
I Flexible Mapping of Concurrent Object-Oriented
Applications to MPSoC Platforms

Philipp A. Hartmann, Kim Grüttner,
Frank Oppenheimer, Wolfgang Nebel
OFFIS Institute for Information Technology
Oldenburg, Germany

June 28, 2010

Map2MPSoC’2011
St. Goar, Germany

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 1 HW/SW Communication and Partitioning
Motivation

Hardware ?
Software ?

Communication ?

T0

T2

T1

T3

T5

T4

I Mapping of components (Hard-/Software) is often subject to changes
I but usually requires expensive design modifications

I Communication between Tasks is a critical part of concurrent embedded systems

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 2 Outline

1 Introduction

2 Application Layer model

3 Architecture model

4 Simulation of platform artefacts

5 Conclusion

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 3 Outline
Introduction

1 Introduction
OSSS – Overview

2 Application Layer model

3 Architecture model

4 Simulation of platform artefacts

5 Conclusion

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 4 OSSS – Overview (I)
Oldenburg System Synthesis Subset

I SystemC-based Design Methodology for Object-Oriented HW/SW Co-Design
I modelling library available under LGPL → http://system-synthesis.org

I Layered refinement flow towards implementation

I Application is modelled as composition of (hardware or software)
tasks and synchronising objects.

I User-defined Shared Objects enable transaction-based modelling.
I Communication via abstract method calls.
I Synchronisation via guard conditions.

I Separate modelling of application und architecture
I Initial description of the system as composition of tasks and communication objects
I Explicit allocation and mapping of processing elements for scheduling and resource sharing.

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://system-synthesis.org
http://www.offis.de

I 5 OSSS – Overview (II)
Oldenburg System Synthesis Subset

I Abstract, host-based simulation of embedded software multi-tasking

I → enables exploration of software architecture
I local scheduling of multiple tasks on a (virtual) processor cores
I based on annotated execution times
I task priorities, deadlines, preemption, synchronisation, resource access policies

I Exploration of (hardware) platform variants, esp. for communication refinement.

I Mapping of abstract communication to concrete channels
I Buses, point-to-point, . . .
I incl. serialisation, and HW/SW communication

I Path towards implementation
I Cross-compilation for target against software run-time based on (RT-)Linux
I Hardware synthesis for dedicated hardware Shared Objects objects

and hardware tasks via synthesis tool Fossy.
I Generic driver framework for HW/SW and core/core communication

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 6 OSSS– Layered Design Flow
Oldenburg System Synthesis Subset

Application
Layer

(Shared) Object

Task

S3

T0

T2

T1

T3

T5

S0

S1

S2

T4

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 6 OSSS– Layered Design Flow
Oldenburg System Synthesis Subset

Virtual Target
Architecture

Layer

Memory
Block

In
te

rc
on

ne
ct

Software
Processor

Core 0

RTOS

 OSSS
Runtime

 Hardware
Block

Software
Processor

Core 1

RTOS

 OSSS
Runtime

...

Application
Layer

(Shared) Object

Task

S3

T0

T2

T1

T3

T5

S0

S1

S2

T4

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 6 OSSS– Layered Design Flow
Oldenburg System Synthesis Subset

Virtual Target
Architecture

Layer

Memory
Block

In
te

rc
on

ne
ct

Software
Processor

Core 0

RTOS

 OSSS
Runtime

 Hardware
Block

Software
Processor

Core 1

RTOS

 OSSS
Runtime

...

Analysis,
Exploration,
Refinement/

Mapping

Application
Layer

(Shared) Object

Task

Timing

Full parallel
tasks with

EETs

Locally
scheduled
tasks with

 EETs

Shared
resources
with EETs

+

Communi-
cation times

+

S3

T0

T2

T1

T3

T5

S0

S1

S2

T4

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 7 Outline
Application Layer model

1 Introduction

2 Application Layer model
Method-based communication
Estimated and Required Execution Times
Application Layer simulation

3 Architecture model

4 Simulation of platform artefacts

5 Conclusion

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 8 Communication via Shared Objects
Method-based communication

Communication between Tasks is modelled in terms of so-called Shared Objects.

