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Compare-and-Swap (CAS), and its

limitations?
What is CAS?

Compare and Swap (or sometimes called Compare
and Exchange)

Atomically compares the value of a current memory
location to a given value, and If it is the same, the
memory location Is updated with a new value

Initial hardware realizations were slow, the
performance of CAS Is now comparable to regular
instructions

Limitations!?
Operates on a single memory location
Some algorithms require Multi-word CAS (MCAS)



Transactional Memory (TM)

What is Transactional Memory?
An alternative synchronization infrastructure
Transactions are:

non-blocking
serializable
atomic read/write operations

Why not just use it?
Software TM (STM) exhibit unacceptable performance.

Hardware TM (HTM) require a programmer’s
awareness of Cache and Buffer sizes.



Is TM a good alternative for MCAS!?

Maybe?
An efficient Hardware Implementation Optimized for
Micro-Transactions can replace MCAS
Smaller Transactions are more likely to Commit

Micro- Transactions will fit in most Caches and Buffers
(HTM).

Maybe Not!?

A single CAS or 2 Consecutive CAS s faster than a
Hardware Micro-Transaction (on modern hardware)

Small Transactions might incur a high overhead



Where do we find an efficient
Hardware Micro-Transactions?



Java Optimized Processor (JOP)

Hardware Implementation of the Java Virtual Machine
Time Predictable

Low Level WCET Analysis

Implemented as a soft-core CMP in FPGA with up to
8-cores in an Altera Cyclone || FPGA

Transactions in JOP:

Fully Associative buffer cache local to each core
caching changed data (write-set)

Set of tag memories read and not cached (read-set)

Conflict: Read-set of one Transaction interferes with
the write-Set of another one.

Conflict detection happens on Commit, Commits are
serialized.



Implementation

Variations:
JOP does not have native support for CAS

Fach CAS is either simulated with TM or with Lock

eading to 4 variations:
CAS_LOCK, CAS_TM, LOCK TM

Example:

// CAS_TM

@atomic boolean CASHead(Node oldh, Node newh) {
if (head == oldh) { head = newh; return true;
} else return false;

}
Queues:

FIFO Queues
insert at tall, remove from head




Example: Queue Implementations

Singly Linked Queue (SLQ):
with 4 variants

Doubly Linked Queue (DLQ):

with 4 variants

Optimistic, In case an inconsistency occur, fixed later
Limited Capacity Queue (LIMQ):

Wialt-free implementations usually limit to a single
reader or a single writer

only TM and Lock implementations



Singly Linked Queue (SLQ)

» 4 variants
» Uses 2 Consecutive CAS
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Doubly Linked Queue (DLQ)

4 variants

Optimistic, In case an inconsistency occur, fixed later,
uses a single CAS
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Limited Capacity Queue (LIMQ)

Current implementations limrt to a single
reader or a single writer

Only TM and Lock implementations
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Updating four separate memory locations atomically using
CAS => Insertion and Deletion of nodes is complex



Experimentation & Evaluation

FPGA programmed with a symmetric shared-memory
multi-processor hardware system with 4 JOP cores.

Using Altera DE2-70 Dev. board consisting of a
Cyclone I EP2C/0 FPGA.

Producer-Consumer Framework:

Producer inserts
: Producer Consumer
into queue A <
2 Movers removes from %“
A and inserts into B /
Consumer removes { =
Mover
from B
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Evaluation - Singly Linked Queue
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Running on JOP with 4 cores, each JOP core has a local 4 KB instruction cache and 1 KB stack cache. Using Altera DE2-70 Development board with Cyclone Il EP2C70 FPGA.



Evaluation - Doubly Linked Queue
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Evaluation - Limited Capacity Queue
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Evaluation - Set Sizes and Retries

Read Set | Write Set | Read-Write Set
SLQ 7 2 7
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What happens if we go beyond 4
cores?

17



Azul

AzulVega 3 3310B, with two 54-core processors and
48GB of RAM

Running on top of the Azul Virtual Machine with the
Concurrent Pauseless GC

Running using Speculative Multi-address Atomicity
(SMA) that attempts to run “synchronized” blocks
transactionally

Running using from 4 up to |28 threads with similar
results

Aiming to test scalability
We do not have a measure of commits/retries.
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Azul Evaluation - SLQ
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Azul Evaluation - DLQ
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Azul Evaluation - LIMQ
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Can we bound the number of
retries!?
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Worst Case Execution Time Analysis

From Schoeberl, Brandner, and Vitek in SAC' | O:
number of retries ris boundedton — | on a n core
multiprocessor

Assuming periodic threads, non-overlapping periods
and execution deadline not exceeding the period then:

tweet = tna + (T‘ + ]-)tamaa: (1)

Substrtuting the number of retries with number of cores
and splitting the non-atomic time into within the
operations (naimax) and outside (nae) we get.

tna — tnaimaw + tnae (4)
twcet — tnae + (m) (tnaimaw + (’TL X tamaa:)) (5)
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WCET(contd)

JOP Analysis framework provides an accurate cycle
count for each of the operations

put_tr | put | get_tr | get
315 807 | 306 475

Number of Cycles required for the
different methods (assuming no-retries)

These numbers can be used to calculate a lower-bound
on the external non-atomic section, given the number of
operations (atomic sections) per thread.



Conclusion / Future Work

Results

Transactional memory Is an interesting alternative to
tradrtional concurrency control mechanisms

Future Work

Larger data-structures including Hash Tables, Double-
Ended Queues and Graph Structures

1M aware scheduler that would allow tighter bounds
on Real-Time based on the WCET analysis
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