
Real-Time Wait-Free
Queues

using Micro-Transactions

Fadi Meawad1, Karthik Iyer1,
Martin Schöberl2, Jan Vitek1

1 S3Lab
Computer Science Department

Purdue University

2 Department of Informatics and
Mathematical Modeling

Technical University of Denmark

Compare-and-Swap (CAS), and its
limitations?

What is CAS?
‣ Compare and Swap (or sometimes called Compare

and Exchange)
‣ Atomically compares the value of a current memory

location to a given value, and if it is the same, the
memory location is updated with a new value

‣ Initial hardware realizations were slow, the
performance of CAS is now comparable to regular
instructions

Limitations?
‣ Operates on a single memory location
‣ Some algorithms require Multi-word CAS (MCAS)

2

Transactional Memory (TM)

What is Transactional Memory?
‣ An alternative synchronization infrastructure
‣ Transactions are:

• non-blocking
• serializable
• atomic read/write operations

Why not just use it?
‣ Software TM (STM) exhibit unacceptable performance.
‣ Hardware TM (HTM) require a programmer’s

awareness of Cache and Buffer sizes.

3

Is TM a good alternative for MCAS?

Maybe?
‣ An efficient Hardware Implementation Optimized for

Micro-Transactions can replace MCAS
‣ Smaller Transactions are more likely to Commit
‣ Micro-Transactions will fit in most Caches and Buffers

(HTM).

Maybe Not?
‣ A single CAS or 2 Consecutive CAS is faster than a

Hardware Micro-Transaction (on modern hardware)
‣ Small Transactions might incur a high overhead

4

Where do we find an efficient
Hardware Micro-Transactions?

5

Java Optimized Processor (JOP)
‣ Hardware Implementation of the Java Virtual Machine
‣ Time Predictable
‣ Low Level WCET Analysis
‣ Implemented as a soft-core CMP in FPGA with up to

8-cores in an Altera Cyclone II FPGA
Transactions in JOP:
‣ Fully Associative buffer cache local to each core

caching changed data (write-set)
‣ Set of tag memories read and not cached (read-set)
‣ Conflict: Read-set of one Transaction interferes with

the write-Set of another one.
‣ Conflict detection happens on Commit, Commits are

serialized.
6

Implementation

Variations:
‣ JOP does not have native support for CAS
‣ Each CAS is either simulated with TM or with Lock

leading to 4 variations:
CAS_LOCK, CAS_TM, LOCK, TM

• Example:

7

Queues:
‣ FIFO Queues
‣ insert at tail, remove from head

Example: Queue Implementations

Singly Linked Queue (SLQ):
‣ with 4 variants

Doubly Linked Queue (DLQ):
‣ with 4 variants
‣ Optimistic, in case an inconsistency occur, fixed later

Limited Capacity Queue (LIMQ):
‣ Wait-free implementations usually limit to a single

reader or a single writer
‣ only TM and Lock implementations

8

Singly Linked Queue (SLQ)
‣ 4 variants
‣ Uses 2 Consecutive CAS

Doubly Linked Queue (DLQ)

‣ 4 variants
‣ Optimistic, in case an inconsistency occur, fixed later,

uses a single CAS

Limited Capacity Queue (LIMQ)
‣ Current implementations limit to a single

reader or a single writer
‣ Only TM and Lock implementations

Experimentation & Evaluation
‣ FPGA programmed with a symmetric shared-memory

multi-processor hardware system with 4 JOP cores.
‣ Using Altera DE2-70 Dev. board consisting of a

Cyclone II EP2C70 FPGA.
‣ Producer-Consumer Framework:

• Producer inserts
into queue A

• 2 Movers removes from
A and inserts into B

• Consumer removes
from B

12

Evaluation - Singly Linked Queue

Running on JOP with 4 cores, each JOP core has a local 4 KB instruction cache and 1 KB stack cache. Using Altera DE2-70 Development board with Cyclone II EP2C70 FPGA.

