
Resource Sharing in RTSJ and
SCJ Systems

Andy Wellings, Charlie Lin and
Alan Burns

2 - 23

Structure

 Motivation and Background
 Single Processor Resource Control
 Multiprocessor Policies
 Summary of Protocols
 Application to RTSJ and SCJ
 Nested Resources and Deadlock
 Adding Flexibility

3 - 23

Motivation and background

 RTSJ Version 1.1 provides more explicit
support for multiprocessor systems

 Global, partitioned and cluster scheduling
are all allowed

 Resource sharing is still largely unresolved
 Consider

 current literature in RT resource sharing
 impact this could have on the specification

4 - 23

Single Processor Resource Control

 Well understood:
 Priority inheritance
 Priority ceiling protocols
 Non preemptive critical sections
 Stack resource policy

 Usual assumption:
 No self suspension holding a resource
 Not enforced by Java

5 - 23

Multiprocessor Policies

 Multiprocessor Priority Ceiling Protocol
(MPCP)

 Distributed Priority Ceiling Protocol (DPCP)
 Multiprocessor Stack Resource Policy (MSRP)
 Flexible Multiprocessor Locking Protocol

(FMLP)
 Parallel Priority Ceiling Protocol (PPCP)
 O(M) Locking Protocol (OMLP)

6 - 23

Summary of Protocols
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

MPCP Partitioned Yes No Ceiling
(priority
boosting)

Suspends
(priority
queue)

7 - 23

Summary of Protocols
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

MPCP Partitioned Yes No Ceiling
(priority
boosting)

Suspends
(priority
queue)

DPCP Partitioned Yes Yes Ceiling
(priority
boosting)

Suspends
(priority
queue)

8 - 23

Summary of Protocols
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

MPCP Partitioned Yes No Ceiling
(priority
boosting)

Suspends
(priority
queue)

DPCP Partitioned Yes Yes Ceiling
(priority
boosting)

Suspends
(priority
queue)

MSRP Partitioned Yes No Non
Preemptive

Spins (FIFO
queue)

9 - 23

Summary of Protocols
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

MPCP Partitioned Yes No Ceiling
(priority
boosting)

Suspends
(priority
queue)

DPCP Partitioned Yes Yes Ceiling
(priority
boosting)

Suspends
(priority
queue)

MSRP Partitioned Yes No Non
Preemptive

Spins (FIFO
queue)

FMLP Partitioned
and Global

No Group Locks Short : Non
preemptive

Long:
Inheritance

Short: Spins
(FIFO queue)

Long:
Suspends
(priority
queue)

10 - 23

Summary of Protocols Cont.
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

PPCP Global No No Inheritance Suspends
(priority
queue)

11 - 23

Summary of Protocols Cont.
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

PPCP Global No No Inheritance Suspends
(priority
queue)

OMLP Partitioned
and Global

Yes Group
Locks

Global:
inheritance

Partitioned:
preemptive

Suspends (in
token
contention
and priority
queue)

Suspends (in
FIFO and
priority
queue)

12 - 23

Summary of Protocols Cont.
Scheduling Global/Local

Resources
Nested
Resources

Access
Priority

Queuing

PPCP Global No No Inheritance Suspends
(priority
queue)

OMLP Partitioned
and Global

Yes Group
Locks

Global:
inheritance

Partitioned:
preemptive

Suspends (in
token
contention
and priority
queue)

Suspends (in
FIFO and
priority
queue)

Cluster
OMLP

Clustered No Group
Locks

Priority
donation

Suspends
(FIFO queue)

13 - 23

 Application to RTSJ and SCJ
RTSJ
 Allows self suspension

 Nested resources allowed
 Clusters allowed
 A single approach not

possible?

SCJ
 Does not allow self

suspension
 Nested resources allow
 Level 1: Partitioned only

 DPCP
 but how to do migration?

 Level 2: Clusters allowed
 Cluster OMLP?
 But how to deal with

nested resources?

