Real-Time Wait-Free

Queues
using Micro-Iransactions

Fadi Meawad', Karthik lyer?,
Martin Schoberl?, Jan Vitek

'S3Lab 2 Department of Informatics and
Computer Science Department Mathematical Modeling
Purdue University Technical University of Denmark

Compare-and-Swap (CAS), and its

limitations?
What is CAS?

Compare and Swap (or sometimes called Compare
and Exchange)

Atomically compares the value of a current memory
location to a given value, and If it is the same, the
memory location Is updated with a new value

Initial hardware realizations were slow, the
performance of CAS Is now comparable to regular
instructions

Limitations!?
Operates on a single memory location
Some algorithms require Multi-word CAS (MCAS)

Transactional Memory (TM)

What is Transactional Memory?
An alternative synchronization infrastructure
Transactions are:

non-blocking
serializable
atomic read/write operations

Why not just use it?
Software TM (STM) exhibit unacceptable performance.

Hardware TM (HTM) require a programmer’s
awareness of Cache and Buffer sizes.

Is TM a good alternative for MCAS!?

Maybe?
An efficient Hardware Implementation Optimized for
Micro-Transactions can replace MCAS
Smaller Transactions are more likely to Commit

Micro- Transactions will fit in most Caches and Buffers
(HTM).

Maybe Not!?

A single CAS or 2 Consecutive CAS s faster than a
Hardware Micro-Transaction (on modern hardware)

Small Transactions might incur a high overhead

Where do we find an efficient
Hardware Micro-Transactions?

Java Optimized Processor (JOP)

Hardware Implementation of the Java Virtual Machine
Time Predictable

Low Level WCET Analysis

Implemented as a soft-core CMP in FPGA with up to
8-cores in an Altera Cyclone || FPGA

Transactions in JOP:

Fully Associative buffer cache local to each core
caching changed data (write-set)

Set of tag memories read and not cached (read-set)

Conflict: Read-set of one Transaction interferes with
the write-Set of another one.

Conflict detection happens on Commit, Commits are
serialized.

Implementation

Variations:
JOP does not have native support for CAS

Fach CAS is either simulated with TM or with Lock

eading to 4 variations:
CAS_LOCK, CAS_TM, LOCK TM

Example:

// CAS_TM

@atomic boolean CASHead(Node oldh, Node newh) {
if (head == oldh) { head = newh; return true;
} else return false;

}
Queues:

FIFO Queues
insert at tall, remove from head

Example: Queue Implementations

Singly Linked Queue (SLQ):
with 4 variants

Doubly Linked Queue (DLQ):

with 4 variants

Optimistic, In case an inconsistency occur, fixed later
Limited Capacity Queue (LIMQ):

Wialt-free implementations usually limit to a single
reader or a single writer

only TM and Lock implementations

Singly Linked Queue (SLQ)

» 4 variants
» Uses 2 Consecutive CAS

tail

<

Current Tall

P1 insert(n1)

‘

P2 insert(n2)

n2

—

Doubly Linked Queue (DLQ)

4 variants

Optimistic, In case an inconsistency occur, fixed later,
uses a single CAS

tail
- > 7 P1 Commit
- P
_-" - P1 insert(n1)
‘ - I |
1
— ﬁ-l
‘—7 1
New Tail
n2 ——|
P2 Retry

P2 insert(n2)

Limited Capacity Queue (LIMQ)

Current implementations limrt to a single
reader or a single writer

Only TM and Lock implementations

Tail
:.E\ l
& .
S o l
@) I_|- = = -
O
N ®
O e . N
3 >
> !
- .
S Next Prev . Size
S Tail
()
S

Updating four separate memory locations atomically using
CAS => Insertion and Deletion of nodes is complex

Experimentation & Evaluation

FPGA programmed with a symmetric shared-memory
multi-processor hardware system with 4 JOP cores.

Using Altera DE2-70 Dev. board consisting of a
Cyclone I EP2C/0 FPGA.

Producer-Consumer Framework:

Producer inserts
: Producer Consumer
into queue A <
2 Movers removes from %“
A and inserts into B /
Consumer removes { =
Mover
from B

12

Evaluation - Singly Linked Queue

200
|

0]

= o
LO—.

q ™

o v—

=

= o

o =

o

=

=

O

O

> o _

(D) Tp]

W CAS_LOCK

B CAS_TM SLQ

O LOCK —

m M |]
o m_m_H. .:l l] l] Il I]

10 50 100 250 500 1000 2000 3000 4000 5000

of nodes

Running on JOP with 4 cores, each JOP core has a local 4 KB instruction cache and 1 KB stack cache. Using Altera DE2-70 Development board with Cyclone Il EP2C70 FPGA.

Evaluation - Doubly Linked Queue

B CAS LOCK DL
g _ B CAS_TM Q
SV O LOCK p—
mTM
N
& S |
= T
O
=
+ o
o e —
8
=
Q
O
> o _
O m '} ﬂ “ “
o — III:\I III:iI

10 50 100 250 500 1000 2000 3000 4000 5000

of nodes

Running on JOP with 4 cores, each JOP core has a local 4 KB instruction cache and 1 KB stack cache. Using Altera DE2-70 Development board with Cyclone Il EP2C70 FPGA.