SLQ

of nodes

ex
ec

ut
io

n
tim

e
in

 m
s

Evaluation - Doubly Linked Queue

Running on JOP with 4 cores, each JOP core has a local 4 KB instruction cache and 1 KB stack cache. Using Altera DE2-70 Development board with Cyclone II EP2C70 FPGA.

DLQ

of nodes

ex
ec

ut
io

n
tim

e
in

 m
s

Evaluation - Limited Capacity Queue

Running on JOP with 4 cores, each JOP core has a local 4 KB instruction cache and 1 KB stack cache. Using Altera DE2-70 Development board with Cyclone II EP2C70 FPGA.

LIMQ

of nodes

ex
ec

ut
io

n
tim

e
in

 m
s

Evaluation - Set Sizes and Retries

Running on JOP with 4 cores, each JOP core has a local 4 KB instruction cache and 1 KB stack cache. Using Altera DE2-70 Development board with Cyclone II EP2C70 FPGA.

‣ Larger sets lead to
more retires (higher
chance of collision)

‣ Retries can also
happen due to
contention on a single
location (ex Size in
LIMQ) # of nodesAv

g
nu

m
be

r o
f r

et
rie

s p
er

 q
ue

ue
 o

pe
ra

tio
n

What happens if we go beyond 4
cores?

17

Azul

‣ Azul Vega 3 3310B, with two 54-core processors and
48GB of RAM

‣ Running on top of the Azul Virtual Machine with the
Concurrent Pauseless GC

‣ Running using Speculative Multi-address Atomicity
(SMA) that attempts to run “synchronized” blocks
transactionally

‣ Running using from 4 up to 128 threads with similar
results

‣ Aiming to test scalability
‣ We do not have a measure of commits/retries.

18

Azul Evaluation - SLQ

Running on an Azul Vega 3 3310B, with two 54-core processors and 48GB of RAM, on top of the Azul Virtual Machine with the Concurrent Pauseless GC.

SLQ

of nodes

ex
ec

ut
io

n
tim

e
in

 m
s Using 16 Inserter, 32 Mover and 16
Remover threads (a total of 64 threads)

Azul Evaluation - DLQ

Running on an Azul Vega 3 3310B, with two 54-core processors and 48GB of RAM, on top of the Azul Virtual Machine with the Concurrent Pauseless GC.

DLQ

of nodes

ex
ec

ut
io

n
tim

e
in

 m
s Using 16 Inserter, 32 Mover and 16
Remover threads (a total of 64 threads)

Azul Evaluation - LIMQ

Running on an Azul Vega 3 3310B, with two 54-core processors and 48GB of RAM, on top of the Azul Virtual Machine with the Concurrent Pauseless GC.

LIMQ

of nodes

ex
ec

ut
io

n
tim

e
in

 m
s Using 16 Inserter, 32 Mover and 16
Remover threads (a total of 64 threads)

Can we bound the number of
retries?

22

‣ From Schoeberl, Brandner, and Vitek in SAC’10:
number of retries r is bounded to n − 1 on a n core
multiprocessor

‣ Assuming periodic threads, non-overlapping periods
and execution deadline not exceeding the period then:

Worst Case Execution Time Analysis

23

‣ Substituting the number of retries with number of cores
and splitting the non-atomic time into within the
operations (naimax) and outside (nae) we get.

WCET(cont’d)

24

Number of Cycles required for the
different methods (assuming no-retries)

‣ JOP Analysis framework provides an accurate cycle
count for each of the operations

‣ These numbers can be used to calculate a lower-bound
on the external non-atomic section, given the number of
operations (atomic sections) per thread.

Conclusion / Future Work

Results
‣ Transactional memory is an interesting alternative to

traditional concurrency control mechanisms

Future Work
‣ Larger data-structures including HashTables, Double-

Ended Queues and Graph Structures
‣ TM aware scheduler that would allow tighter bounds

on Real-Time based on the WCET analysis

25

