
Combining RTSJ with Fork/Join

A Priority-based Model

Cláudio Maia, Luís Nogueira, Luís Miguel Pinho

JTRES 2011, York, United Kingdom

September, 27, 2011

Agenda

 Motivation

 Challenges & Research Direction

 Framework Proposal & Related work

 Fork/Join Model & Work Stealing

 System Model & Integration Challenges

 Future Work

2

JTRES 2011, September 27 Combining RTSJ with Fork/Join

Motivation

 Embedded systems are starting to incorporate multiple
processor architectures

 Uniprocessor architectures are not efficient to implement
anymore

 Reduction in the production costs and improved energy efficiency

 Stringent operation requirements, such as

 low memory footprint

 low power consumption

 timing constraints

3

JTRES 2011, September 27 Combining RTSJ with Fork/Join

Motivation

 OSes and Java VMs running on uniprocessor systems are
multiprogrammed environments

 Applications execute concurrently in order to maximise the
utilisation of system resources

 Evolution from uniprocessor systems to multiprocessor
systems

 It is not sufficient to migrate or adapt current sequential
programming models or tools

 Penalty: underutilisation of system resources

 Natural Evolution

 Applications need to be parallelised so that system throughput is
increased, through the efficient management of system resources.

4

JTRES 2011, September 27 Combining RTSJ with Fork/Join

Challenges

5

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Creation of new parallel programming models

 Efficiently take advantage of parallel platforms and architectures

 Requires

 data structures

 algorithms and

 code generation tools

 Programming models should be independent on the number of
processors

 Particularly as the number of cores largely increases

 Nº tasks < nº of processors

Research Direction

6

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Explore new programming models that combine

 parallel systems

 embedded real-time systems

 Solve the limitations of current embedded real-time OS and

VM environments

 Lack of programming models and tools to handle the parallel
execution of applications

Framework Proposal

7

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Parallel execution of dynamic real-time applications

 Objective of optimising resource utilisation

 Applications are composed by a set of complex tasks that can be
divided into smaller units of execution

 Integrates RTSJ with the Fork/Join model

 Goal is to execute on top of a real-time Java virtual machine

 Advantages

 Open-source nature, platform-independence, and
application’s portability

 RTSJ

 Drawback: performance

Related Work

8

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 RTSJ

 Limitations concerning multiprocessor support

 Mapping of schedulable objects to processors

 A fixed priority scheduler with a single run queue per
priority level (global, partitioned and mixed require
adaptation)

 ...

 Garbage collection on multiprocessors

 Has to be further studied

 Parallel Systems

 Cilk, Java Fork/Join, OpenMP

 Encourage programmers to divide their applications into
parallel blocks which are assigned to processors

Fork/Join Model Concepts

9

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Principle of divide and conquer

 Fork tasks into subtasks in a recursive manner

 Join to wait until subtasks complete (blocking point)

 Examples: Fibonacci, Image processing

 Implementations rely on work-stealing

 Worker Thread (WT) per processor with its own scheduling
double-ended queue (deque)

 Deques support LIFO and FIFO operations

 LIFO

 WT processing their own deques

 FIFO

 WT steals work from other worker threads

 Subtasks generated by tasks are pushed into that WT deque

 WT become idle when there’s no work to do

Work-Stealing (Visual Representation)

10

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

Work-Stealing (Visual Representation)

11

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

 Work Threads process work from the bottom of the queue

Work-Stealing (Visual Representation)

12

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

 Work Threads process work from the bottom of the queue

Work-Stealing (Visual Representation)

13

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

Child Task

Forking Task

Parent Task

 If a task spawns a new child, then the parent is pushed to the
bottom of the deque and the processor executes the child task

Work-Stealing (Visual Representation)

14

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

Child Task

Forking Task

Parent Task

 If a task spawns a new child, then the parent is pushed to the
bottom of the deque and the processor executes the child task

Work-Stealing (Visual Representation)

15

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

Child Task

Forking Task

Parent Task

 If a deque is empty, the Worker Thread steals work (the
topmost task) from other processor’s deque

Work-Stealing (Visual Representation)

16

JTRES 2011, September 27 Combining RTSJ with Fork/Join

CPU 1 CPU 2

WT WT

Task

B

B Bottom

T Top

T B T

Child Task

Forking Task

Parent Task

 If a deque is empty, the Worker Thread steals work (the
topmost task) from other processor’s deque

Work Stealing Advantages

17

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Reducing task contention

 LIFO

 WT Processing own tasks

 FIFO

 WT stealing from the opposite side of the deque

 Initial tasks generate more work, which affect

 Amount of stealing operations

 Task decompositions

System Model

JTRES 2011, September 27 Combining RTSJ with Fork/Join

18

 Sporadic and independent tasks on m identical processors

 Tasks release jobs at sporadic time intervals and the execution
requirements are only known at runtime

 Jobs may spawn a set of parallel jobs (FJ tasks)

 p-Jobs – work units that can be executed in different
processors at the same time instant

System Model

JTRES 2011, September 27 Combining RTSJ with Fork/Join

19

 Jobs are scheduled according to its priority and placed in a
global submission queue

 p-Jobs inherit the timing properties of the job that spawn it

 Each processor has its own worker thread and deque where
p-Jobs will be pushed/popped according to a WS policy

WS Priority-Inversion

20

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Two cores execute two threads

 Tm in Core 1 (medium priority)

 Th in Core 2 (high priority)

 Tm generates p-Jobs (placed in Core 1 deque)

 Meanwhile, Th2 (high priority) is ready and preempts Tm in Core 1

 Th2 p-Jobs are placed in Core 1’s deque, pushing older p-Jobs (Tm) to
the end of the queue

 If Core 2 has no work to do, it may steal older p-Jobs from Core 1’s
deque (generated by Tm) causing priority inversion

 However, if work stealing wouldn’t be applied, Core 2 would remain
idle

Integration Challenges (RTSJ/FJ)

21

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 Task Scheduling

 Respect the properties of both

 Real-time tasks and work-stealing

 Therefore, we should carefully take into account

 Timing properties of real-time tasks through feasibility
analysis

 Impacts of task migration

 Predictability of the system

 Memory Management

 Garbage collection (it is always a concern)

 Memory regions per WT

 Using portals to share p-Jobs maybe a solution (due to
the imposed scope assignment rules)

 Native multiprocessor support in the JVM

Future Work

22

JTRES 2011, September 27 Combining RTSJ with Fork/Join

 The definition and specification of a real-time scheduling
algorithm based on work-stealing

 Considering the preliminary system model just
presented

 Implementation of this scheduling scheme using RTSJ and FJ

 Specification of memory-related concepts

 Scopes/ GC

Thank You!

23

JTRES 2011, September 27 Combining RTSJ with Fork/Join

Questions?

