
1 © 2011 Atego. All Rights Reserved. © 2011 Atego. All Rights Reserved.

Harmonizing Alternative Approaches to
Safety-Critical Development with Java
Kelvin Nilsen, Chief Technology Officer Java, Atego Systems

2 © 2011 Atego. All Rights Reserved.

What is “safety-critical Java”?

 Ravenscar Java? (Kwon, Wellings, King: 2002)

 A Profile for Safety-Critical Java? (Schoeberl, Sondegaard,
Thomsen, Ravn: 2007)

 Perc Pico? (Aonix, 2007)

 JSR 302? (2012?)

 In its default configuration?

 Or with optional annotations?

 Or is it just careful application of traditional (main-stream) Java?

3 © 2011 Atego. All Rights Reserved.

The Problem

 Each alternative approach to safety-critical Java offers different
benefits and tradeoffs

 Most approaches are assumed to be universal

 The entire application must be implemented according to the constraints
of the respective safety-critical Java “definition”

 Question: How to safely integrate software components in baseline
JSR-302, annotated JSR-302, Perc Pico, and traditional Java?

 The focus is on scope safety (one of the harder problems)

 Ignores, for example, schedulability analysis

 The approaches probably generalize to other safety-critical Java
approaches

4 © 2011 Atego. All Rights Reserved.

JSR-302 Rules

 Temporary objects are allocated in nested scopes (as in RTSJ)

 The scope model is simpler than RTSJ: avoids scope cycles,
fragmentation of backing stores

 Programmers explicitly create, size, and enter scopes (as in RTSJ)

 Reference assignments must be checked to assure that outer-
nested objects never refer to inner-nested objects

 JVM vendors and tool providers are “encouraged” to support
techniques that allow programmers to guarantee the absence of
IllegalAssignmentError exceptions

 Aside: This probably requires significant restrictions on the structure of
source code, and may impose additional “non-standard” annotations

5 © 2011 Atego. All Rights Reserved.

Annotated JSR-302 Rules

 The run-time model is the same as unannotated JSR-302, but static
properties declared in annotations are checked at compile time

 The draft JSR-302 specification includes a set of optional
annotations

 Certain classes can be declared to always reside in specific named
scopes

 Unannotated classes are assumed to reside in “current scope”

 “Shortcomings” of the annotated JSR-302 protocol

 Explicit management of first-class scopes is tedious and error prone

 Difficult to reuse classes within multiple distinct scopes; may require
class replication

 Hard to implement certain common programming patterns

6 © 2011 Atego. All Rights Reserved.

Perc Pico Rules

 Annotations are placed on reference variables rather than classes

 Default (unannotated) variable refers only to immortal objects

 @Scoped variable may refer to a “stack-allocated” object

 @CaptiveScoped variable does not “escape” (is not assigned to a field of a more
outer-nested object)

 “Scopes” are implicit rather than first-class objects

 The Perc Pico compiler determines the scope for each allocation based on
static analysis of object lifetimes (as guided by annotations)

 Perc Pico annotations also enable automatic calculation of scope sizes

 “Shortcomings” of Perc Pico

 Not an “international standard”

 Too “magical”; tendency by programmers to forget that they are still responsible
for managing scopes

7 © 2011 Atego. All Rights Reserved.

A Motivating Example

 Initialization of a newly allocated “mission” object requires a computation that
depends on instantiation of temporary objects

 Intended stack usage:

Assume stack

grows downward

Allocate memory for the “mission”

Invoke the
“constructor”

Allocate the
temporary objects Initialize the

“mission”
Return from “constructor”, reclaiming

memory of temporary objects

8 © 2011 Atego. All Rights Reserved.

C implementation

typedef struct {
 char *digits;
 unsigned char avail_digits;
 unsigned char used_digits;
 unsigned char sign;
} BigInteger;

typedef struct { BigInteger crypto_key; } TheMission;
TheMission tm;
char digits[40];

void initializeMission() {
 BigInteger t1, t2; char digits1[20], digits2[20];
 struct timespec now; longlong seed;

 clock_gettime(CLOCK_REALTIME, &now);
 seed = now.tv_nsec + (longlong) now.tv_sec * 1000000000;
 tm.crypto_key.digits = digits; tm.avail_digits = 40;
 t1.digits = digits1; t1.avail_digits = 20;
 t2.digits = digits2; t2.avail_digits = 20;
 fillRandomBigInteger(&t1, 128, 24, &seed);
 fillRandomBigInteger(&t2, 128, 24, &seed);
 multiplyBigInteger(&t1, &t2, &(TheMission.crypto_key));
}

Lacks encapsulation:
digits and other fields
are exposed to
outside; construction is
user’s responsibility.

