@RTS/M

!'_ User-Defined Clocks in RTSJ

Andy Wellings and Martin Schoelberl

With a little help from our friends in
JSR 282 particularly Kelvin Nilsen

w Introduction

= RTSJ provides a framework for multiple
clocks but only requires a monotonic real-
time clock

= An implementation could add new clocks
using this framework, but the framework Is
Incomplete if the users wants to add their
own clocks

= RTSJ V1.1 provided limited added support

2-27

‘u Structure

= Requirements
= The RTSJ Version 1.1 model
= Extending the model

= Implementing the model on JOP
= Conclusions

w Requirements: the role of time

= Interfacing with t/ime
~ Measuring the passage of time
~ Delaying threads until some future time
~ Programming timeouts

= Representing timing requirements
~ Rates of executions and deadlines

= Satisfying timing requirements
~ Schedulability analysis

oo (E&RTS/0x

‘u Requirements: types of time

= Calendar time
= Simulation time
= Monotonic time
= Execution time
= Atomic time

AN
[
5.2 %w@;@RTS > ork

“ Time Base

= A time base provides the underlying basis for a
particular time type

s For ever time base there Is an associated clock

> The value read from the clock is a transformation of its
time base

= E.g, atomic time is measured by a clock which counts
the vibration of cesium atoms in response to being
exposed to microwaves; counting the corresponding
cycles is a measure of time.

~ A single oscillation can be considered as a tick of the
clock

6-27

_ : RTS /s«

w Active and Passive Clocks

= Active clocks can support timers

~ Underlying time base can be as simple as a
hardware timer chip

= Passive clock only allow the current time to
be read

~ Underling time base could be a CPU cycle
counter or GPS signal

L RTS

“ Relation with real time’

= IS there a relationship between the user-
defined clock’s epoch and calendar time?

s Is milliseconds/nanoseconds the most
appropriate measure for duration?

~ Consider a crankshaft: full/partial rotation is a
tick

~ Length of tick depends on rotation speed

» Clock is monotonic but not uniform

w RTSJ Version 1.1 Model

= Each user-defined active clock should only
be responsible for indicating one timing
event

= The RTSJ infrastructure should be
responsible for maintaining any delay
gueues

L RTS

‘u RTSJ V 1.1 API

«interface»
javax.realtime::ClockCallBack

atTime(clock:Clock)
discontinuity(clock:Clock, updatedTime:AbsoluteTime)

javax.realtime::Clock

+drivesEvents():boolean
+reqgisterCallBack(time:Absolute Time, event:ClockCallBack)
+resetTargetTime(time:Absolute Time):boolean

(T
T LRTS/m«

S/

10 - 27

‘u User Case: One shot timer

user-define clccy

10.

e
P

I
I
I
I
L'_‘ handleﬁ.syncElent
I

ClockCallBaclk ‘Scheduler OnesShotTimer ASEH JApplication :Clock AbsoluteTime
I I I I I I I
| | | [1 | |
| | | | 1. new |
i I I | userDefinedCloc |

—
i : I | 2. new(..., userefinedClock) |
I I
I I .
I I timevialue
| : : 3. new = |
: | | handler I :
| [
I e 4. new(fimeValue, I I
5. nkw . handler) | |
callBhck - | T : :
T -
| I 6. registt%r[:alIBack[time‘-JaIL:Je: callBack) | i
| T ' = |
I I I
| : | | | | |
! “ ! 7. callBack.atTime(This) | when dock at |
8. fire > | I | time\Value |
I
' . release| | ' :
' |
' |
I
I
I

%N'\’

“ Limitations

= Active user-defined clocks can only be used
with the Timer classes

= Reasons

~ To avoid the complexity of linking with OS

provided time services (e.g. Timed wait on
mutexes)

~ To limit the scope of changes to the RTSJ spec
= Our goal: to explore a more general model

