Exploiting Static Application Knowledge in a Java
Compiler for Embedded Systems
A Case Study

Christoph Erhardt, Michael Stilkerich, Daniel Lohmann,
Wolfgang Schroder-Preikschat

= FRIEDRICH-ALEXANDER-
UNIVERSITAT _
ERLANGEN-NURNBERG

http://www4.cs.fau.de/~erhardt/

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) 1-16

http://www4.cs.fau.de/~erhardt/

Motivation

Automotive industry

= High robustness requirements

m But: mass production, immense cost pressure

= {Computational, memory} efficiency is key!

Challenge for the deployment of Java applications

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Introduction 2-16

Motivation

Automotive industry

= High robustness requirements

m But: mass production, immense cost pressure

= {Computational, memory} efficiency is key!

Challenge for the deployment of Java applications

System model of the OSEK/AUTOSAR 0OS

= OS tailoring: only enable features needed by the application

m Completely static configuration of the application world:
= Fixed number of tasks
= No dynamic code loading
s Fixed-priority scheduling

Let’s build a Java VM for this system model!

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Introduction

2-16

The KESO Multi-JVM System architecture

m Java-to-C ahead-of-time compiler
m VM tailoring, static configuration

Domain A Portal Senice | Domain B

Control Flows
Heap 5| Shared
5 29O ey
TaskAl TaskA2 [ISR1
Static Fields -
_ Domain Zero (TCB)

System Objects
TaskAl ” TaskA2 ” Alarml " Resource | D

y

GC Task
Peripheral Device OSEK API
Access (KNI)
(KNI) Y

OSEK /AUTOSAR OS

Microcontroller

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Introduction 3-16

The KESO Multi-JVM System architecture

m Java-to-C ahead-of-time compiler
m VM tailoring, static configuration

Domain A Portal senice | Domain B

Control Flows
Heap 5| Shared
5 090 Memory
TaskAl TaskA2 [ISR1
Static Fields -
_ Domain Zero (TCB)

System Objects
TaskAl ” TaskA2 ” Alarml " Resource | D

y

GC Task
Peripheral Device OSEK API
Access (KNI)
(KNI) Y

OSEK /AUTOSAR OS

Microcontroller

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Introduction 3-16

The KESO Multi-JVM System architecture

m Java-to-C ahead-of-time compiler
m VM tailoring, static configuration

Domain A Portal Senice | Domain B

Control Flows
Heap 5| Shared
5 29O ey
TaskAl TaskA2 [ISR1
Static Fields -
_ Domain Zero (TCB)

System Objects
TaskAl ” TaskA2 ” Alarml " Resource | D

y

GC Task
Peripheral Device OSEK API
Access (KNI)
(KNI) Y

OSEK /AUTOSAR OS

Microcontroller

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Introduction 3-16

The KESO Multi-JVM System architecture

m Java-to-C ahead-of-time compiler
m VM tailoring, static configuration

Domain A Portal Senice | Domain B

Control Flows
Heap 5| Shared
5 29O ey
TaskAl TaskA2 [ISR1
Static Fields -
_ Domain Zero (TCB)

System Objects
TaskAl ” TaskA2 ” Alarml " Resource | D

y

GC Task
Peripheral Device OSEK API
Access (KNI)
(KNI) Y

OSEK /AUTOSAR OS

Microcontroller

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Introduction 3-16

The KESO Multi-JVM System architecture

m Java-to-C ahead-of-time compiler
m VM tailoring, static configuration

Domain A Portal Senice | Domain B

Control Flows
Heap 5| Shared
5 29O ey
TaskAl TaskA2 [ISR1
Static Fields -
_ Domain Zero (TCB)

System Objects
TaskAl ” TaskA2 ” Alarml " Resource | D

y

GC Task
Peripheral Device OSEK API
Access (KNI)
(KNI) Y

OSEK /AUTOSAR OS

Microcontroller

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Introduction 3-16

Static knowledge The basis for tailoring and optimizations in KESO

KESO relies upon the availability of extensive application knowledge
at compile-time.

