
User-Defined Clocks in RTSJ

Andy Wellings and Martin Schoelberl

With a little help from our friends in
JSR 282 particularly Kelvin Nilsen

2 - 27

Introduction

 RTSJ provides a framework for multiple
clocks but only requires a monotonic real-
time clock

 An implementation could add new clocks
using this framework, but the framework is
incomplete if the users wants to add their
own clocks

 RTSJ V1.1 provided limited added support

3 - 27

Structure

 Requirements
 The RTSJ Version 1.1 model
 Extending the model
 Implementing the model on JOP
 Conclusions

4 - 27

Requirements: the role of time

 Interfacing with time
 Measuring the passage of time
 Delaying threads until some future time
 Programming timeouts

 Representing timing requirements
 Rates of executions and deadlines

 Satisfying timing requirements
 Schedulability analysis

5 - 27

Requirements: types of time

 Calendar time
 Simulation time
 Monotonic time
 Execution time
 Atomic time

6 - 27

Time Base

 A time base provides the underlying basis for a
particular time type

 For ever time base there is an associated clock
 The value read from the clock is a transformation of its

time base
 E.g, atomic time is measured by a clock which counts

the vibration of cesium atoms in response to being
exposed to microwaves; counting the corresponding
cycles is a measure of time.
 A single oscillation can be considered as a tick of the

clock

7 - 27

Active and Passive Clocks

 Active clocks can support timers
 Underlying time base can be as simple as a

hardware timer chip

 Passive clock only allow the current time to
be read
 Underling time base could be a CPU cycle

counter or GPS signal

8 - 27

Relation with `real time’

 Is there a relationship between the user-
defined clock’s epoch and calendar time?

 Is milliseconds/nanoseconds the most
appropriate measure for duration?
 Consider a crankshaft: full/partial rotation is a

tick
 Length of tick depends on rotation speed
 Clock is monotonic but not uniform

9 - 27

RTSJ Version 1.1 Model

 Each user-defined active clock should only
be responsible for indicating one timing
event

 The RTSJ infrastructure should be
responsible for maintaining any delay
queues

10 - 27

RTSJ V 1.1 API

11 - 27

User Case: One shot timer

12 - 27

Limitations

 Active user-defined clocks can only be used
with the Timer classes

 Reasons
 To avoid the complexity of linking with OS

provided time services (e.g. Timed wait on
mutexes)

 To limit the scope of changes to the RTSJ spec

 Our goal: to explore a more general model

13 - 27

Time Bases and Physical Attributes

1. Release a schedulable object from a timer
associated with the time base

2. Associate the deadline of some computation with
a number of times the physical attribute of the
system changes

3. Use the change in the physical attribute as a
"timeout" on waiting for another event to occur:
e.g. entering into a scope memory area
joinAndEnter, a timed Object.wait

14 - 27

Time Bases and Physical Attributes

4. Use it for a minimum inter-arrival “time”; that is,
the minimal inter-arrival time of another event
should be related to the change in the physical
attribute

5. Delay a computation until a certain number of
changes have occurred

6. Use “time values” to obtain partial ordering
between other events

15 - 27

Motivating Example

 A time base that is provided by the rotation of a crankshaft
 The full/partial rotation represents the tick of the

associated clock
 A tick depends on the speed of rotation

 absolute time values will not have a direct correlation with
wall clock time and milliseconds and nanoseconds is not a
relevant measure of relative time

 A tick represents a fraction of the rotation
 Such a clock would be monotonic but not have

uniform progress

16 - 27

Alternative Approach

 Treat the “clock” as a device
 Associating asynchronous events with the

changes detected by the devices
 Use an event-based programming model

rather than a time-based programming
model

  Problem: integrating 2, 3, 5 might be
difficult

17 - 27

API Refactoring I

18 - 27

API Refactoring II

19 - 27

The Crankshaft Clock

public class CrankshaftClock extends Clock {

 public CrankshaftClock() { }

 public void tick () {
 now++; if(now == nextTime) { cback.atTime(this); }
 }

 @Override
 public AbsoluteAbstractTime getTime () {...}

 @Override
 public RelativeAbstractTime getResolution() {...}

 @Override
 protected boolean drivesEvents() { return true; }

20 - 27

The Crankshaft Clock
 @Override
 protected void registerCallBack (AbsoluteAbstractTime time,
 ClockCallBack clockEvent) {
 cback = clockEvent; nextTime = time.getTicks();
 }

 @Override
 protected boolean resetTargetTime(AbsoluteAbstractTime time) {
 if (now > time.getTicks()) {
 nextTime = time.getTicks(); return true;
 } else return false;
 }
 ...

 private long now = 0; private long nextTime = 0;
 private ClockCallBack cback;
}

21 - 27

Crankshaft Interrupt
public class CrankshaftInterruptHandler
 extends InterruptServiceRoutine {

 private CrankshaftClock clock;

 public CrankshaftInterruptHandler(String name,
 CrankshaftClock clock) {
 this.clock = clock;
 }

 @Override
 protected synchronized void handle() {
 clock.tick();
 }
}

22 - 27

JOP Implementation

 Experiment 1
 Use CPU cycle counter as a passive clock

assuming RTSJ Version 1.1 Model

 Experiment 2:
 Experiment 1 with the extended model

 Experiment 3
 Use a simulation of a crankshaft (which

generates interrupts) as an active clock
 Run a periodic thread

23 - 27

Experiement 1

 Implementation trivial
 However:

1. The counter is 32 bits and overflows after
around 43 seconds; this is not catered for in
current API but subclass could add a
getMaxValue method

2. Conversion between tick number and RTSJ
format needs to operate on longs and requires
one division and one remainder operation

24 - 27

Experiment 2

 Introduce two new time types:
AbsoluteUserTick and RelativeUserTick

 Now no need for conversions

 Perhaps: base Clock class needs a
getMaxValue method?

25 - 27

Experiment 3: Active Clock

 The scheduler must be aware of additional
release events

 Current scheduler is highly optimized to avoid
unnecessary timer interrupts
 The ready queue is implicitly encoded in a

priority-ordered list of threads

26 - 27

Experiment 3

 The algorithm needed to be changed as it is
not possible to find the single higher priority
thread that will be release next

27 - 27

Conclusions

 The RTSJ version 1.1. add extra capabilities but does not
go as far as it could

 User-defined active clocks can only be used with Timers
 We have investigated a more general model
 In the implementation on JOP, these changes are relative

moderate
 Supporting scheduling based on user-defined clocks is

possible when thread scheduling is implemented by the
JVM, but might be almost impossible when the JVM
delegates scheduling to the underlying real-time operating
system

	User-Defined Clocks in RTSJ
	Introduction
	Structure
	Requirements: the role of time
	Requirements: types of time
	Time Base
	Active and Passive Clocks
	Relation with `real time’
	RTSJ Version 1.1 Model
	RTSJ V 1.1 API
	User Case: One shot timer
	Limitations
	Time Bases and Physical Attributes
	Time Bases and Physical Attributes
	Motivating Example
	Alternative Approach
	API Refactoring I
	API Refactoring II
	The Crankshaft Clock
	The Crankshaft Clock
	Crankshaft Interrupt
	JOP Implementation
	Experiement 1
	Experiment 2
	Experiment 3: Active Clock
	Experiment 3
	Conclusions