Evaluation - Limited Capacity Queue

250

O LOCK
m TM LIMQ
S _
(aV]
7))
S
= 8-
Q) ™~
£
b (@]
g =7
=)
Q
Q
> o _
Q Tp]
= - :—E-&[i

10 50 100 250 500 1000 2000 3000 4000 5000

of nodes

Running on JOP with 4 cores, each JOP core has a local 4 KB instruction cache and 1 KB stack cache. Using Altera DE2-70 Development board with Cyclone Il EP2C70 FPGA.

Evaluation - Set Sizes and Retries

Read Set | Write Set | Read-Write Set
SLQ 7 2 7
™™ DLQ 11 4 12
LIMQ 11 5) 12
SLQ 3 1 3
CAS_TM DLQ 3 1 3
Larger sets lead to :
: : B o m sLQ
more retires (higher 2 *7 = O
chance of collision) S
o
Retries can also 2 87
happen due to g 3+
contention on a single 3 ¢ JJ ‘
location (ex Size in E o il ‘
o0
E 10 50 100 250 500 1000 2000 3000 4000 5000

LIMQ)

of nodes

Running on JOP with 4 cores, each JOP core has a local 4 KB instruction cache and 1 KB stack cache. Using Altera DE2-70 Development board with Cyclone 1l EP2C70 FPGA.

What happens if we go beyond 4
cores?

17

Azul

AzulVega 3 3310B, with two 54-core processors and
48GB of RAM

Running on top of the Azul Virtual Machine with the
Concurrent Pauseless GC

Running using Speculative Multi-address Atomicity
(SMA) that attempts to run “synchronized” blocks
transactionally

Running using from 4 up to |28 threads with similar
results

Aiming to test scalability
We do not have a measure of commits/retries.

18

Azul Evaluation - SLQ

o

S B CAS No SMA SLQ

S 7| m CASSMA

O LOCK No SMA P—
—| @ LOCK SMA

= o Using 16 Inserter, 32 Mover and 16
& S _ Remover threads (a total of 64 threads)
- S
Q) —
E
I
o o
S S
05 (o
=
Q
q) —
| .:I
O

o

o _|

S

4K 8K 16K 32K 64K 128K 256K 512K 1024K
of nodes

Running on an Azul Vega 3 3310B, with two 54-core processors and 48GB of RAM, on top of the Azul Virtual Machine with the Concurrent Pauseless GC.

Azul Evaluation - DLQ

o
8 — W CAS No SMA DLQ
o
3 B CAS SMA
O LOCK No SMA Jpe—
B LOCK SMA
= o Using 16 Inserter, 32 Mover and 16
& 2 _ Remover threads (a total of 64 threads)
R
Q) D —
E
~ o
g ; II
05 (o
=
Q
o —
P
O
o
= J—
o
0 4 . —— . [l h
4K 8K 16K 32K 64K 128K 256K 512K 1024K
of nodes

Running on an Azul Vega 3 3310B, with two 54-core processors and 48GB of RAM, on top of the Azul Virtual Machine with the Concurrent Pauseless GC.

Azul Evaluation - LIMQ

O LOCK No SMA LIMQ
B LOCK SMA
o
S
i 3 Using 16 Inserter, 32 Mover and 16
= T Remover threads (a total of 64 threads)
8
L o
£ 8 -
+~ o
q b
2
i
=
S o
oS _
5 3

4K 8K 16K 32K 64K 128K 256K 512K 1024K
of nodes

Running on an Azul Vega 3 3310B, with two 54-core processors and 48GB of RAM, on top of the Azul Virtual Machine with the Concurrent Pauseless GC.

Can we bound the number of
retries!?

22

Worst Case Execution Time Analysis

From Schoeberl, Brandner, and Vitek in SAC' | O:
number of retries ris boundedton — | on a n core
multiprocessor

Assuming periodic threads, non-overlapping periods
and execution deadline not exceeding the period then:

tweet = tna + (T‘ +]-)tamaa: (1)

Substrtuting the number of retries with number of cores
and splitting the non-atomic time into within the
operations (naimax) and outside (nae) we get.

tna — tnaimaw + tnae (4)
twcet — tnae + (m) (tnaimaw + (’TL X tamaa:)) (5)

23

WCET(contd)

JOP Analysis framework provides an accurate cycle
count for each of the operations

put_tr | put | get_tr | get
315 807 | 306 475

Number of Cycles required for the
different methods (assuming no-retries)

These numbers can be used to calculate a lower-bound
on the external non-atomic section, given the number of
operations (atomic sections) per thread.

Conclusion / Future Work

Results

Transactional memory Is an interesting alternative to
tradrtional concurrency control mechanisms

Future Work

Larger data-structures including Hash Tables, Double-
Ended Queues and Graph Structures

1M aware scheduler that would allow tighter bounds
on Real-Time based on the WCET analysis

25