Pointers to stack-
allocated objects are
shared without any
safety net.

9 © 2011 Atego. All Rights Reserved.

Annotated JSR 302 Solution (1 of 3)

// Not shown: @Scope(name=“TM”) annotation on definition of TheMission class

@SCJRestricted(INITIALIZATION)
public TheMission() {
 CalculateCryptoKey calculator = new CalculateCryptoKey(this);
 SizeEstimator z = new SizeEstimator();
 z.reserve(AbsoluteTime.class, 1);
 z.reserve(Random.class, 1);
 z.reserve(BigInteger.class, 3);
 z.reserveArray(20, byte.class);
 z.reserveArray(20, byte.class);
 z.reserveArray(40, byte.class);
 z.reserve(CalculateCryptoKey.AssignCryptoKey.class, 1);
 ((ManagedMemory) MemoryArea.getMemoryArea(this)).
 enterPrivateMemory(z.getEstimate(), calculator);

}

10 © 2011 Atego. All Rights Reserved.

Annotated JSR 302 Solution (2 of 3)

@Scope("TM") @SCJAllowed(members=true)
static class CalculateCryptoKey implements Runnable {
 TrainMission tm;

 @SCJRestricted(INITIALIZATION) public CalculateCryptoKey(TheMission the_mission) {
 tm = the_mission;
 }

 @DefineScope(name="TM.0", parent="TM“) @Scope("TM.0") @SCJAllowed(members=true)
 static class AssignCryptoKey implements Runnable {
 TheMission tm; // resides in scope “TM”
 BigInteger bi; // resides in scope “TM.0”
 AssignCryptoKey(TrainMission tm, BigInteger bi) {
 this.tm = tm; this.bi = bi;
 }

 @RunsIn("TM“)
 public void run() { // copy bi into the "TM" scope (from the "TM.0" scope)
 tm.crypto_key = bi.multiply(BigInteger.ONE);
 }
 }

11 © 2011 Atego. All Rights Reserved.

Annotated JSR 302 Solution (3 of 3)

 @RunsIn("TM.0“)
 public void run() {
 AbsoluteTime now = javax.realtime.Clock.getRealtimeClock().getTime();
 Random r = new Random(now.getMilliseconds());
 BigInteger t1, t2, t3;
 t1 = new BigInteger(128, 24, r);
 t2 = new BigInteger(128, 24, r);
 t3 = t1.multiply(t2);
 AssignCryptoKey assigner = new AssignCryptoKey(tm, t3);
 MemoryArea.getMemoryArea(tm).executeInArea(assigner);
 }
} Biggest problem: too much code

dedicated to scope management.

Can’t see the forest for the trees.

12 © 2011 Atego. All Rights Reserved.

Annotated JSR 302 Solution (1 of 3)

// Not shown: @Scope(name=“TM”) annotation on definition of TheMission class

@SCJRestricted(INITIALIZATION)
public TheMission() {
 CalculateCryptoKey calculator = new CalculateCryptoKey(this);
 SizeEstimator z = new SizeEstimator();
 z.reserve(AbsoluteTime.class, 1);
 z.reserve(Random.class, 1);
 z.reserve(BigInteger.class, 3);
 z.reserveArray(20, byte.class);
 z.reserveArray(20, byte.class);
 z.reserveArray(40, byte.class);
 z.reserve(CalculateCryptoKey.AssignCryptoKey.class, 1);
 ((ManagedMemory) MemoryArea.getMemoryArea(this)).
 enterPrivateMemory(z.getEstimate(), calculator);

}

Another problem: poor
encapsulation.

The user of BigInteger needs to
know about the byte array used in
its implementation.

Also, would prefer to perform these
computations at compile time.

And would rather that the
SizeEstimator object z reside in a
temporary scope rather than in the
“TM” scope..

13 © 2011 Atego. All Rights Reserved.

