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w Introduction

= RTSJ provides a framework for multiple
clocks but only requires a monotonic real-
time clock

= An implementation could add new clocks
using this framework, but the framework Is
Incomplete if the users wants to add their
own clocks

= RTSJ V1.1 provided limited added support
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‘u Structure

= Requirements
= The RTSJ Version 1.1 model
= Extending the model

= Implementing the model on JOP
= Conclusions



w Requirements: the role of time

= Interfacing with t/ime
~ Measuring the passage of time
~ Delaying threads until some future time
~ Programming timeouts

= Representing timing requirements
~ Rates of executions and deadlines

= Satisfying timing requirements
~ Schedulability analysis
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‘u Requirements: types of time

= Calendar time
= Simulation time
= Monotonic time
= Execution time
= Atomic time
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“ Time Base

= A time base provides the underlying basis for a
particular time type

s For ever time base there Is an associated clock

> The value read from the clock is a transformation of its
time base

= E.g, atomic time is measured by a clock which counts
the vibration of cesium atoms in response to being
exposed to microwaves; counting the corresponding
cycles is a measure of time.

~ A single oscillation can be considered as a tick of the
clock
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w Active and Passive Clocks

= Active clocks can support timers

~ Underlying time base can be as simple as a
hardware timer chip

= Passive clock only allow the current time to
be read

~ Underling time base could be a CPU cycle
counter or GPS signal
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“ Relation with real time’

= IS there a relationship between the user-
defined clock’s epoch and calendar time?

s Is milliseconds/nanoseconds the most
appropriate measure for duration?

~ Consider a crankshaft: full/partial rotation is a
tick

~ Length of tick depends on rotation speed

» Clock is monotonic but not uniform



w RTSJ Version 1.1 Model

= Each user-defined active clock should only
be responsible for indicating one timing
event

= The RTSJ infrastructure should be
responsible for maintaining any delay
gueues
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‘u RTSJ V 1.1 API

«interface»
javax.realtime::ClockCallBack

atTime(clock:Clock)
discontinuity(clock:Clock, updatedTime:AbsoluteTime)

javax.realtime::Clock

+drivesEvents():boolean
+reqgisterCallBack(time:Absolute Time, event:ClockCallBack)
+resetTargetTime(time:Absolute Time):boolean
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‘u User Case: One shot timer

user-define clccy
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“ Limitations

= Active user-defined clocks can only be used
with the Timer classes

= Reasons

~ To avoid the complexity of linking with OS

provided time services (e.g. Timed wait on
mutexes)

~ To limit the scope of changes to the RTSJ spec
= Our goal: to explore a more general model
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w Time Bases and Physical Attributes

1. Release a schedulable object from a timer
associated with the time base

2. Associate the deadline of some computation with
a number of times the physical attribute of the
system changes

3. Use the change in the physical attribute as a
"timeout" on waiting for another event to occur:
e.g. entering into a scope memory area
joinAndEnter, a timed Object.wait
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w Time Bases and Physical Attributes

4. Use It for a minimum inter-arrival “time”; that Is,
the minimal inter-arrival time of another event
should be related to the change In the physical
attribute

5. Delay a computation until a certain number of
changes have occurred

6. Use “time values” to obtain partial ordering
between other events

(R2RTS )
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“ Motivating Example

A time base that Is provided by the rotation of a crankshaft
The full/partial rotation represents the tick of the

assoclated clock

A tick depends on the speed of rotation

> absolute time values will not have a direct correlation with
wall clock time and milliseconds and nanoseconds is not a

relevant measure of relative time
A tick represents a fraction of the rotation

Such a clock would be monotonic but not have

uniform progress
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‘u Alternative Approach

s [reat the “clock” as a device

= Associating asynchronous events with the
changes detected by the devices

= Use an event-based programming model

rather than a time-based programming
model

= Problem: integrating 2, 3, 5 might be
difficult
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1| APl Refactoring |

ainterfaces
javax.realtime: Abstract Time

+equals(time : AbstractTime) : boolean
+compare To(time : AbstractTime)} :© int

+getClock()
+getTicks() : long
+setTicks(value : long)

