
Memory Management for Safety-
Critical Java

Martin Schoeberl
Technical University of Denmark

Thanks to SCJ EG and Kelvin Nilsen and Anders Ravn



Safety-Critical Java

A Java profile for safety-critical applications

Restricts the expressiveness of RTSJ

Simpler task model

Restricted scope model



SCJ Levels

Three levels for different application areas

L0: the ignored cyclic executive ;-)

L1: Ravenscar style

L2: More dynamics with nested missions



Mission Concept

A mission consists of

A collection of handlers

A shared memory (mission memory)

Missions can be restarted

Missions can form a sequence

No real-time constraints on mission start/stop



Memory

Java depends heavily on dynamic memory 
allocation

In normal Java we have garbage collection

Convenient tool (more in a later talk)

RTSJ did not believe in RT garbage collection

Scoped memory model



RTSJ Scopes

Memory area similar to stack allocation

Explicit context enter and leave

Can be shared between threads

Issues

Live time and pointer assignments

Sharing between threads



Scopes in SCJ

Based in the RTSJ model

Managed by the SCJ runtime

No explicit creation

Extends and restricts the RTSJ classes

Mission memory and private memory

Plus we have immortal memory



RTSJ Scope Issue

Backing store ‘allocation’ (the memory) for 
scopes is not very well defined

A C ‘malloc’ is mentioned in the RTSJ spec.

Undisciplined usage of scopes leads to 
memory fragmentation

Nesting of scopes does not mean nesting of 
backing store



SCJ Scopes

Avoid fragmentation

Maximum size of backing store needs to be 
specified

Restricted scope sharing

Mission memory is shared

Handler scopes are thread private



Backing Store Nesting

The SCJ definition allows a nesting 
implementation

Immortal, mission, and private memory give a 
strict hierarchy

Nesting in the implementation, not in the 
contract

Notion of backing store plus reserved memory



Unified Memory Areas

Immortal, mission, and private have much in 
common

Can be implemented by a single class

Each inner memory (backing store) is 
contained in the outer memory



Nested Memory

IM

Reserved backing store

Immortal IM M

Reserved backing store

Immortal

Mission

IM

P1

M

P2 P3

Immortal

Mission

Private 1

Private 2

Private 3

Reserved backing store

IM

P1

M

P2 P3

Immortal

Mission

Private 1

Private 2

Private 3

Nested

N

(1) Safelet startup (2) Mission creation (3) Handler creation (4) Nested private of P2



Implementation

A single Memory class

Not at the SCJ API visible

Used by SCJ memory classes

Represents all memory types

A nested memory object is allocated in the 
outer memory



Immortal

Special as there is no outer context

An immortal memory area is allocated in 
immortal - chicken/egg problem

Some JVM magic at boot



Implementation

Track of

Start address

Local allocations

Nested allocation

Parent

Inner nested scope

public class Memory {

 int startPtr;
 int allocPtr;
 int endLocalPtr;
 int allocBsPtr;
 int endBsPtr;
 Memory parent;
 int level;

 Memory inner;

 static Memory immortal;

 Memory() {}

 static Memory getImmortal(int start, int end)

 Memory(int size, int bsSize) {...}
 Memory(int size) {...}

 void enter(Runnable logic) {...}
 void executeInArea(Runnable logic) {...}

 void enterPrivateMemory(int size, Runnable logic)
}



Implementation

On the Java Optimized Processor JVM

Concept not JOP specific

Part of system classes

Where we can use integers for memory 
addresses

Memory area is part of thread context



Conclusions

SCJ scopes avoid fragmentation

A scope implementation can use nested 
allocation

All memory areas can be represented by a 
single class

Implementation is an important step towards 
SCJ on JOP