Annotated JSR 302 Solution (2 of 3)

@SCJRestricted(INITIALIZATION) @Scope("TM") @SCJAllowed(members=true)
static class CalculateCryptoKey implements Runnable {
 TrainMission tm;

 public CalculateCryptoKey(TheMission the_mission) {
 tm = the_mission;
 }

 @DefineScope(name="TM.0", parent="TM“) @Scope("TM.0") @SCJAllowed(members=true)
 static class AssignCryptoKey implements Runnable {
 TheMission tm; // resides in scope “TM”
 BigInteger bi; // resides in scope “TM.0”
 AssignCryptoKey(TrainMission tm, BigInteger bi) {
 this.tm = tm; this.bi = bi;
 }

 @RunsIn("TM“)
 public void run() { // copy bi into the "TM" scope (from the "TM.0" scope)
 tm.crypto_key = bi.multiply(BigInteger.ONE);
 }
 }

And to be completely
honest, this code doesn’t
even compile right now.

I’m trusting that we’ll be
able to “fix” the JSR-302
spec to allow something
like this before we’re done.

14 © 2011 Atego. All Rights Reserved.

Perc Pico Solution

@StaticAnalyzable
public TheMission() {
 @CaptiveScoped AbsoluteTime now;
 @CaptiveScoped r = new Random();
 @CaptiveScoped BigInteger t1, t2;
 now = javax.realtime.Clock.getRealtimeClock().getTime();
 Random r = new Random(now.getMilliseconds());
 assert StaticLimit.InvocationMode(“Digits=20”);
 t1 = new BigInteger(128, 24, r);
 assert StaticLimit.InvocationMode(“Digits=20”);
 t2 = new BigInteger(128, 24, r);
 assert StaticLimit.InvocationMode(“Digits=40”);
 this.crypto_key = t1.multiply(t2);
}

Annotation denotes that the
compiler will determine the
sizes of relevant scopes: a
private scope and a constructed
scope.

Allocations assigned to captive-
scoped variables are always
taken from the private scope.

The declaration of BigInteger’s
constructor requires a pre-condition
assertion to size its internal memory
whenever invoked from a “static
analyzable” context.

Within a constructor, allocations
assigned to @Scoped fields are
taken from the constructed
scope.

15 © 2011 Atego. All Rights Reserved.

Why do I care about this?

 My perception: primary appeals of Java are high-level abstraction,
ease of programming, modular composition, software reuse

 There are (at least) three different ways to structure safety-critical
Java code, and I am not satisfied that JSR-302 is sufficiently robust
to replace all the others

 Atego will support the JSR-302 standard (if we can figure out what it
is)

 But we want to also provide customers with the option to use
something that we believe to be “much better”

 Not about vendor lock-in

 Need 10-fold improvement to disrupt the status quo

16 © 2011 Atego. All Rights Reserved.

Mixing Semantic Models

 How can Atego provide full compliance with JSR-302 without
abandoning the strengths of its current Perc Pico technologies?

 The general idea: provide the capability of mixing code implemented
according to the distinct semantic models

 But each model has radically different approaches to scope safety

 JSR-302 assumes no way to instantiate particular classes in any scope
other than named scope

 Perc Pico assumes @CaptiveScoped variables are never assigned to
the fields of more outer-nested objects

 It is not “safe” to allow methods implemented according to one semantic
model to invoke methods implemented according to the other

17 © 2011 Atego. All Rights Reserved.

The Relevant Mission API

 Infrastructure invokes a MissionSequencer’s getNextMission()
method, which is implemented by the application developer.

 The infrastructure invokes the mission’s initialize() method
(application code) to instantiate and “register” the schedulables.

 Upon return, the infastructure starts up the registered schedulables.

 Infrastructure waits for someone to invoke requestTermination(),
arranges to terminate the registered schedulables, waits for them to
complete current releases.

 Infrastructure invokes the mission’s cleanUp() method.

 How does a mission communicate with outer-nested missions?

 Shared buffers are passed in to the mission’s constructor by the mission
sequencer

18 © 2011 Atego. All Rights Reserved.

Motivating Example

 Suppose an inner mission provides communication services for its
sibling missions

 A CommandBuffer object, residing in outer-nested mission memory,
provides communication with clients

 The read() method notifies the communication mission that work is
available and waits for the read data to be returned.

