
Multiprocessor Scheduling

What we know, what we know we
don't know, and the rest

Scheduling

 A scheduling talk with no equations!

 Some reflections on open issues and
implications for programming languages

Applications

 Application is comprised of
threads/tasks, with

 Periods, T

 Periodic and sporadic treads

 Deadlines, D

 Computation times, C

 A platform consists of a number of
cores

Number of cores

 How many cores are you considering?

Number of cores

 How many cores are you considering?

 Not enough!

Number of cores

Number of cores

 Burns’ Classification

Number of cores

 Burns’ Classification

 1

Number of cores

 Burns’ Classification

 1

 A few (homogeneous)

Number of cores

 Burns’ Classification

 1

 A few (homogeneous)

 Lots (and heterogeneous)

Number of cores

 Burns’ Classification

 1

 A few (homogeneous)

 Lots (and heterogeneous)

 Too many

Single Processor

 Lots of well known results

 EDF is an optimal scheme

 100% usage if period=deadline

 Fixed priority is a very efficient scheme

 Response-Time Analysis (RTA) can cope
with most application models

 Optimal priority assignment available

Single Processor

 Processor Demand Analysis (PDA) can
cope with most application models for
EDF

 Shared objects implemented effectively
and efficiently by priority ceiling
protocols (FP and EDF)

Main Problem

 Safe but accurate computation times
are very difficult to obtain on modern
hardware

 Worst-case rare and >> average

 Models are too complex to use

 Measurement is intrusive and difficult to
undertake

One Approach

 Try and obtain predictability as an
emergent property

 Randomise aspects of the (temporal)
behaviour of the hardware

 For example a random cache replacement
policy

A few cores (n)

 Many more natural application threads
than cores

 So first concern is allocation

 Partitioned and global approaches to
thread allocation

 Affinity of a thread

Partitioned Systems

 First we allocate, then we have n single
core systems

 Assumes a fixed, static program

 Results from single processor systems
can be then be applied

 But allocation is a NP-hard problem

Allocation

 An effective scheme is first fit based on
utilisation or density

 Largest T/C first (if D=T)

 Largest D/C first if D<T

 But utilisation bound is n/2

 Consider a system that only has threads
with utilisation .50001

 For systems with small threads FF-EDF
bound is approx 82%

Dynamic Schemes

 Influential Dhall paper in 1978 showed
bound is 1 + ε

 Killed research until 1990s

 Then research was able to show that
more intelligent allocations can give
high utilisation, close to n

What we know

 EDF is not optimal

 EDF is not always better than FP

 Optimal scheduling of periodic threads
requires excessive migrations (Pfair)

 Optimal scheduling of sporadic threads
requires clairvoyance

What we know

 Many scheduling results are not
sustainable

 A schedulable system becomes
unschedulable when things get better

 ie C decreases, or

 T increases

 Critical instance (worst-case arrival
pattern) is NOT when all threads arrive
together

What we know

 For fixed priority schemes

 Effective scheduling tests do not give rise
to optimal priority orderings

 Can be better to use a sufficient test that
can utilise Audsley’s optimal priority
assignment scheme

What we know

 Effective schemes deal with large
threads (high utilisation) separately
from small threads

 A typical scheme is to statically allocate
large threads, global EDF for the rest,
switching to non-preemption when a
thread hits zero laxity

What we know

 A general strategy for determining
schedulability is to

 Define a problem window

 Derive a necessary condition for non-
schedulability

 Invert to produce a sufficient test for
schedulability

What is now understood

 Dynamic allocation is not producing
significantly better results than
partitioned

 Tests are very complex and run-time
behaviour is non trivial

 Empirical studies highlight the cost of
thread migration

Hybrid Schemes

 Clustering

 Migration only over a small set of cores,
perhaps 4 (with coherent cache)

 Semi-partitioned

 Most threads statically allocated

 At most n-1 thread migrations

 From statically fixed source and destination
cores

C=D Thread Splitting

 Cores split into domains

 Most threads fixed on domain and core

 EDF scheduling on each core

 One task per core migrates after a time
of non-preemptive execution to another
core in the same domain

Evaluation

 Using analysis the optimal point to split
a thread is obtained

 But still a number of different heuristic
are possible for deciding which thread
to split

 Experiments undertaken for evaluation

 Results are average utilisation of all but
last processor

0.95

0.85

0.75

0.9

0.8

0.7

1

EDF Partition (DD)

EDF Split (DD-MaxD)

EDF Split (DD-MaxDen)

EDF Split (DD-MinD)

EDF Split then Pack (DD-MinD)

6 8 12 20 36

Number of tasks

Thread Splitting Performance

Problems

 Resource locking protocols are not well
defined for multiprocessor platforms

 Estimations of execution times for a
multi-core gets even more difficult

 Shared busses (non-deterministic
interference)

 NoC – another resource to schedulable

Language Support

 Deadlines and EDF (or fixed priority)

 Affinity control: domains, cores; program a
move of an active task

 Timing events: trigger migration

 Volatile variables: Non-locking algorithms

 Fifo queues, ceiling control, monitors

 Atomic code: for transactional memory

and the rest – lots of cores

 The task is the right abstraction for
real-time applications

 But if n >> m, compilers and hardware
must help

 Languages must free up code from
inappropriate sequencing

 Every application task is implemented
by a number of platform threads

Profile of a task

0%

20%

40%

60%

80%

100%

120%

140%

160%

1 core 2 cores 3 cores 10 cores

Utilisation

Utilisation

Composability

 We then need to be able to schedule a
set of tasks by composing their profiles

 Are the profiles composable?

 Perhaps if the hardware is more
random

Randomising the hardware

 Predictability as an emergent property

 At the time scale relevant to the
application

 Gases are predictable, molecules aren’t

 Tasks can be predictable even if
instructions aren’t (in time)

Contrived example

 Basic hardware instruction is iid with cost

 1 90% of the time

 10 10% of the time

 A program consists of 100,000 instructions

 Worst-case: 1,000,000

 Average: 190,000

 WCET, P(A>E)<10^-9?

Contrived example

 Basic hardware instruction is iid with cost

 1 90% of the time

 10 10% of the time

 A program consists of 100,000 instructions

 Worst-case: 1,000,000

 Average: 190,000

 WCET, P(A>E)<10^-9: 195,122

Summary

 We know how to schedule single
processors

 We know many results for multiprocessors

 We know things that we will never know

 We know massively parallel hardware in on
the way

 But still so many unknown unknowns

Sources

 A Survey of Hard Real-Time Scheduling for
Multiprocessor Systems, Davis and Burns, ACM
Computer Surveys, 2011.

 Partitioned EDF scheduling for Multiprocessors using
a C=D task splitting scheme, Burns, Davis, Wang and
Zhang, Real-Time Systems Journal, 2011.

 Predictability as an Emergent Behaviour, Burns and
Griffin 4th Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems (CRTS)