+Absolute Time(millis:long nanos:int, clock : Clock)

+AbsoluteCrankshaft Time(rotations : long;
degrees :int, clock : Clock)
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‘u AP| Refactoring I

javax.realtime.: Clock ginterface s
roietRealtimeClock():Clock javax.realttime:: ClockCallBack
+get Time(): AbsoluteAbstract Time atTime(clock:Clock)
+get TimefdestAbsolute Abstract Time :Absolute Abstract Time discontinuity(clock: Clock, updated Time: AbsoluteAbstractTime)

+getResolution(): Relative Abstract Time

+getResolution{dest:RelativeAbstract Time): Relative AbstractTime
+drivesEvents():Boolean < |
+getEpochOffset():RelativeAbstractTime

+registerCallBack(time:Absolute AbstractTime, event:ClockCallBack) Ehisinlee
+reset Target Time (ime:AbsoluteAbstract Time): boolean +getTime( ) AbsoluteRotationalT ime
+getTime(dest:Absolute Rotational Time j:Absolute Rotational Time
wconstructorss +getResolution(): Relative AbstractTime
+Clock() +getResolution(destRelative Abstract Time): Relative AbstractTime

+drivesEvents|):boolean

gconstructorss
+CrankShaftClock()
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‘u The Crankshaft Clock

public class CrankshaftClock extends Clock {
public CrankshaftClock() { }

public void tick () {
now++; if(now == nextTime) { cback.atTime(this); }

}

@Override
public AbsoluteAbstractTime getTime () {...}

@Override
public RelativeAbstractTime getResolution() {...}

@Override
protected boolean drivesevents() { return true; }
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‘u The Crankshaft Clock

@Override
protected void registerCallBack (AbsoluteAbstractTime time,
ClockCallBack clockEvent) {

cback = clockEvent; nextTime = time.getTicks();
}

@Override
protected boolean resetTargetTime(AbsoluteAbstractTime time) {
If (now > time.getTicks()) {
nextTime = time.getTicks(); return true;
} else return false;

}

private long now = O; private long nextTime = 0;
private ClockCallBack cback;

¥
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w Crankshaft Interrupt

public class CrankshaftinterruptHandler
extends InterruptServiceRoutine {

private CrankshaftClock clock;

public CrankshaftInterruptHandler(String name,

CrankshaftClock clock) {
this.clock = clock;

}

@Override

protected synchronized void handle() {
clock.tick();
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“ JOP Implementation

= Experiment 1

~ Use CPU cycle counter as a passive clock
assuming RTSJ Version 1.1 Model

= Experiment 2:
~ Experiment 1 with the extended model

= Experiment 3

> Use a simulation of a crankshaft (which
generates interrupts) as an active clock

> Run a periodic thread
RT S /ok
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“ Experiement 1

= Implementation trivial

s However:

.. The counter i1s 32 bits and overflows after
around 43 seconds; this is not catered for In
current APl but subclass could add a
getMaxValue method

>. Conversion between tick number and RTSJ
format needs to operate on longs and requires
one division and one remainder operation

_ : RTS /s«
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‘u Experiment 2

= Introduce two new time types:
AbsoluteUserTick and RelativeUserTick

= Now no need for conversions

= Perhaps: base Clock class needs a
getMaxValue method?



w Experiment 3: Active Clock

s | he scheduler must be aware of additional
release events

= Current scheduler is highly optimized to avoid
unnecessary timer interrupts

~ The ready queue is implicitly encoded in a
priority-ordered list of threads

L RTS
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w Experiment 3

= The algorithm needed to be changed as it is
not possible to find the single higher priority
thread that will be release next

@RSy



H Conclusions

The RTSJ version 1.1. add extra capabilities but does not
go as far as it could

= User-defined active clocks can only be used with Timers
= We have investigated a more general model

= In the implementation on JOP, these changes are relative
moderate

= Supporting scheduling based on user-defined clocks is
possible when thread scheduling is implemented by the
JVM, but might be almost impossible when the JVM
delegates scheduling to the underlying real-time operating
system
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