
WCET Analysis of Java Bytecode Featuring
Common Execution Environments

Kasper Søe Luckow
Joint work with

Christian Frost, Casper Svenning Jensen, and Bent Thomsen

Department of Computer Science,
Aalborg University

JTRES, September 2011

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 1 / 18



Motivation

The Worst Case Execution Time (WCET) forms an integral
component in schedulability analysis and, thus, in determining
temporal correctness

For hard real-time systems, the estimated WCETs must be safe,
that is, must be at least as high as the actual WCET

Safe WCET (and schedulability) analysis is currently possible on
hardware implementations of the JVM using WCA1 for JOP (and
SARTS2 for schedulability analysis)

Portable WCET analysis has been proposed by XRTJ, but relies on
a measurement-based technique for low-level WCET analysis

We want to extend WCET analysis of hard real-time Java systems
to execution environments with software implementations of the
JVM and common embedded processors using a static approach

1http://www.jopdesign.com
2http://sarts.boegholm.dk/

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 2 / 18



TetaJ at a Glance

Capable of conducting WCET analysis of Java bytecode
taking into account a software implementation of the JVM,
and common embedded hardware

Design goals

Flexibility

To address Java’s portability goal

Safe and precise WCET estimates

Safety: necessitated by hard real-time systems
Precision: to make fewest computational resources suffice while still
being temporally correct

Applicable for iterative development

Analyses on method level
Analysis time and memory consumption are reasonably low

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 3 / 18



WCET Estimation Technique

TetaJ employs a static analysis approach for WCET estimation

The program analysis problem of determining WCET is viewed
as a model checking problem

Java bytecode program, JVM, and hardware are modelled as a
Network of Timed Automata (NTA) (UPPAAL3)
Program and execution environment are viewed as three
independent layers of models

Interact through pre-defined interfaces
Achieves high flexibility

Hardware Model Layer

JBC Model Layer

JVM Model Layer

3http://www.uppaal.com
C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 4 / 18



Architecture of TetaJ

TetaJ Control Flow Graphs
(TCFGs)

Achieves reusability

Extendible support:
AVR → TCFG
Java Bytecode → TCFG

CFG analyses for e.g.

Loop detection
Condition optimisation

Transform TCFG to NTA

Combine models into one

Interact with UPPAAL to
obtain WCET

Javac/Jikes/GCJ

Java

Java Bytecode

Program Model

Model Combiner Tool

Hardware Model

WCET

UPPAALModel Processor Tool

JVM Model

CFGCFGUPPAAL Models

Model Generator Tool

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 5 / 18



UPPAAL Models

Initialisation Model

TerminateMain_DoneExecuteInitial

main_done!return_main?invoke_main!
initialise()

Program Model

Return
BasicBlockEnd_ID0 Execute_IRETURN

Wait_for_methodB

Execute_INVOKEVIRTUALExecute_ALOAD_0BasicBlockBegin_ID0ExecuteIdle

return_methodA!

jvm_execute!
jvm_instruction = JVM_IRETURN

return_methodB?

invoke_methodB!

jvm_execute!
jvm_instruction = JVM_INVOKEVIRTUAL

jvm_execute!
jvm_instruction = JVM_ALOAD_0

invoke_methodA?

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 6 / 18



UPPAAL Models Cont’d

JVM Model (excerpt)

Post-processing Pre-processing
Analyse_JBC

Execute_ISTORE

Execute_ILOAD

Idle

return_post_process_jbc? return_pre_process_jbc?invoke_pre_process_jbc!invoke_post_process_jbc!

return_ISTORE_implementation?

return_ILOAD_implementation?

jvm_instruction == ISTORE
invoke_ISTORE_implementation!

jvm_instruction == ILOAD
invoke_ILOAD_implementation!

jvm_execute?

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 7 / 18



UPPAAL Models Cont’d

Java Bytecode Implementation

assembly_instruction = ASSEMBLY_RET

invoke_assembly_handleISTORE?

assembly_instruction = ASSEMBLY_PUSH

assembly_instruction = ASSEMBLY_PUSH

assembly_execute!

assembly_execute!

assembly_execute! return_assembly_handleISTORE!

