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I 1 HW/SW Communication and Partitioning
Motivation
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I Mapping of components (Hard-/Software) is often subject to changes
I but usually requires expensive design modifications

I Communication between Tasks is a critical part of concurrent embedded systems
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I 4 OSSS – Overview (I)
Oldenburg System Synthesis Subset

I SystemC-based Design Methodology for Object-Oriented HW/SW Co-Design
I modelling library available under LGPL → http://system-synthesis.org

I Layered refinement flow towards implementation

I Application is modelled as composition of (hardware or software)
tasks and synchronising objects.

I User-defined Shared Objects enable transaction-based modelling.
I Communication via abstract method calls.
I Synchronisation via guard conditions.

I Separate modelling of application und architecture
I Initial description of the system as composition of tasks and communication objects
I Explicit allocation and mapping of processing elements for scheduling and resource sharing.
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I 5 OSSS – Overview (II)
Oldenburg System Synthesis Subset

I Abstract, host-based simulation of embedded software multi-tasking

I → enables exploration of software architecture
I local scheduling of multiple tasks on a (virtual) processor cores
I based on annotated execution times
I task priorities, deadlines, preemption, synchronisation, resource access policies

I Exploration of (hardware) platform variants, esp. for communication refinement.

I Mapping of abstract communication to concrete channels
I Buses, point-to-point, . . .
I incl. serialisation, and HW/SW communication

I Path towards implementation
I Cross-compilation for target against software run-time based on (RT-)Linux
I Hardware synthesis for dedicated hardware Shared Objects objects

and hardware tasks via synthesis tool Fossy.
I Generic driver framework for HW/SW and core/core communication
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I 6 OSSS– Layered Design Flow
Oldenburg System Synthesis Subset
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I 6 OSSS– Layered Design Flow
Oldenburg System Synthesis Subset
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I 8 Communication via Shared Objects
Method-based communication

Communication between Tasks is modelled in terms of so-called Shared Objects.

I User-defined, method-based interfaces (services)

I Guaranteed mutual exclusive access
I concurrently accessing tasks (clients)

are synchronised transparently
I ensures consistency

I Services can have logical pre-conditions (Guards)
I boolean conditions, based on inner state of Shared Object
I can block a caller, until condition holds
I a blocked service call can only be released by another

unblocked service, changing the object’s inner state

FIFO method guard

put(int item) full
int get() !empty

Table: Simple guards example
I Different flavours, transparently handled

during simulation/implementation
I Local objects, all clients under the same RTOS
I Software Objects, explicitly mapped to shared memory
I Dedicated Hardware Objects, e.g. as accelerators
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I 9 Timing annotations in OSSS
Application Layer model

I Estimated Execution Time (EET) annotations

I Block-wise annotation, can not be nested

I Flexible granularity

I Must not contain communication

I Required Execution Time (RET) annotations

I Check of relative deadlines during simulation

I Can be nested, and enclose communication

while( some_condition )

 

 OSSS_RET( 1, SC_MS )

{

  OSSS_EET( 20, SC_US )

  {

    

    max_i = compute_max_i();

  }

  

  for( int i=0; i<max_i; ++i )

    OSSS_EET( 100, SC_US )

    {

        

    }

  if( my_condition )

  {

 

    result = my_shared->get();

  }

}

// blo has to be finished within 1ms

// comm. outside of EET blos onl

// .. loop body  .

// .. some computation .

// estimate data-dependent loop
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I 10 Application Layer simulation
Application Layer model
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I Highest simulation performance, used for functional validation

I No task scheduling, all tasks run fully parallel

I Only EETs are considered (if available)

I Resource contention only due to conflicting acceses
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I 12 Virtual Target Architecture model
Architecture model

I Mapping of Application Layer elements to concrete Virtual Target Architecture elements
I processor cores
I hardware blocks
I memories
I interconnects

I Abstract communication links mapped to explicit interconnects
I point-to-point channels, buses,. . .
I (Remote) Service calls handled via Remote Method Invocation protocol (RMI)

I Task mapping
I Hardware tasks can only be mapped exclusively (no scheduling).
I Multiple software tasks may share one processor, handled by a local RTOS/runtime

→ Asymmetric multi-processing

I Shared Object mapping
I Mapping to Hardware, Software (SHM), or Local objects
I Remote objects require explicit mapping.
I Local objects can be mapped implicitly.
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I 13 OSSS Software Multi-Tasking
Architecture model

I Abstraction of underlying RTOS: OSSS Software Runtime
I hide low-level, error-prone RTOS primitives from designer

I Main purpose: scheduling of mapped tasks
I Task state management and guarantee,

that only one task is running at a time
I Periodic task activation, deadline observation
I Time synchronisation and preemption model
I Handling resource (Shared Object) access,

signaling of unblocked tasks.

I Several predefined scheduling policies supported
I Static priorities, preemptive and cooperative
I Time-slice based round-robin
I EDF, RMS
I . . . and user-defined schedulers via interface class

I Synchronisation with other runtime instances.
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I 14 Virtual Target Architecture Layer simulation
Architecture model
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I 15 Outline
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I 16 Simulation of Platform Artefacts

I Virtual Target Architecture Layer simulation enables
analysis of (software) architecture artefacts

I Effects of design parameters on system behaviour
I application mapping
I (local) scheduling policies, task priorities
I distributed resource access strategies

I Some examples in the following, based on artificial
system
I Static priorities: T0 > T1 > . . . > T5
I Core 0 higher priority than Core 1
I Distributed resource access (no central arbiter)
I Blocking behaviour either by suspend or busy-waiting
I Task preemption during resource access

I allowed (not handled specifically)
I allowed, but support (local) priority inheritance
I explicitly suppressed
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I 17 Priority inversion – busy waiting
Resource access example (I)

0 2 4 6 8 10 12 14 16 18 [ms]
time

T2

T0

T1

T3

T4

T5

0

2

1 1

2

2

1

0

0

0

2

2

2

2

activation execution X access res. X preemption X spin on res. Xblocked

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de


I 18 Priority inheritance – busy waiting
Resource access example (II)
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I 19 Priority inheritance – suspend
Resource access example (III)
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I 20 No preemption – suspend
Resource access example (IV)
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I 21 No preemption – busy-waiting
Resource access example (V)
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I 22 Outline
Conclusion

1 Introduction

2 Application Layer model

3 Architecture model

4 Simulation of platform artefacts

5 Conclusion

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de


I 23 Summary & Outlook
Conclusion

I Extension of OSSS Design Methodology for MPSoC.

I Provides flexible mapping of Tasks and Objects to explicit virtual architecture elements.
I separate modelling of Application and Architecture avoids costly design changes during exploration
I direct path to implementation

I Abstract software modelling
I Based on annotated execution times and explicit modelling of shared resources.
I Enables early analysis of software architecture artefacts by showing impact of

I scheduling policies
I priorities, periods, deadlines
I resource access strategies

I Outlook
I Extend software multi-tasking model towards (locally) symmetric multi-processing

(multiple cores per RTOS instance)
I Extend existing mapping to formal model based on Extended Real-Time Task Networks
I Enable design decisions through back annotation of communication delays

to simulation & analytical model.
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I 24

Thanks for your attention!

Questions?
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