# Combining RTSJ with Fork/Join A Priority-based Model

Cláudio Maia, Luís Nogueira, Luís Miguel Pinho

JTRES 2011, York, United Kingdom September, 27, 2011



## Agenda

- Motivation
- Challenges & Research Direction
- Framework Proposal & Related work
- Fork/Join Model & Work Stealing
- System Model & Integration Challenges
- Future Work



#### **Motivation**

- Embedded systems are starting to incorporate multiple processor architectures
  - Uniprocessor architectures are not efficient to implement anymore
  - Reduction in the production costs and improved energy efficiency
- Stringent operation requirements, such as
  - low memory footprint
  - low power consumption
  - timing constraints



#### **Motivation**

- OSes and Java VMs running on uniprocessor systems are multiprogrammed environments
  - Applications execute concurrently in order to maximise the utilisation of system resources
- Evolution from uniprocessor systems to multiprocessor systems
  - It is not sufficient to migrate or adapt current sequential programming models or tools
  - Penalty: underutilisation of system resources
- Natural Evolution
  - Applications need to be **parallelised** so that system throughput is increased, through the efficient management of system resources.



#### Challenges

- Creation of new parallel programming models
  - Efficiently take advantage of parallel platforms and architectures
  - Requires
    - data structures
    - algorithms and
    - code generation tools
- Programming models should be independent on the number of processors
  - Particularly as the number of cores largely increases
  - Nº tasks < nº of processors</p>



#### **Research Direction**

• Explore **new programming models** that combine

- parallel systems
- embedded real-time systems
- Solve the limitations of current embedded real-time OS and VM environments
  - Lack of programming models and tools to handle the parallel execution of applications



#### **Framework Proposal**

- Parallel execution of dynamic real-time applications
  - Objective of optimising resource utilisation
- Applications are composed by a set of complex tasks that can be divided into smaller units of execution
- Integrates RTSJ with the Fork/Join model
- Goal is to execute on top of a real-time Java virtual machine
  - Advantages
    - Open-source nature, platform-independence, and application's portability
    - RTSJ
    - Drawback: performance

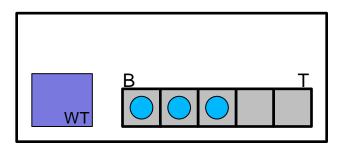


#### **Related Work**

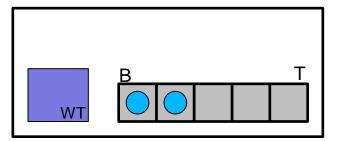
- RTSJ
  - Limitations concerning multiprocessor support
    - Mapping of schedulable objects to processors
    - A fixed priority scheduler with a single run queue per priority level (global, partitioned and mixed require adaptation)
    - ..
  - Garbage collection on multiprocessors
    - Has to be further studied
- Parallel Systems
  - Cilk, Java Fork/Join, OpenMP
    - Encourage programmers to divide their applications into parallel blocks which are assigned to processors






Combining RTSJ with Fork/Join JTRES 2011, September 27

#### Fork/Join Model Concepts


- Principle of divide and conquer
  - Fork tasks into subtasks in a recursive manner
  - Join to wait until subtasks complete (blocking point)
  - Examples: Fibonacci, Image processing
- Implementations rely on work-stealing
  - Worker Thread (WT) per processor with its own scheduling double-ended queue (deque)
  - Deques support LIFO and FIFO operations
  - LIFO
    - WT processing their own deques
  - FIFO
    - WT steals work from other worker threads
    - Subtasks generated by tasks are pushed into that WT deque WT become idle when there's no work to do