12 - 27 | : ﬁ?gﬁ Jork

w Time Bases and Physical Attributes

1. Release a schedulable object from a timer
associated with the time base

2. Associate the deadline of some computation with
a number of times the physical attribute of the
system changes

3. Use the change in the physical attribute as a
"timeout" on waiting for another event to occur:
e.g. entering into a scope memory area
joinAndEnter, a timed Object.wait

ﬁ"ﬁ'g i

13- 27

w Time Bases and Physical Attributes

4. Use It for a minimum inter-arrival “time”; that Is,
the minimal inter-arrival time of another event
should be related to the change In the physical
attribute

5. Delay a computation until a certain number of
changes have occurred

6. Use “time values” to obtain partial ordering
between other events

(R2RTS)

14 - 27

“ Motivating Example

A time base that Is provided by the rotation of a crankshaft
The full/partial rotation represents the tick of the

assoclated clock

A tick depends on the speed of rotation

> absolute time values will not have a direct correlation with
wall clock time and milliseconds and nanoseconds is not a

relevant measure of relative time
A tick represents a fraction of the rotation

Such a clock would be monotonic but not have

uniform progress

15 - 27

_ RTS /s«

‘u Alternative Approach

s [reat the “clock” as a device

= Associating asynchronous events with the
changes detected by the devices

= Use an event-based programming model

rather than a time-based programming
model

= Problem: integrating 2, 3, 5 might be
difficult

16 - 27 & RTSs5x

1| APl Refactoring |

ainterfaces
javax.realtime: Abstract Time

+equals(time : AbstractTime) : boolean
+compare To(time : AbstractTime)} :© int

+getClock()
+getTicks() : long
+setTicks(value : long)

+Absolute Time(millis:long nanos:int, clock : Clock)

+AbsoluteCrankshaft Time(rotations : long;
degrees :int, clock : Clock)

Ja Fa
[~ === -
javax.reattime:: HighResolution Time Rotational Time zinterface s ainterface s
i realtime:: javax.realtime::
+getClock() +getClack() javax.realtime:: J ,
+getMilliseconds(): long {frozen} +getRotations(): long {frozen} RelativeAbstractTime AbsoluteAbstract Time
+getManoseconds(): int {frozen} +getDegrees(): int {frozen})
+set(time: HighResolutionTime) +set(time: RotationalTime)
+set{millislong) +set{rotations:long)
+set(millislong, nanos: int) +set{rotations:long, degrees: int) N Ji
+equals(time:HighResolutionTime) : baclean +equals(time: RotationalTime) : boolean : :
+compare To(time: HighResolutionTime) © int +compareTo(time: RaotationalTime) : int | |
I I
+waitForObjectitarget | Object, time:HighResolutionTime) +waitForObjectitarget | Object. time: RotationalTime) I I
I I
& Fa I I
I I
r—-—————"————— |- ———— === — === —— — === -
javax.realtime: AbsoluteTime AbsoluteRotational Time :
I
I
I
I
I

javax.realtime:: Relative Time

FelativeRotationalTime

‘u AP| Refactoring I

javax.realtime.: Clock ginterface s
roietRealtimeClock():Clock javax.realttime:: ClockCallBack
+get Time(): AbsoluteAbstract Time atTime(clock:Clock)
+get TimefdestAbsolute Abstract Time :Absolute Abstract Time discontinuity(clock: Clock, updated Time: AbsoluteAbstractTime)

+getResolution(): Relative Abstract Time

+getResolution{dest:RelativeAbstract Time): Relative AbstractTime
+drivesEvents():Boolean < |
+getEpochOffset():RelativeAbstractTime

+registerCallBack(time:Absolute AbstractTime, event:ClockCallBack) Ehisinlee
+reset Target Time (ime:AbsoluteAbstract Time): boolean +getTime() AbsoluteRotationalT ime
+getTime(dest:Absolute Rotational Time j:Absolute Rotational Time
wconstructorss +getResolution(): Relative AbstractTime
+Clock() +getResolution(destRelative Abstract Time): Relative AbstractTime

