Statically Analyzable Programming Model for Dynamic Streaming

Peter Poplavko^{1,2}

joint work with: Pascal Fradet¹, Alain Girault¹, Ali Erdem Ozcan³

¹ INRIA Rhône-Alpes, ² CRI Grenoble, France

³ STMicroelectronics Inc., Ottawa, Canada

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

29 June 2011, Map2MPSoC

motivation

- basic model of computation
- status
 - proposed model of computation
 - tools
- summary

motivation

• the advent many-core SoCs:

tens / hundreds of processors

high-performance applications e.g. HDTV

=> A and B

- A: thread-level parallelism
 - data parallelism (clone threads for different data)
 - functional parallelism (different threads in a pipeline)
- **B**: point-to-point FIFO connections

A + B = dataflow

dataflow model of computation (MoC) :

expressive

- data-dependent communication rates

wide dynamic range

pure dataflow execution

- fully distributed
- where no central controllers intervene

compile-time verifiable for:

- absence of deadlock / liveness
- bounded memory requirements

state of the art

• static-rate and static-structure streaming

video sample rate conversion, noise reduction, FFT, ...

- Synchronous Dataflow SDF [E.A.Lee and D.G.Messerschmitt 1987]
- dynamic-rate and dynamic-structure streaming

MP3/MPEG4 codecs, video surveillance, interactive TV ...

- which model of computation (MoC) ???

KPN	- Kahn Process Networks	[G.Kahn 1974]
	extensions of SDF:	
HDF	- heterochronous	[A.Girault <i>et al</i> 1999]
P SDF	- parametric	[B.Bhattacharyya and S.S.Bhattacharyya 2001]
SA DF	- scenario-aware	[B.D.Theelen <i>et al</i> 2006]
VRDF	- variable-rate	[M.H.Wiggers et al 2008]

... no complete answer to our goals

starting point: SDF

SDF graph (initial state):

one balance equation per edge:

 $\#_{A} \cdot 4 = \#_{B} \cdot 3$

minimal solution = SDF iteration: $\#_{A} = 3; \#_{B} = 4;$

after iteration \rightarrow initial state

schedule 1: A A A B B B B = $A^3 B^4$

schedule 2: A B B A B A B A B = A B^2 (AB)²

a larger SDF:

system of balance equations

a schedule: A $B^4 C^2$

proposed MoC: SPDF

Schedulable Parametric Dataflow (SPDF)

- rates: parametric or constant
- a parameter is set by an actor
 - parameter changes every "period" actor executions
 - notation: set *parameter*_[period]

a schedule: A $(B^3 C^r D)^q$

quasi-static schedule

SPDF details

parameter expressions

- polynomials with positive integer coefficients
- Boolean expressions

no fixed rule on which actors may set a given parameter the tools check inconsistencies in parameter communication

tools [1]

implement parameter communication

static analysis:

- rate consistency
 - solutions of balance equations must exist
- parameter change safety
 - rates may change only at certain points
- liveness of the cycles

compute a quasi-static schedule

compile time!

[1] "Static Analysis of Parametric Dataflow Graphs", to appear soon as *INRIA Technical Report*.

rate consistency

do balance equations have a solution for any parameter value?

turn all directed edges into undirected edges

consider every cycle:

we have solutions iff the factors are balanced in every cycle

parameter change safety

check the correctness of the **periods**

algorithm:

- 1. cover the graph by a hierarchy of subgraphs.
- 2. for every subgraph bottom-up:

solve local balance equations

#A, #B... - safe periods for setting parameters at A, B, ...

"regions of influence" of parameters: e.g. region r, region p

parameter change safety (2)

for example, region r

during an iteration of subgraph, rates should not change

liveness of cyclic paths

enough initial tokens

sufficient condition:

 $\#^{c}$ – solution of local balance equations for the **cyclic path**

 $\exists k : m_k \geq i_k \cdot \#^{\mathsf{C}}(\mathsf{A}_k)$

the above is easy to verify

 m_k - a compile-time constant

 i_k , **#**^c - expressed by Boolean functions and **positive-coefficient** polynomials

max values of parameters should be provided

video decoder example

(rates equal to 1 are omitted here)

the regions of parameters

- dynamic streaming model of computation
 - schedulable at compile-time
 - preserves many advantages of SDF

future work

- memory minimization
- reconfiguration
- MPSoC mapping and scheduling
- verify the performance analytically
 - worst-case, average-case analysis

[1] "Static Analysis of Parametric Dataflow Graphs", to appear soon as *INRIA Technical Report*.