
User-Defined Clocks in RTSJ

Andy Wellings and Martin Schoelberl

With a little help from our friends in
JSR 282 particularly Kelvin Nilsen

2 - 27

Introduction

 RTSJ provides a framework for multiple
clocks but only requires a monotonic real-
time clock

 An implementation could add new clocks
using this framework, but the framework is
incomplete if the users wants to add their
own clocks

 RTSJ V1.1 provided limited added support

3 - 27

Structure

 Requirements
 The RTSJ Version 1.1 model
 Extending the model
 Implementing the model on JOP
 Conclusions

4 - 27

Requirements: the role of time

 Interfacing with time
 Measuring the passage of time
 Delaying threads until some future time
 Programming timeouts

 Representing timing requirements
 Rates of executions and deadlines

 Satisfying timing requirements
 Schedulability analysis

5 - 27

Requirements: types of time

 Calendar time
 Simulation time
 Monotonic time
 Execution time
 Atomic time

6 - 27

Time Base

 A time base provides the underlying basis for a
particular time type

 For ever time base there is an associated clock
 The value read from the clock is a transformation of its

time base
 E.g, atomic time is measured by a clock which counts

the vibration of cesium atoms in response to being
exposed to microwaves; counting the corresponding
cycles is a measure of time.
 A single oscillation can be considered as a tick of the

clock

7 - 27

Active and Passive Clocks

 Active clocks can support timers
 Underlying time base can be as simple as a

hardware timer chip

 Passive clock only allow the current time to
be read
 Underling time base could be a CPU cycle

counter or GPS signal

8 - 27

Relation with `real time’

 Is there a relationship between the user-
defined clock’s epoch and calendar time?

 Is milliseconds/nanoseconds the most
appropriate measure for duration?
 Consider a crankshaft: full/partial rotation is a

tick
 Length of tick depends on rotation speed
 Clock is monotonic but not uniform

9 - 27

RTSJ Version 1.1 Model

 Each user-defined active clock should only
be responsible for indicating one timing
event

 The RTSJ infrastructure should be
responsible for maintaining any delay
queues

10 - 27

RTSJ V 1.1 API

11 - 27

User Case: One shot timer

12 - 27

Limitations

 Active user-defined clocks can only be used
with the Timer classes

 Reasons
 To avoid the complexity of linking with OS

provided time services (e.g. Timed wait on
mutexes)

 To limit the scope of changes to the RTSJ spec

 Our goal: to explore a more general model

13 - 27

Time Bases and Physical Attributes

1. Release a schedulable object from a timer
associated with the time base

2. Associate the deadline of some computation with
a number of times the physical attribute of the
system changes

3. Use the change in the physical attribute as a
"timeout" on waiting for another event to occur:
e.g. entering into a scope memory area
joinAndEnter, a timed Object.wait

14 - 27

Time Bases and Physical Attributes

4. Use it for a minimum inter-arrival “time”; that is,
the minimal inter-arrival time of another event
should be related to the change in the physical
attribute

5. Delay a computation until a certain number of
changes have occurred

6. Use “time values” to obtain partial ordering
between other events

15 - 27

Motivating Example

 A time base that is provided by the rotation of a crankshaft
 The full/partial rotation represents the tick of the

associated clock
 A tick depends on the speed of rotation

 absolute time values will not have a direct correlation with
wall clock time and milliseconds and nanoseconds is not a
relevant measure of relative time

 A tick represents a fraction of the rotation
 Such a clock would be monotonic but not have

uniform progress

16 - 27

Alternative Approach

 Treat the “clock” as a device
 Associating asynchronous events with the

changes detected by the devices
 Use an event-based programming model

rather than a time-based programming
model

 Problem: integrating 2, 3, 5 might be
difficult

17 - 27

API Refactoring I

18 - 27

API Refactoring II

19 - 27

The Crankshaft Clock

public class CrankshaftClock extends Clock {

 public CrankshaftClock() { }

 public void tick () {
 now++; if(now == nextTime) { cback.atTime(this); }
 }

 @Override
 public AbsoluteAbstractTime getTime () {...}

 @Override
 public RelativeAbstractTime getResolution() {...}

 @Override
 protected boolean drivesEvents() { return true; }

20 - 27

The Crankshaft Clock
 @Override
 protected void registerCallBack (AbsoluteAbstractTime time,
 ClockCallBack clockEvent) {
 cback = clockEvent; nextTime = time.getTicks();
 }

 @Override
 protected boolean resetTargetTime(AbsoluteAbstractTime time) {
 if (now > time.getTicks()) {
 nextTime = time.getTicks(); return true;
 } else return false;
 }
 ...

 private long now = 0; private long nextTime = 0;
 private ClockCallBack cback;
}

21 - 27

Crankshaft Interrupt
public class CrankshaftInterruptHandler
 extends InterruptServiceRoutine {

 private CrankshaftClock clock;

 public CrankshaftInterruptHandler(String name,
 CrankshaftClock clock) {
 this.clock = clock;
 }

 @Override
 protected synchronized void handle() {
 clock.tick();
 }
}

22 - 27

JOP Implementation

 Experiment 1
 Use CPU cycle counter as a passive clock

assuming RTSJ Version 1.1 Model

 Experiment 2:
 Experiment 1 with the extended model

 Experiment 3
 Use a simulation of a crankshaft (which

generates interrupts) as an active clock
 Run a periodic thread

23 - 27

Experiement 1

 Implementation trivial
 However:

1. The counter is 32 bits and overflows after
around 43 seconds; this is not catered for in
current API but subclass could add a
getMaxValue method

2. Conversion between tick number and RTSJ
format needs to operate on longs and requires
one division and one remainder operation

24 - 27

Experiment 2

 Introduce two new time types:
AbsoluteUserTick and RelativeUserTick

 Now no need for conversions

 Perhaps: base Clock class needs a
getMaxValue method?

25 - 27

Experiment 3: Active Clock

 The scheduler must be aware of additional
release events

 Current scheduler is highly optimized to avoid
unnecessary timer interrupts
 The ready queue is implicitly encoded in a

priority-ordered list of threads

26 - 27

Experiment 3

 The algorithm needed to be changed as it is
not possible to find the single higher priority
thread that will be release next

27 - 27

Conclusions

 The RTSJ version 1.1. add extra capabilities but does not
go as far as it could

 User-defined active clocks can only be used with Timers
 We have investigated a more general model
 In the implementation on JOP, these changes are relative

moderate
 Supporting scheduling based on user-defined clocks is

possible when thread scheduling is implemented by the
JVM, but might be almost impossible when the JVM
delegates scheduling to the underlying real-time operating
system

	User-Defined Clocks in RTSJ
	Introduction
	Structure
	Requirements: the role of time
	Requirements: types of time
	Time Base
	Active and Passive Clocks
	Relation with `real time’
	RTSJ Version 1.1 Model
	RTSJ V 1.1 API
	User Case: One shot timer
	Limitations
	Time Bases and Physical Attributes
	Time Bases and Physical Attributes
	Motivating Example
	Alternative Approach
	API Refactoring I
	API Refactoring II
	The Crankshaft Clock
	The Crankshaft Clock
	Crankshaft Interrupt
	JOP Implementation
	Experiement 1
	Experiment 2
	Experiment 3: Active Clock
	Experiment 3
	Conclusions