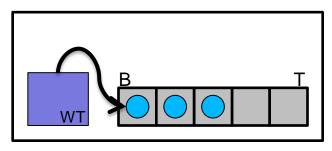


Combining RTSJ with Fork/Join JTRES 2011, September 27

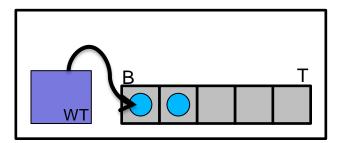


CPU 1




CPU 2




Research Centre in Real-Time Computing Systems

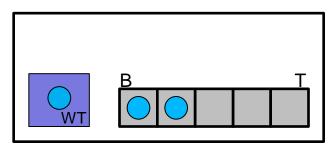
Combining RTSJ with Fork/Join

Work Threads process work from the bottom of the queue

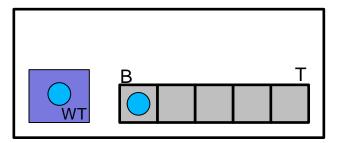


CPU 1




CPU 2



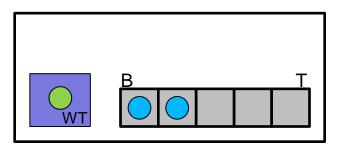



Combining RTSJ with Fork/Join

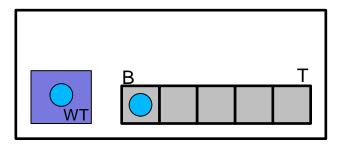
Work Threads process work from the bottom of the queue



CPU 1




CPU 2



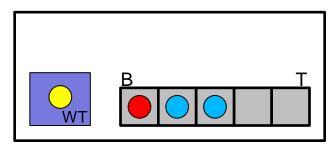



If a task spawns a new child, then the parent is pushed to the bottom of the deque and the processor executes the child task

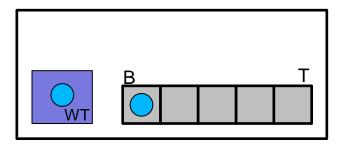


CPU 1




CPU 2




Combining RTSJ with Fork/Join



If a task spawns a new child, then the parent is pushed to the bottom of the deque and the processor executes the child task

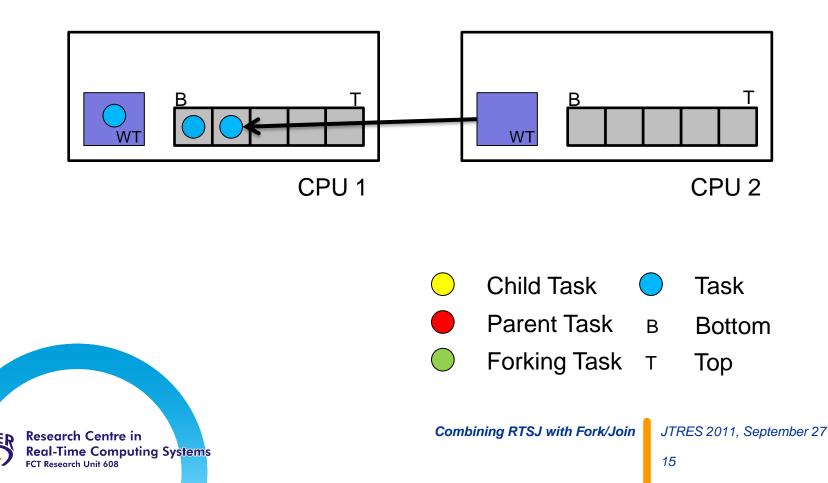


CPU 1

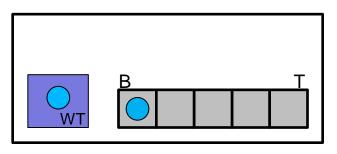


CPU 2

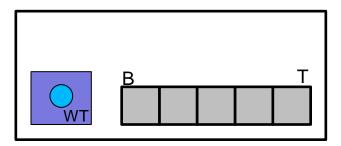



Combining RTSJ with Fork/Join

JTRES 2011, September 27




Real-Time Computing Systems


If a deque is empty, the Worker Thread steals work (the topmost task) from other processor's deque



If a deque is empty, the Worker Thread steals work (the topmost task) from other processor's deque