Sources of knowledge

1. System model

= Abandon the aspects of the Java programming model that don't fit
the OSEK/AUTOSAR system model!
= “Everything is static”

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Introduction 4-16

Static knowledge The basis for tailoring and optimizations in KESO

KESO relies upon the availability of extensive application knowledge
at compile-time.

Sources of knowledge

1. System model
= Abandon the aspects of the Java programming model that don't fit
the OSEK/AUTOSAR system model!
= “Everything is static”
2. Static application system configuration
= Isolation domains
= Entry points
= System objects

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Introduction 4-16

Static knowledge The basis for tailoring and optimizations in KESO

KESO relies upon the availability of extensive application knowledge
at compile-time.

Sources of knowledge

1. System model

= Abandon the aspects of the Java programming model that don't fit
the OSEK/AUTOSAR system model!
= “Everything is static”
2. Static application system configuration
= Isolation domains
= Entry points
= System objects
3. Application bytecode
= Analyze to gain additional knowledge
= Optimize aggressively using the aggregated knowledge

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Introduction 4-16

Exploiting static knowledge in the compiler

Exploiting static knowledge in the compiler

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Exploiting static knowledge in the compiler 5-16

Optimizations

Static whole-program (or rather: whole-domain) analysis
m Starting at each domain’s entry points
= Combined control flow, data flow and class hierarchy analysis

Since the application’s static nature enables us to collect extensive
information ahead of time, we can apply aggressive optimizations.

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Exploiting static knowledge in the compiler 6-16

Optimizations

Static whole-program (or rather: whole-domain) analysis

m Starting at each domain’s entry points

= Combined control flow, data flow and class hierarchy analysis

Since the application’s static nature enables us to collect extensive
information ahead of time, we can apply aggressive optimizations.

Improved standard optimizations

= Method inlining

Constant propagation & folding

Escape analysis & stack allocation
= Runtime check elimination (null-, bounds checks)
m Dead-code elimination

= Devirtualization

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Exploiting static knowledge in the compiler 6-16

Selective use of linked stack frames “Henderson frames”

B Local references stored as compounds, stack frames linked in order to
enable GC scanning

® Induces significant overhead!
m But: GC will only run in slack time
Optimization: Only enable Henderson frames in methods that can

possibly block — i.e., methods directly or indirectly invoking the
WaitEvent () OS function

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Exploiting static knowledge in the compiler 7-16

Varia nt—specific constants Proposed optimization

m The final qualifier for field variables allows better optimizations
m However...

= ... programmers may be lazy or unaware
m ... declaring a field as final is impossible in some cases:

public final class Constants {
public static int MAX_FRAMES = 1000;
// ... more similar constants...

}

public class Main {
private static void parse(final Stringl] v) {
/o
if (v[i].equals("MAX_FRAMES"))
Constants.MAX_FRAMES = Integer.parselnt(v[i + 1]);
/.

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Exploiting static knowledge in the compiler 8-16

Varia nt—specific constants Proposed optimization

m The final qualifier for field variables allows better optimizations
m However...

= ... programmers may be lazy or unaware
m ... declaring a field as final is impossible in some cases:

public final class Constants {
public static int MAX_FRAMES = 1000;

// ... more similar constants...
}
9
C“"}\O\
co

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Exploiting static knowledge in the compiler 8-16

Varia nt—specific constants Proposed optimization

m The final qualifier for field variables allows better optimizations
® However...

= ... programmers may be lazy or unaware

m ... declaring a field as final is impossible in some cases:

public final class Constants {
public static int MAX_FRAMES = 1000; \ — constant
// ... more similar constants...

Idea: deduce final qualifiers where possible and legal

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Exploiting static knowledge in the compiler 8-16

Bug detection at Compile—time A bonus feature

System configuration

m Does a task have run-to-completion semantics
according to the configuration, but invokes
WaitEvent () anyway?

m Service protection: Does a task or ISR access system
objects other than those specified in the configuration?