+drivesEvents|):boolean

gconstructorss
+CrankShaftClock()

@ RTS /s«

18 - 27

‘u The Crankshaft Clock

public class CrankshaftClock extends Clock {
public CrankshaftClock() { }

public void tick () {
now++; if(now == nextTime) { cback.atTime(this); }

}

@Override
public AbsoluteAbstractTime getTime () {...}

@Override
public RelativeAbstractTime getResolution() {...}

@Override
protected boolean drivesevents() { return true; }

e

[
19 - 27 4 C-_{;%;sRTS %2/\/
S

‘u The Crankshaft Clock

@Override
protected void registerCallBack (AbsoluteAbstractTime time,
ClockCallBack clockEvent) {

cback = clockEvent; nextTime = time.getTicks();
}

@Override
protected boolean resetTargetTime(AbsoluteAbstractTime time) {
If (now > time.getTicks()) {
nextTime = time.getTicks(); return true;
} else return false;

}

private long now = O; private long nextTime = 0;
private ClockCallBack cback;

¥

20 - 27

w Crankshaft Interrupt

public class CrankshaftinterruptHandler
extends InterruptServiceRoutine {

private CrankshaftClock clock;

public CrankshaftInterruptHandler(String name,

CrankshaftClock clock) {
this.clock = clock;

}

@Override

protected synchronized void handle() {
clock.tick();

¥
¥

o (ZRTss.

“ JOP Implementation

= Experiment 1

~ Use CPU cycle counter as a passive clock
assuming RTSJ Version 1.1 Model

= Experiment 2:
~ Experiment 1 with the extended model

= Experiment 3

> Use a simulation of a crankshaft (which
generates interrupts) as an active clock

> Run a periodic thread
RT S /ok

22 - 27

“ Experiement 1

= Implementation trivial

s However:

.. The counter i1s 32 bits and overflows after
around 43 seconds; this is not catered for In
current APl but subclass could add a
getMaxValue method

>. Conversion between tick number and RTSJ
format needs to operate on longs and requires
one division and one remainder operation

_ : RTS /s«

23 - 27

‘u Experiment 2

= Introduce two new time types:
AbsoluteUserTick and RelativeUserTick

= Now no need for conversions

= Perhaps: base Clock class needs a
getMaxValue method?

w Experiment 3: Active Clock

s | he scheduler must be aware of additional
release events

= Current scheduler is highly optimized to avoid
unnecessary timer interrupts

~ The ready queue is implicitly encoded in a
priority-ordered list of threads

L RTS

25 - 27

w Experiment 3

= The algorithm needed to be changed as it is
not possible to find the single higher priority
thread that will be release next

@RSy

H Conclusions

The RTSJ version 1.1. add extra capabilities but does not
go as far as it could

= User-defined active clocks can only be used with Timers
= We have investigated a more general model

= In the implementation on JOP, these changes are relative
moderate

= Supporting scheduling based on user-defined clocks is
possible when thread scheduling is implemented by the
JVM, but might be almost impossible when the JVM
delegates scheduling to the underlying real-time operating
system

27 - 27

	User-Defined Clocks in RTSJ
	Introduction
	Structure
	Requirements: the role of time
	Requirements: types of time
	Time Base
	Active and Passive Clocks
	Relation with `real time’
	RTSJ Version 1.1 Model
	RTSJ V 1.1 API
	User Case: One shot timer
	Limitations
	Time Bases and Physical Attributes
	Time Bases and Physical Attributes
	Motivating Example
	Alternative Approach
	API Refactoring I
	API Refactoring II
	The Crankshaft Clock
	The Crankshaft Clock
	Crankshaft Interrupt
	JOP Implementation
	Experiement 1
	Experiment 2
	Experiment 3: Active Clock
	Experiment 3
	Conclusions

