Hard Real-Time Garbage Collection
for a Java Chip Multi-Processor

Wolfgang Puffitsch
wpuffits@mail.tuwien.ac.at

TECHNISCHE
UNIVERSITAT

WIEN

Vienna University of Technology

JTRES '11, September 26-28, 2011

1/21

wpuffits@mail.tuwien.ac.at

Hard Real-Time Garbage Collection

v

GC increases productivity

v

GC improves safety

Real-time GC matured for uniprocessors
CMPs still challenging

» True parallelism
» Synchronization more expensive

v

v

2/21

GC Phases

v

Start GC cycle
Scan local and static variables for references

v

v

Trace objects and defragment

v

Reclaim unvisited objects

3/21

Challenges

» Scan local variables
» Stack (and registers)
» No barriers wanted
» Minimal disruption for application
» Eliminate fragmentation
» Cannot allow fragmentation
» Fixed block layout has overheads
» Relocate objects without disruption application

4/21

System

v

Java Optimized Processor (JOP)
Memory accesses
» Time-division multiple access
» Round-robin
Caching
» Method and stack cache
» Data caches being worked on
» Not in this paper
Scheduling
» Partitioned (threads pinned to one core)
» Fixed-priority (rate/deadline monotonic)

v

v

v

5/21

Locking

» Low-level locking

» Single global hardware lock

» Round-robin

» Similar cost as compare-and-swap
» High-level locking

» Per-object locks

» FIFO queuing

» Spin at top priority

» Similar to MSRP

6/21

GC Algorithm

v

Copying collector
» Copies between to- and from-space

Time-based

v

Incremental

v

Concurrent
Not parallel

» Memory bound task
» Increase bandwidth in arbiter if needed

Handle-based object layout
» One level of indirection for field accesses

v

v

v

7121

Stack Scanning

Collect references in local variables

Basic idea: scan stacks at end of job
» waitForNextPeriod()
» Stack is shallow = low overhead
» Instant is known =- no disruption
» Need to wait until tasks have finished a period

End-of-job for high-frequency tasks
Event handler scans lower-frequency tasks

v

v

v

v

8/21

Stack Scanning Example

S = T
= T
UNE B IE HE N
1 I N

SRR RN
w1 W
(PR U N S e BN R
R 4 B
SR e FHS S S
0 5 10 15 20 25 30 35
Istackscan

9/21

Stack Scanning Bounds

» o ...self-scanning tasks
» p...stack scanning events
> tstackscan < max(maXTiEO'(Ti + Ri)7 maXrep Ri)

10/21

Copying Support in Hardware

Preemptible, transparent, consistent

v

v

Redirect accesses to object being copied
Must not disturb other accesses

v

Redirection for all cores

v

11/21

Copying Hardware Block Diagram

core N-1

A

\4
A

A4

Ty
core0 [<* copy [* 1
logic |,

&

corel1 g 2
219
s er

© ©

o

memory

12/21

Implementation

v

JOP CMP, 8 cores, TDMA
3 cycles per individual memory access

v

v

26 cycles worst-case latency
Pipeline memory arbiter
» Sacrifice one cycle latency: 26 — 27 cycles
» Relax critical path: 93.5 — ca. 100 MHz
» Higher frequency even without copy unit
» Negligible overhead for copy unit: 350 of 45k LCs

v

13/21

jPapabench

» Control unmanned aerial vehicle

» Complex real-time benchmark
» Other benchmarks too complex or too simple
» Memory allocation, multiple threads

» Manual partitioning
» Some tasks scan their own stack
» Event handlers to scan other stacks

14/21

Partitioning

Core 0 1 2 3 4 5 6 7

> High F1 F2

= A3 F3 F4 A1 A2

o SE SE SE SE SE SE
= A4 S1 S2 A7 A6 A5

Low GC S3

15/21

Analysis

» Reasonable WCET for most tasks

» Soft-float problematic, but limited
» WCET of GC overly pessimistic

» Annotations not expressive enough
» Copying relatively cheap

16/21

Measurements

Measured response time (MORT)
and release jitter (MOJ)

Varied offsets, multiple runs

v

v

Low jitter only for high-priority tasks

v

v

200 us due to preemption and locking

17/21

Detailed Measurement Results

atomic copy copy unit

MORT (us) MOJ (us) MORT (us) MOJ (us)

Al 1826 870 533 65
A2 3904 921 2622 9
A3 989 982 145 139
A4 3536 3529 2174 2168
A5 22835 381 24793 12
A6 3935 3639 3502 3123
A7 3449 1832 2461 964
F1 1188 1171 103 86
F2 1261 1239 246 224
F3 1605 1588 760 743
F4 4225 1863 2407 764
s1 - - - -
$2 39900 414 38524 76
S3 44511 39616 43012 37979

18/21

Jitter Measurement Results

M atomic copy O copy unit

1400
1200

1000
800
600
400
200
0

Al A2 A3 F1 F2

MOJ (us)

19/21

Conclusion

» Stack scanning with both little overhead and
reasonable timing bounds

» Hardware support for preemptible,
transparent copying on CMP

» Considerably increased scheduling quality

20/21

Thank you for your attention!

21/ 21