I User-defined, method-based interfaces (services)

I Guaranteed mutual exclusive access
I concurrently accessing tasks (clients)

are synchronised transparently
I ensures consistency

I Services can have logical pre-conditions (Guards)
I boolean conditions, based on inner state of Shared Object
I can block a caller, until condition holds
I a blocked service call can only be released by another

unblocked service, changing the object’s inner state

FIFO method guard

put(int item) full
int get() !empty

Table: Simple guards example
I Different flavours, transparently handled

during simulation/implementation
I Local objects, all clients under the same RTOS
I Software Objects, explicitly mapped to shared memory
I Dedicated Hardware Objects, e.g. as accelerators

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 8 Communication via Shared Objects
Method-based communication

Communication between Tasks is modelled in terms of so-called Shared Objects.

I User-defined, method-based interfaces (services)

I Guaranteed mutual exclusive access
I concurrently accessing tasks (clients)

are synchronised transparently
I ensures consistency

I Services can have logical pre-conditions (Guards)
I boolean conditions, based on inner state of Shared Object
I can block a caller, until condition holds
I a blocked service call can only be released by another

unblocked service, changing the object’s inner state

FIFO method guard

put(int item) full
int get() !empty

Table: Simple guards example

I Different flavours, transparently handled
during simulation/implementation
I Local objects, all clients under the same RTOS
I Software Objects, explicitly mapped to shared memory
I Dedicated Hardware Objects, e.g. as accelerators

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 8 Communication via Shared Objects
Method-based communication

Communication between Tasks is modelled in terms of so-called Shared Objects.

I User-defined, method-based interfaces (services)

I Guaranteed mutual exclusive access
I concurrently accessing tasks (clients)

are synchronised transparently
I ensures consistency

I Services can have logical pre-conditions (Guards)
I boolean conditions, based on inner state of Shared Object
I can block a caller, until condition holds
I a blocked service call can only be released by another

unblocked service, changing the object’s inner state

FIFO method guard

put(int item) full
int get() !empty

Table: Simple guards example
I Different flavours, transparently handled

during simulation/implementation
I Local objects, all clients under the same RTOS
I Software Objects, explicitly mapped to shared memory
I Dedicated Hardware Objects, e.g. as accelerators

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 9 Timing annotations in OSSS
Application Layer model

I Estimated Execution Time (EET) annotations

I Block-wise annotation, can not be nested

I Flexible granularity

I Must not contain communication

I Required Execution Time (RET) annotations

I Check of relative deadlines during simulation

I Can be nested, and enclose communication

while(some_condition)

 OSSS_RET(1, SC_MS)

{

 OSSS_EET(20, SC_US)

 {

 max_i = compute_max_i();

 }

 for(int i=0; i<max_i; ++i)

 OSSS_EET(100, SC_US)

 {

 }

 if(my_condition)

 {

 result = my_shared->get();

 }

}

// blo has to be finished within 1ms

// comm. outside of EET blos onl

// .. loop body .

// .. some computation .

// estimate data-dependent loop

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 9 Timing annotations in OSSS
Application Layer model

I Estimated Execution Time (EET) annotations

I Block-wise annotation, can not be nested

I Flexible granularity

I Must not contain communication

I Required Execution Time (RET) annotations

I Check of relative deadlines during simulation

I Can be nested, and enclose communication

while(some_condition)

 OSSS_RET(1, SC_MS)

{

 OSSS_EET(20, SC_US)

 {

 max_i = compute_max_i();

 }

 for(int i=0; i<max_i; ++i)

 OSSS_EET(100, SC_US)

 {

 }

 if(my_condition)

 {

 result = my_shared->get();

 }

}

// blo has to be finished within 1ms

// comm. outside of EET blos onl

// .. loop body .

// .. some computation .

