
Multiprocessor Scheduling

What we know, what we know we
don't know, and the rest

Scheduling

 A scheduling talk with no equations!

 Some reflections on open issues and
implications for programming languages

Applications

 Application is comprised of
threads/tasks, with

 Periods, T

 Periodic and sporadic treads

 Deadlines, D

 Computation times, C

 A platform consists of a number of
cores

Number of cores

 How many cores are you considering?

Number of cores

 How many cores are you considering?

 Not enough!

Number of cores

Number of cores

 Burns’ Classification

Number of cores

 Burns’ Classification

 1

Number of cores

 Burns’ Classification

 1

 A few (homogeneous)

Number of cores

 Burns’ Classification

 1

 A few (homogeneous)

 Lots (and heterogeneous)

Number of cores

 Burns’ Classification

 1

 A few (homogeneous)

 Lots (and heterogeneous)

 Too many

Single Processor

 Lots of well known results

 EDF is an optimal scheme

 100% usage if period=deadline

 Fixed priority is a very efficient scheme

 Response-Time Analysis (RTA) can cope
with most application models

 Optimal priority assignment available

Single Processor

 Processor Demand Analysis (PDA) can
cope with most application models for
EDF

 Shared objects implemented effectively
and efficiently by priority ceiling
protocols (FP and EDF)

Main Problem

 Safe but accurate computation times
are very difficult to obtain on modern
hardware

 Worst-case rare and >> average

 Models are too complex to use

 Measurement is intrusive and difficult to
undertake

One Approach

 Try and obtain predictability as an
emergent property

 Randomise aspects of the (temporal)
behaviour of the hardware

 For example a random cache replacement
policy

A few cores (n)

 Many more natural application threads
than cores

 So first concern is allocation

 Partitioned and global approaches to
thread allocation

 Affinity of a thread

Partitioned Systems

 First we allocate, then we have n single
core systems

 Assumes a fixed, static program

 Results from single processor systems
can be then be applied

 But allocation is a NP-hard problem

Allocation

 An effective scheme is first fit based on
utilisation or density

 Largest T/C first (if D=T)

 Largest D/C first if D<T

 But utilisation bound is n/2

 Consider a system that only has threads
with utilisation .50001

 For systems with small threads FF-EDF
bound is approx 82%

Dynamic Schemes

 Influential Dhall paper in 1978 showed
bound is 1 + ε

 Killed research until 1990s

 Then research was able to show that
more intelligent allocations can give
high utilisation, close to n

What we know

 EDF is not optimal

 EDF is not always better than FP

 Optimal scheduling of periodic threads
requires excessive migrations (Pfair)

 Optimal scheduling of sporadic threads
requires clairvoyance

What we know

 Many scheduling results are not
sustainable

 A schedulable system becomes
unschedulable when things get better

 ie C decreases, or

 T increases

 Critical instance (worst-case arrival
pattern) is NOT when all threads arrive
together

What we know

 For fixed priority schemes

 Effective scheduling tests do not give rise
to optimal priority orderings

 Can be better to use a sufficient test that
can utilise Audsley’s optimal priority
assignment scheme

What we know

 Effective schemes deal with large
threads (high utilisation) separately
from small threads

 A typical scheme is to statically allocate
large threads, global EDF for the rest,
switching to non-preemption when a
thread hits zero laxity

What we know

 A general strategy for determining
schedulability is to

 Define a problem window

 Derive a necessary condition for non-
schedulability

 Invert to produce a sufficient test for
schedulability

What is now understood

 Dynamic allocation is not producing
significantly better results than
partitioned

 Tests are very complex and run-time
behaviour is non trivial

 Empirical studies highlight the cost of
thread migration

Hybrid Schemes

 Clustering

 Migration only over a small set of cores,
perhaps 4 (with coherent cache)

 Semi-partitioned

 Most threads statically allocated

 At most n-1 thread migrations

 From statically fixed source and destination
cores

C=D Thread Splitting

 Cores split into domains

 Most threads fixed on domain and core

 EDF scheduling on each core

 One task per core migrates after a time
of non-preemptive execution to another
core in the same domain

Evaluation

 Using analysis the optimal point to split
a thread is obtained

 But still a number of different heuristic
are possible for deciding which thread
to split

 Experiments undertaken for evaluation

 Results are average utilisation of all but
last processor

0.95

0.85

0.75

0.9

0.8

0.7

1

EDF Partition (DD)

EDF Split (DD-MaxD)

EDF Split (DD-MaxDen)

EDF Split (DD-MinD)

EDF Split then Pack (DD-MinD)

6 8 12 20 36

Number of tasks

Thread Splitting Performance

Problems

 Resource locking protocols are not well
defined for multiprocessor platforms

 Estimations of execution times for a
multi-core gets even more difficult

 Shared busses (non-deterministic
interference)

 NoC – another resource to schedulable

Language Support

 Deadlines and EDF (or fixed priority)

 Affinity control: domains, cores; program a
move of an active task

 Timing events: trigger migration

 Volatile variables: Non-locking algorithms

 Fifo queues, ceiling control, monitors

 Atomic code: for transactional memory

and the rest – lots of cores

 The task is the right abstraction for
real-time applications

 But if n >> m, compilers and hardware
must help

 Languages must free up code from
inappropriate sequencing

 Every application task is implemented
by a number of platform threads

Profile of a task

0%

20%

40%

60%

80%

100%

120%

140%

160%

1 core 2 cores 3 cores 10 cores

Utilisation

Utilisation

Composability

 We then need to be able to schedule a
set of tasks by composing their profiles

 Are the profiles composable?

 Perhaps if the hardware is more
random

Randomising the hardware

 Predictability as an emergent property

 At the time scale relevant to the
application

 Gases are predictable, molecules aren’t

 Tasks can be predictable even if
instructions aren’t (in time)

Contrived example

 Basic hardware instruction is iid with cost

 1 90% of the time

 10 10% of the time

 A program consists of 100,000 instructions

 Worst-case: 1,000,000

 Average: 190,000

 WCET, P(A>E)<10^-9?

Contrived example

 Basic hardware instruction is iid with cost

 1 90% of the time

 10 10% of the time

 A program consists of 100,000 instructions

 Worst-case: 1,000,000

 Average: 190,000

 WCET, P(A>E)<10^-9: 195,122

Summary

 We know how to schedule single
processors

 We know many results for multiprocessors

 We know things that we will never know

 We know massively parallel hardware in on
the way

 But still so many unknown unknowns

Sources

 A Survey of Hard Real-Time Scheduling for
Multiprocessor Systems, Davis and Burns, ACM
Computer Surveys, 2011.

 Partitioned EDF scheduling for Multiprocessors using
a C=D task splitting scheme, Burns, Davis, Wang and
Zhang, Real-Time Systems Journal, 2011.

 Predictability as an Emergent Behaviour, Burns and
Griffin 4th Workshop on Compositional Theory and
Technology for Real-Time Embedded Systems (CRTS)