 The write() method notifies the communication mission that work is
available and waits for the buffered write data to be transferred.

 The getWork() method blocks the communication mission’s server
thread until a read() or write() request is received.

19 © 2011 Atego. All Rights Reserved.

Suppose Inner-Nested Mission Implemented in Perc Pico

public interface CommandBuffer {
 // methods invoked by client threads in sibling missions
 public int read(int socket_id, @CaptiveScoped byte[]);
 public void write(int socket_id, @CaptiveScoped byte[], int num_bytes);

 // methods invoked by server thread
 public int getWork(); // returns 1 for read, 2 for write
 @Scoped byte[] getBuffer();
 int num_bytes; // how many bytes to read or write
 public void finishWrite();
 public void finishRead(int bytes_fetched);
}

Suppose the outer-
nested mission is
annotated JSR-302.

These annotations are
not meaningful in that
context.

20 © 2011 Atego. All Rights Reserved.

In Outer-Nested Mission, CommandBuffer Has Different API

public interface CommandBufferGenerated {
 // methods invoked by client threads in sibling missions
 public int read(int socket_id, @Scope(UNKNOWN) byte[]);
 public void write(int socket_id,
 @Scope(UNKNOWN) byte[], int num_bytes);

 // methods invoked by server thread
 public int getWork(); // returns 1 for read, 2 for write
 @Scope(UNKNOWN) byte[] getBuffer();
 int getNumBytes(); // how many bytes to read or write
 int getSocketId();
 public void finishWrite();
 public void finishRead(int bytes_fetched);
}

21 © 2011 Atego. All Rights Reserved.

Wrapper for Inner-Nested Mission

public class InnerMissionGenerated extends Mission {
 public
 InnerMissionGenerated(@Scope(UNKNOWN) CommandBufferGenerated) {
 // Auto-generated infrastructure magic here to instantiate
 // the real InnerMission
 }
 // the following method implementations are similarly “magical”
 public void initialize() {
 }
 public void cleanUp() {
 }
 public void requestTermination() {
 }
 public long missionMemorySize() {
 }
}

22 © 2011 Atego. All Rights Reserved.

Memory Organization

Outer-nested mission memory

Inner-nested mission memory

Instance of InnerMissionGenerated

Proxy object implementing
CommandBuffer interface

InnerMission object

Instance of concrete type implementing
CommandBufferGenerated

Domain of Annotated JSR-302

Domain of Perc Pico

23 © 2011 Atego. All Rights Reserved.

Some Disclaimers

Some uncertainty:

 What will be the final form of JSR-302 annotations?

 How will Perc Pico evolve as a result of integration with JSR-
302?

This is an unimplemented conceptual design only at the
current time

This is not a promise that Atego will implement the
contemplated capabilities

 If implemented, the final form of the technology may
differ from today’s description

24 © 2011 Atego. All Rights Reserved.

Summary

Alternative approaches to safety-critical Java
development offer different benefits

The JSR-302 Mission provides an encapsulation
boundary to isolate alternative semantic models

The proposed integration methodology consists of:

 Specifying inner-nested mission APIs in terms of interfaces only

 Submitting the inner-nested mission API to a special proxy
generation tool to generate proxy implementations that manage
the boundary between alternative semantic models

Also discussed in paper (but not here): integration with
traditional Java

	Harmonizing Alternative Approaches to Safety-Critical Development with Java
	What is “safety-critical Java”?
	The Problem
	JSR-302 Rules
	Annotated JSR-302 Rules
	Perc Pico Rules
	A Motivating Example
	C implementation
	Annotated JSR 302 Solution (1 of 3)
	Annotated JSR 302 Solution (2 of 3)
	Annotated JSR 302 Solution (3 of 3)
	Annotated JSR 302 Solution (1 of 3)
	Annotated JSR 302 Solution (2 of 3)
	Perc Pico Solution
	Why do I care about this?
	Mixing Semantic Models
	The Relevant Mission API
	Motivating Example
	Suppose Inner-Nested Mission Implemented in Perc Pico
	In Outer-Nested Mission, CommandBuffer Has Different API
	Wrapper for Inner-Nested Mission
	Memory Organization
	Some Disclaimers
	Summary