14 - 23

Nested Resources and Deadlock

 For deadlock to occur
 mutual exclusion
 hold and wait
 no preemption
 a circular chain

 Dealing with deadlock
 deadlock prevention
 deadlock avoidance (Group locks)
 deadlock detection and recovery

15 - 23

Ceiling Priorities and Deadlock

 On a single processor (deadlock prevention)
 Ceiling of nested resource must be greater than

ceiling of calling resource
 breaks the circular wait

 Priority used for
 execution eligibility
 preemption control
 resource ordering

16 - 23

EDF and deadlock with SRP

 Deadline is used for execution eligibility
(dynamic priority)

 Preemption levels used for
 preemption control
 ordering

17 - 23

Multiprocessors

 Often priority is used to get non-preemption
 Therefore need to separate out order property
 Is their a GlobalPriorityCeilingEmulation

protocol?
 Local resources: usual priority ceiling emulation
 Global: non preemptive, order attribute ensures

no circular chains
 But introduces transitive block chains

18 - 23

Adding Flexibility

 It seems a single monitor control policy will
not fit all multiprocessor applications

 Can obviously add a
GlobalPriorityCeilingEmulation policy

package java.realtime;
public class GlobalPriorityCeilingEmulation extends
 PriorityCeilingEmulation {
 public int getPartialOrder();
 public static GlobalPriorityCeilingEmulation
 instance(int partialOrder);
}

19 - 23

Global Priority Ceiling Emulation

package java.realtime;
public class GlobalPriorityCeilingEmulation extends
 PriorityCeilingEmulation {
 public int getPartialOrder();
 public static GlobalPriorityCeilingEmulation
 instance(int partialOrder);

 public interface LockPolicy {};
 public interface QueueOrder {};
 public static LockPolicy Spin;
 public static LockPolicy Suspend;
 public static QueueOrder Fifo;
 public static QueueOrder Priority;
 public void setQueuePolicy(LockPolicy l);
 public void setQueueOrder(QueueOrder o);
 public void setQueueLength(int l);
}

20 - 23

User-defined Locking

 Would give greater flexibility; JVM delegates
locking to application

package javax.realtime;
public abstract class MonitorControl {
 ... // as before
 protected void lock();
 protected void unlock();
 protected void await();
 protected void signal();
 protected void signalAll();
}

21 - 23

Conclusions

 RTSJ V1.1 will provide more explicit support for
developing multiprocessor systems

 The lack of standardization in the area of resource
control protocols has resulted in simple priority
inheritance being adopted as the main monitor
control policy

 The current draft SCJ standard adopts priority
ceiling emulation and assumes the programmer
will set appropriate ceilings

22 - 23

Conclusions RTS

 Cannot standardize on a single policy due to the
freedom given in Java and RTSJ

 Nested global calls and the ability to suspend
inside a monitor whilst holding the monitor lock
undermine the state of the art

 Consequently, more flexibility is required within the
RTSJ to allow a developer to program their own
resource control policies

23 - 23

Conclusions SCJ

 Appropriate to define a conservative model that is
well understood: SCJ already supports a restrictive
programming model

 A resource control protocol based on the Global
Priority Ceiling Emulation could be used

 To avoid deadlocks when accessing nested
resources, a partial order must be defined for
nested global resource accesses

 However, unlike the single processor PCE protocol,
transitive blocking is not prevented

	Resource Sharing in RTSJ and SCJ Systems
	Structure
	Motivation and background
	Single Processor Resource Control
	Multiprocessor Policies
	Summary of Protocols
	Summary of Protocols
	Summary of Protocols
	Summary of Protocols
	Summary of Protocols Cont.
	Summary of Protocols Cont.
	Summary of Protocols Cont.
	 Application to RTSJ and SCJ
	Nested Resources and Deadlock
	Ceiling Priorities and Deadlock
	EDF and deadlock with SRP
	Multiprocessors
	Adding Flexibility
	Global Priority Ceiling Emulation
	User-defined Locking
	Conclusions
	Conclusions RTS
	Conclusions SCJ