BasicBlockBegin_ID0

ASSEMBLY_push_ID0_0

Executing
Return

BasicBlockEnd_ID0

ASSEMBLY_push_ID0_1 ASSEMBLY_ret_ID0_2

Idle

Hardware Models (From METAMOC)

x <= 1

execute!
move(THIS, NEXT)

x == 1

fetch_done!

main_done?
fetch?
x = 0

x <= wait

fetch_done?

x == wait
clear(THIS)

execute?
set_wait(),
x = 0

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 8 / 18



Evaluation of Optimisations

Optimisation Analysis time States explored Memory usage

No optimisations 14h 51m 17s 41854143 3,905 MB
Only state space reduction 13h 33m 21s 41854143 2,426 MB
Only condition optimisation 1m 16s 53732 294 MB
Only template reduction 4h 46m 41s 41854143 3,851 MB
All optimisations 19s 57553 144 MB

Based on a trivial program containing, among others, a loop
and variable assignments

Optimisations decrease resources needed substantially

Analysis time decreases from 15 hours to 19 seconds
Memory consumption decreases from 3.9GB to 144MB

Template reduction and condition optimisations are the prime
contributors to this decrease

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 9 / 18



Evaluation of Safety and Precision

Algorithm Meas. WCET TetaJ WCET Pessimism

Iterative Fibonacci 46,642 46,933 0.6%
Factorial 39,726 40,939 3.1%
Reverse Ordering 64,436 81,919 27.1%
Bubble Sort 907,103 2,270,401 150.3%
Binary Search 54,430 99,301 82.4%
Insertion Sort 849,353 3,740,769 440.4%

Safety and precision are evaluated by using a
measurement-based method

Formally not safe. Hence, this evaluation only provides
indications

Generally: TetaJ WCET > Meas. WCET → indicates safety

Precision: as low as 0.6%

Imprecise results, e.g. Bubble Sort (150%), are attributed lack
of annotation possibilities for stating dependencies among
loop bounds

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 10 / 18



Mine Pump

Classic text-book example of a real-time system

A water pump is responsible for removing excess water to
avoid endangering the lives of the mine workers

Requirements

Pump starts whenever the water level reaches the high level marker

Pump stops whenever the water level reaches the low level marker

Pump must not run when the methane concentration is too high

If the methane level is not critical, the mine pump must never be flooded

Task Period/Deadline

Methane 56ms
Water 40ms

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 11 / 18



The LEGO Mine Pump

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 12 / 18



The LEGO Mine Pump Cont’d

Implemented in Java

429 lines of code

18 classes

McCabe cyclomatic complexity of 6

RTSJ, SCJ, PJ etc. have not been used

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 13 / 18



Execution Platform

Based on a modified version of the Hardware near Virtual Machine
(HVM)4 and the Atmel AVR ATmega2560 processor

Representative execution platform for an embedded system using Java
Bytecode

HVM

Emphasises portability (currently has support for ATmega2560, CR16C,
and x86)

Supports systems with as low as 256 kB of flash, and 8 kB of RAM

Employs iterative interpretation of Java Bytecode to machine code

Originally not amenable to static WCET analysis

Atmel AVR ATmega2560

Deterministic behaviour

No caching, nor branch prediction

Features a simple two-stage pipepline
4http://www.icelab.dk

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 14 / 18



The Modified HVM

Modifications of the HVM comprise e.g.:

Constant time analyse stage
Eliminating recursive solutions
Constant time type compatibility check

The NTA of the modified HVM can be automatically
constructed by the provision of its binary

A timed automaton captures the conceptual model of iterative
interpretation, that is, the fetch, analyse, and execute stages

This automaton forms an NTA with the timed automata
constructed from each of the Java Bytecode implementations

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 15 / 18



Applying TetaJ in the Case Study

Task Analysis time Memory usage TetaJ WCET Meas. WCET

Methane 1 1m 19s 140 MB 41,644 8,901
Methane 2 1m 16s 105 MB 68,436 29,449
Methane 3 29s 75 MB 12,552 3,896
Water 6m 40s 271 MB 70,712 32,421

Again TetaJ WCET > measured WCET

Analysis times and memory consumptions are reasonably low

A cyclic executive is constructed for scheduling the two tasks

Minor cycle is 8ms; major cycle is 280ms
A schedule can be constructed, thus we conclude that the
system is schedulable (proof by construction)

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 16 / 18



Conclusion

Shown that WCET analysis of Java Bytecode executed on
common embedded hardware is feasible using model checking
with UPPAAL

From the case study, we have shown that TetaJ may be
adopted in an iterative development method

Analysis time and resource consumption are reasonably low
which can be attributed the optimisations
TetaJ provides analysis on method level by providing the fully
qualified name of the method of interest

We have indications that the WCET estimates obtained by
TetaJ are safe

May therefore be appropriate for analysing hard real-time
systems

Precise WCETs can be obtained using TetaJ

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 17 / 18



Future Work

Compare TetaJ with WCA

Evaluate scalability of TetaJ

In general, apply TetaJ on more case studies

Determine whether TetaJ still applies for systems that use e.g.
the SCJ

Merge TetaJ with SARTS

C. Frost, C. S. Jensen, K. S. Luckow, and B. Thomsen WCET Analysis of JBC Feat. Common Exec. Env. 18 / 18


	Motivation
	TetaJ
	Model-Based Approach
	Evaluation
	Case Study: Mine Pump
	Conclusion