// estimate data-dependent loop

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 10 Application Layer simulation
Application Layer model

inactive
active

(user EETs)

waiting
(duration)

blocked

aquire

use
(user EETs)

release

initiate

waitunblock

unblock block

Software Task Shared Object

In
te

rf
a

ce
 M

et
h

o
d

 C
a

ll
(I

M
C

)

0 2 4 6 8 10 12 14 16 18 [ms]
time

T2

T0

T1

T3

T4

T5 2

2 0

1 0

0

2

1

I Highest simulation performance, used for functional validation

I No task scheduling, all tasks run fully parallel

I Only EETs are considered (if available)

I Resource contention only due to conflicting acceses

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 11 Outline
Architecture model

1 Introduction

2 Application Layer model

3 Architecture model
OSSS Software Multi-Tasking
Virtual Target Architecture Layer simulation

4 Simulation of platform artefacts

5 Conclusion

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 12 Virtual Target Architecture model
Architecture model

I Mapping of Application Layer elements to concrete Virtual Target Architecture elements
I processor cores
I hardware blocks
I memories
I interconnects

I Abstract communication links mapped to explicit interconnects
I point-to-point channels, buses,. . .
I (Remote) Service calls handled via Remote Method Invocation protocol (RMI)

I Task mapping
I Hardware tasks can only be mapped exclusively (no scheduling).
I Multiple software tasks may share one processor, handled by a local RTOS/runtime

→ Asymmetric multi-processing

I Shared Object mapping
I Mapping to Hardware, Software (SHM), or Local objects
I Remote objects require explicit mapping.
I Local objects can be mapped implicitly.

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 12 Virtual Target Architecture model
Architecture model

I Mapping of Application Layer elements to concrete Virtual Target Architecture elements
I processor cores
I hardware blocks
I memories
I interconnects

I Abstract communication links mapped to explicit interconnects
I point-to-point channels, buses,. . .
I (Remote) Service calls handled via Remote Method Invocation protocol (RMI)

I Task mapping
I Hardware tasks can only be mapped exclusively (no scheduling).
I Multiple software tasks may share one processor, handled by a local RTOS/runtime

→ Asymmetric multi-processing

I Shared Object mapping
I Mapping to Hardware, Software (SHM), or Local objects
I Remote objects require explicit mapping.
I Local objects can be mapped implicitly.

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 13 OSSS Software Multi-Tasking
Architecture model

I Abstraction of underlying RTOS: OSSS Software Runtime
I hide low-level, error-prone RTOS primitives from designer

I Main purpose: scheduling of mapped tasks
I Task state management and guarantee,

that only one task is running at a time
I Periodic task activation, deadline observation
I Time synchronisation and preemption model
I Handling resource (Shared Object) access,

signaling of unblocked tasks.

I Several predefined scheduling policies supported
I Static priorities, preemptive and cooperative
I Time-slice based round-robin
I EDF, RMS
I . . . and user-defined schedulers via interface class

I Synchronisation with other runtime instances.

Software
Processor

RTOS

 OSSS SW
Runtime

T2

T1

T3

inactive ready running

blocked

waiting

initiate

assign

deassign

waitunblock

blockunblock

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 14 Virtual Target Architecture Layer simulation
Architecture model

inactive ready

waiting
(duration)

blocked

aquire

use
(user EETs)

release

Initiate
(init time)

waitunblock

unblock block

Software Task Shared Object

In
te

rf
a

ce
 M

et
h

o
d

 C
a

ll
(I

M
C

)

running
(user EETs)

assign
(assign time)

deassign
(deassign time)

Scheduler
(scheduling EETs)

Runtime

Shared Communication
Medium

Shared Memory

idle

aquire
(protocol time)

use
(data dep. time)

release
(protocol time)

Sh
a

re
d

 M
ed

iu
m

 A
cc

es
s

User Data of Shared Object 0

Access Protocol Data of Shared Object 0

User Data of Shared Object 1

Access Protocol Data of Shared Object 1 Memory Access

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 15 Outline
Simulation of platform artefacts

1 Introduction

2 Application Layer model

3 Architecture model

4 Simulation of platform artefacts

5 Conclusion

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 16 Simulation of Platform Artefacts

I Virtual Target Architecture Layer simulation enables
analysis of (software) architecture artefacts

I Effects of design parameters on system behaviour
I application mapping
I (local) scheduling policies, task priorities
I distributed resource access strategies

I Some examples in the following, based on artificial
system
I Static priorities: T0 > T1 > . . . > T5
I Core 0 higher priority than Core 1
I Distributed resource access (no central arbiter)
I Blocking behaviour either by suspend or busy-waiting
I Task preemption during resource access

I allowed (not handled specifically)
I allowed, but support (local) priority inheritance
I explicitly suppressed

Virtual Target
Architecture

Layer

Memory
Block

In
te

rc
on

ne
ct

Software
Processor

Core 0

RTOS

 OSSS
Runtime

 Hardware
Block

Software
Processor

Core 1

RTOS

 OSSS
Runtime

...

