtime;
public class GlobalPriorityCeilingEmulation extends
 PriorityCeilingEmulation {
 public int getPartialOrder();
 public static GlobalPriorityCeilingEmulation
 instance(int partialOrder);

 public interface LockPolicy {};
 public interface QueueOrder {};
 public static LockPolicy Spin;
 public static LockPolicy Suspend;
 public static QueueOrder Fifo;
 public static QueueOrder Priority;
 public void setQueuePolicy(LockPolicy l);
 public void setQueueOrder(QueueOrder o);
 public void setQueueLength(int l);
}

20 - 23

User-defined Locking

 Would give greater flexibility; JVM delegates
locking to application

package javax.realtime;
public abstract class MonitorControl {
 ... // as before
 protected void lock();
 protected void unlock();
 protected void await();
 protected void signal();
 protected void signalAll();
}

21 - 23

Conclusions

 RTSJ V1.1 will provide more explicit support for
developing multiprocessor systems

 The lack of standardization in the area of resource
control protocols has resulted in simple priority
inheritance being adopted as the main monitor
control policy

 The current draft SCJ standard adopts priority
ceiling emulation and assumes the programmer
will set appropriate ceilings

22 - 23

Conclusions RTS

 Cannot standardize on a single policy due to the
freedom given in Java and RTSJ

 Nested global calls and the ability to suspend
inside a monitor whilst holding the monitor lock
undermine the state of the art

 Consequently, more flexibility is required within the
RTSJ to allow a developer to program their own
resource control policies

23 - 23

Conclusions SCJ

 Appropriate to define a conservative model that is
well understood: SCJ already supports a restrictive
programming model

 A resource control protocol based on the Global
Priority Ceiling Emulation could be used

 To avoid deadlocks when accessing nested
resources, a partial order must be defined for
nested global resource accesses

 However, unlike the single processor PCE protocol,
transitive blocking is not prevented

	Resource Sharing in RTSJ and SCJ Systems
	Structure
	Motivation and background
	Single Processor Resource Control
	Multiprocessor Policies
	Summary of Protocols
	Summary of Protocols
	Summary of Protocols
	Summary of Protocols
	Summary of Protocols Cont.
	Summary of Protocols Cont.
	Summary of Protocols Cont.
	 Application to RTSJ and SCJ
	Nested Resources and Deadlock
	Ceiling Priorities and Deadlock
	EDF and deadlock with SRP
	Multiprocessors
	Adding Flexibility
	Global Priority Ceiling Emulation
	User-defined Locking
	Conclusions
	Conclusions RTS
	Conclusions SCJ

