


Safety-Critical Java

* A Java profile for satety-critical applications
* Restricts the expressiveness of RTS]
° Simpler task model

* Restricted scope model



SCJ Levels

* Three levels for different application areas
e LO: the ignored cyclic executive ;-)
° L1: Ravenscar style

* [.2: More dynamics with nested missions



Mission Concept

e A mission consists of

e A collection of handlers

* A shared memory (mission memory)
* Missions can be restarted
* Missions can form a sequence

* No real-time constraints on mission start/stop



Memory

Java depends heavily on dynamic memory
allocation

* In normal Java we have garbage collection
* Convenient tool (more in a later talk)
* RTSJ did not believe in RT garbage collection

Scoped memory model



RTSJ Scopes

°* Memory area similar to stack allocation
* Explicit context enter and leave
® Can be shared between threads

® |ssues
* Live time and pointer assignments

* Sharing between threads



Scopes in SCJ

* Based in the RTSJ model

* Managed by the SCJ] runtime

* No explicit creation

» Extends and restricts the RTS]J classes
* Mission memory and private memory

* Plus we have immortal memory



RTSJ Scope Issue

* Backing store ‘allocation” (the memory) for
scopes is not very well defined

° A C’malloc’” is mentioned in the RTS]J spec.

* Undisciplined usage of scopes leads to
memory fragmentation

* Nesting of scopes does not mean nesting of
backing store



SCJ Scopes

* Avoid fragmentation

°* Maximum size of backing store needs to be
specified

* Restricted scope sharing
* Mission memory is shared

* Handler scopes are thread private



Backing Store Nesting

* The SCJ definition allows a nesting
implementation

° Immortal, mission, and private memory give a
strict hierarchy

* Nesting in the implementation, not in the
contract

* Notion of backing store plus reserved memory



Unified Memory Areas

* Immortal, mission, and private have much in
common

* Can be implemented by a single class

* Each inner memory (backing store) is
contained in the outer memory



Reserved backing store

(1) Safelet startup

Nested Memory

Immortal

A
)

Reserved backing store

(2) Mission creation

A

= <.
'

Reserved backing stor

(8) Handler creation

Private 1 ¢ J

Private 2 @j /

Private 3

(4) Nested private of P2

Immortal

Mission

Private 1

Private 2

Nested

Private 3



Implementation

* A single Memory class

* Not at the SCJ API visible

* Used by SCJ memory classes
* Represents all memory types

* A nested memory object is allocated in the
outer memory



Immortal

* Special as there is no outer context

°* An immortal memory area is allocated in
immortal - chicken/egg problem

* Some JVM magic at boot



Implementation

e Track of
e Start address
e [.ocal allocations
e Nested allocation
e Parent

* Inner nested scope

public class Memory {

int startPtr;

int allocPtr;

int endLocalPtir:
int allocBsPtr;
int endBsPir;
Memory parent;
int level;

Memory inner;

static Memory immortal;

Memory() {}

static Memory getimmortal(int start, int end)

Memory(int size, int bsSize) {...}
Memory(int size) {...}

void enter(Runnable logic) {...}
void executelnArea(Runnable logic) {...}

void enterPrivateMemory(int size, Runnable logic)



Implementation

* On the Java Optimized Processor JVM
* Concept not JOP specific
* Part of system classes

* Where we can use integers for memory
addresses

°* Memory area is part of thread context



Conclusions

* 5CJ scopes avoid fragmentation

* A scope implementation can use nested
allocation

* All memory areas can be represented by a
single class

° Implementation is an important step towards
SCJ on JOP