Application
Layer

(Shared) Object

Task

S3

T0

T2

T1

T3

T5

S0

S1

S2

T4

0 2 4 6 8 10 12 14 16 18 [ms]
time

T2

T0

T1

T3

T4

T5 2

2 0

1 0

0

2

1

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 17 Priority inversion – busy waiting
Resource access example (I)

0 2 4 6 8 10 12 14 16 18 [ms]
time

T2

T0

T1

T3

T4

T5

0

2

1 1

2

2

1

0

0

0

2

2

2

2

activation execution X access res. X preemption X spin on res. Xblocked

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 18 Priority inheritance – busy waiting
Resource access example (II)

0 2 4 6 8 10 12 14 16 18 [ms]
time

T2

T0

T1

T3

T4

T5

0

2

1

2

2

1

0

0

0

2

2

2 2

activation execution X access res. X preemption X spin on res. Xblocked

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 19 Priority inheritance – suspend
Resource access example (III)

0 2 4 6 8 10 12 14 16 18 [ms]
time

T2

T0

T1

T3

T4

T5

0

1 0

0

2

1

2 2

2 2

activation execution X access res. X preemption X spin on res. Xblocked

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 20 No preemption – suspend
Resource access example (IV)

0 2 4 6 8 10 12 14 16 18 [ms]
time

T2

T0

T1

T3

T4

T5 2

2 0

1 0

0

2

1

activation execution X access res. X preemption X spin on res. Xblocked

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 21 No preemption – busy-waiting
Resource access example (V)

0 2 4 6 8 10 12 14 16 18 [ms]
time

T2

T0

T1

T3

T4

T5 2

2 0

1 0

0

1

22

activation execution X access res. X preemption X spin on res. Xblocked

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 22 Outline
Conclusion

1 Introduction

2 Application Layer model

3 Architecture model

4 Simulation of platform artefacts

5 Conclusion

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 23 Summary & Outlook
Conclusion

I Extension of OSSS Design Methodology for MPSoC.

I Provides flexible mapping of Tasks and Objects to explicit virtual architecture elements.
I separate modelling of Application and Architecture avoids costly design changes during exploration
I direct path to implementation

I Abstract software modelling
I Based on annotated execution times and explicit modelling of shared resources.
I Enables early analysis of software architecture artefacts by showing impact of

I scheduling policies
I priorities, periods, deadlines
I resource access strategies

I Outlook
I Extend software multi-tasking model towards (locally) symmetric multi-processing

(multiple cores per RTOS instance)
I Extend existing mapping to formal model based on Extended Real-Time Task Networks
I Enable design decisions through back annotation of communication delays

to simulation & analytical model.

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 23 Summary & Outlook
Conclusion

I Extension of OSSS Design Methodology for MPSoC.

I Provides flexible mapping of Tasks and Objects to explicit virtual architecture elements.
I separate modelling of Application and Architecture avoids costly design changes during exploration
I direct path to implementation

I Abstract software modelling
I Based on annotated execution times and explicit modelling of shared resources.
I Enables early analysis of software architecture artefacts by showing impact of

I scheduling policies
I priorities, periods, deadlines
I resource access strategies

I Outlook
I Extend software multi-tasking model towards (locally) symmetric multi-processing

(multiple cores per RTOS instance)
I Extend existing mapping to formal model based on Extended Real-Time Task Networks
I Enable design decisions through back annotation of communication delays

to simulation & analytical model.

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

I 24

Thanks for your attention!

Questions?

Philipp A. Hartmann Mapping Concurrent Applications to MPSoCs June 28, 2010

http://www.offis.de
http://www.offis.de

	Introduction
	OSSS – Overview

	Application Layer model
	Method-based communication
	Estimated and Required Execution Times
	Application Layer simulation

	Architecture model
	OSSS Software Multi-Tasking
	Virtual Target Architecture Layer simulation

	Simulation of platform artefacts
	Conclusion