CPU 1



CPU 2





JTRES 2011, September 27



Real-Time Computing Systems

## Work Stealing Advantages

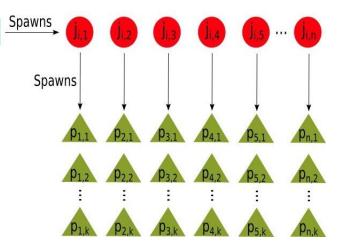
- Reducing task contention
  - LIFO
    - WT Processing own tasks
  - FIFO
    - WT stealing from the opposite side of the deque
- Initial tasks generate more work, which affect
  - Amount of stealing operations
  - Task decompositions



#### System Model

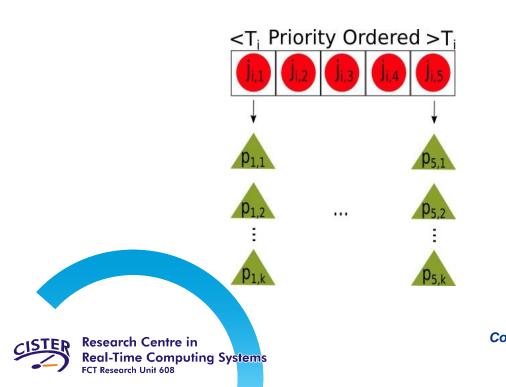
- Sporadic and independent tasks on *m* identical processors
- Tasks release jobs at sporadic time intervals and the execution requirements are only known at runtime
- Jobs may spawn a set of parallel jobs (FJ tasks)
- p-Jobs work units that can be executed in different processors at the same time instant

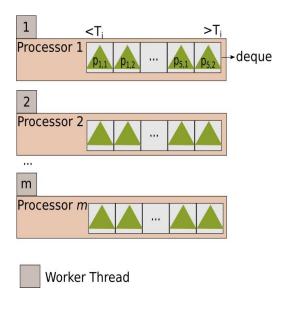
Tasks belonging to a Task set -  $\boldsymbol{\tau}$ 


Jobs belonging to a Task  $\tau_{\text{i}}$  - j

p-Jobs belonging to a Job  $j_i$  - p

Research Centre in


FCT Research Unit 608


Real-Time Computing Systems



#### System Model

- Jobs are scheduled according to its priority and placed in a global submission queue
- p-Jobs inherit the timing properties of the job that spawn it
- Each processor has its own worker thread and deque where p-Jobs will be pushed/popped according to a WS policy





Combining RTSJ with Fork/Join

#### WS Priority-Inversion

- Two cores execute two threads
  - T<sub>m</sub> in Core 1 (medium priority)
  - T<sub>h</sub> in Core 2 (high priority)
- T<sub>m</sub> generates p-Jobs (placed in Core 1 deque)
- Meanwhile, T<sub>h2</sub> (high priority) is ready and preempts T<sub>m</sub> in Core 1
- T<sub>h2</sub> p-Jobs are placed in Core 1's deque, pushing older p-Jobs (T<sub>m</sub>) to the end of the queue
- If Core 2 has no work to do, it may steal older p-Jobs from Core 1's deque (generated by T<sub>m</sub>) causing priority inversion
- However, if work stealing wouldn't be applied, Core 2 would remain idle



## Integration Challenges (RTSJ/FJ)

- Task Scheduling
  - Respect the properties of both
    - Real-time tasks and work-stealing
  - Therefore, we should carefully take into account
    - Timing properties of real-time tasks through feasibility analysis
    - Impacts of task migration
    - Predictability of the system
- Memory Management
  - Garbage collection ( it is always a concern ☺)
  - Memory regions per WT
    - Using portals to share p-Jobs maybe a solution (due to the imposed scope assignment rules)

Native multiprocessor support in the JVM



Research Centre in Real-Time Computing Systems FCT Research Unit 608 Combining RTSJ with Fork/Join JTRES 2011, September 27

#### Future Work

- The definition and specification of a real-time scheduling algorithm based on work-stealing
  - Considering the preliminary system model just presented
- Implementation of this scheduling scheme using RTSJ and FJ
- Specification of memory-related concepts
  - Scopes/ GC





# Questions?



Combining RTSJ with Fork/Join