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Exploiting static knowledge in the compiler 9-16

Bug detection at Compile—time A bonus feature

System configuration

m Does a task have run-to-completion semantics
according to the configuration, but invokes
WaitEvent () anyway?

m Service protection: Does a task or ISR access system
objects other than those specified in the configuration?

Used raw-memory areas

= Which address ranges are accessed from a specific domain?

= Would a raw-memory area intersect with the regular
application memory?

= Which memory-mapped 1/O ports are used by which
domains?

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Exploiting static knowledge in the compiler

6666 L3

8L9 - 9SVEZIID

9-16

Results

Results

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Results 10-16

Test system

Software

= CD; 1.2, ported to KESO:

= Real-time air traffic simulator and collision
detector

= Community-accepted benchmark

= CiAO OS (AUTOSAR programming interface)

Hardware

= TriCore TC1796 @ 150 MHz
= 2 MiB ROM
= 1 MiB SRAM

O erhardt@cs.fau.de KESO Case Study (JTRES 2011)

Results 11-16

O

Dead code elimination & devirtualization

3000

w» 2500 |

c

S

7

8 2000

>

£

K]

£ 1500 |

[}

£

s

5 1000 -

Qo

€

>

Z 500}
0

2557

2016

1832

Non-virtual —
Virtual

1116

Unoptimized DCE + devirtualization + inlining

More than half of all virtual method invocations are either removed
or bound statically.
erhardt@cs.fau.de KESO Case Study (JTRES 2011) Results 12-16

How many checks are performed during execution?

CD; detector, 10,000 radar frames:

2000 Original

2000 + Optimized |

1500

1000

500

Checks evaluated during execution (x 1000)

Null checks Bounds checks

O Over 40 % of all runtime checks are elided.

erhardt@cs.fau.de KESO Case Study (JTRES 2011) Results 13-16

Effectiveness of advanced optimizations

‘ Default ‘ + Optimized frames? ‘ + Variant-specific constants

Exec. time” | 23.9ms | 15.9 ms (—33.5 %) 15.8 ms (—33.9 %)
Code size | 67.8 KiB | 55.2 KiB (—18.6 %) 46.5 KiB (—31.4 %)
Data size | 4.86 KiB 4.836 KiB (0 %) 3.08 KiB (—36.6 %)

B Using Henderson frames selectively improves both execution time and
code size significantly

® Inferring the final qualifier for CD;'s Configuration fields would
drastically reduce the memory footprint

!Use of Henderson frames only where necessary
O 2For detector run with 10,000 radar frames; median

erhardt@cs.fau.de KESO Case Study (JTRES 2011) Results 14-16

Conclusion

Conclusion

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Conclusion 15-16

Conclusion

Summary

s KESO abandons the aspects of the Java
programming model that don't fit the static
OSEK/AUTOSAR system model...

= ... permitting aggressive whole-program
optimizations

= ... bringing the benefits of Java to deeply
embedded systems

= Our smallest system to date: Robertino

= Autonomous robot navigating around obstacles
= Control software running on ATmega8535 (8-bit
AVR, 8 KiB Flash, 512 B SRAM)

O erhardt@cs.fau.de KESO Case Study (JTRES 2011) Conclusion 16-16

Conclusion

Summary

s KESO abandons the aspects of the Java
programming model that don't fit the static
OSEK/AUTOSAR system model...

= ... permitting aggressive whole-program
optimizations

= ... bringing the benefits of Java to deeply
embedded systems

= Our smallest system to date: Robertino

= Autonomous robot navigating around obstacles
= Control software running on ATmega8535 (8-bit
AVR, 8 KiB Flash, 512 B SRAM)

Future work

= Implementation of more advanced optimizations

m Extensive evaluation of real-life embedded applications

erhardt@cs.fau.de KESO Case Study (JTRES 2011) Conclusion 16-16

	Introduction
	Exploiting static knowledge in the compiler
	Results
	Conclusion

