Feedback-Directed Polyhedral Optimization at Run Time

Andreas Simbürger

Armin Größlinger

Christian Lengauer

University of Passau Chair of Programming

29. Juni 2011

Agenda

- The Polyhedral Model
 - Introduction
 - Existing Problems
- Polyhedral Optimization at Run Time
 - Run Time Optimization
 - The Feedback Loop
- 3 Conclusions

The Polyhedral Model

- Abstract from the input language to expose parallelism.
- Generic framework for all loop transformations.
- Linear programming to find the optimal transformation polyhedron in terms of a given objective function.
 - Maximal amount of parallelism.
 - Minimal amount of processors.
 - Minimal power consumption.

But

The polyhedral model is limited to (piecewise) affine-linear expressions for the iteration space, the memory accesses and the dependencies.

Modelling

Static Control Program (SCoP)

```
 \begin{array}{lll} \mbox{for } (i=1; \ i \leq n; \ i++) \\ \mbox{for } (j=1; \ j \leq n-i; \ j++) \\ \mbox{A[i][j]} &= \mbox{A[i-1][j]} + \mbox{A[i][j-1]}; \end{array}
```

- Structured control flow
 - Regular loop nests
 - Conditions
- Loop bounds and memory accesses restricted to (piecewise) affine-linear expressions.
- Side-effect free function calls.

$\mathsf{Trans} \mathsf{formation}$

Iteration space:

$$1 \le i \le n$$

$$1 \le j \le n-i$$

Dependences:

$$(i,j) \rightarrow (i+1, j)$$

$$(i,j) \rightarrow (i, j+1)$$

• Iteration space:

$$1 \le p \le t$$

Dependences:

$$(t,p) \rightarrow (t+1, p)$$

$$(t,p) \rightarrow (t+1, p+1)$$

Problem 1: Non-Linearity

Problem

- Non-linear parameters: A[n*i + m*j + n*m]
- Non-linear variables: A[i*i]
- Incomplete knowledge about parameters.
- Static solutions yield non-efficient target code.

Problem 1: Non-Linearity

Problem

- Non-linear parameters: A[n*i + m*j + n*m]
- Non-linear variables: A[i*i]
- Incomplete knowledge about parameters.
- Static solutions yield non-efficient target code.
- Non-linear variables cannot be handled at all.

Problem 2: Generation of Efficient Code

Problem

The optimal static solution is not always the optimal solution for a given target architecture.

- Cache size/-hierarchy unknown.
- Unknown co-processors.
- Synchronization costs unknown.
- Static solution is not adaptable to dynamic run-time constraints.

Solution

Polyhedral Optimization at Run Time

Moving the polyhedral optimization framewok from compile time to run time:

- eliminates static non-linearity.
- enables target code optimization.

Solution

Polyhedral Optimization at Run Time

Moving the polyhedral optimization framewok from compile time to run time:

- eliminates static non-linearity.
- enables target code optimization.

Adaption

Changing run time requirements may result in a change of the objective function:

Maximal amount of parallelism

↓

Minimal power consumption

Knowledge about parameters increases the coverage of the model.

Knowledge about parameters increases the coverage of the model.

Parameter ← Constant

Parameters are a constant at run time \rightarrow non-linearity disappears.

Eliminating Static Non-Linearity

Knowledge about parameters increases the coverage of the model.

Parameter ← Constant

Parameters are a constant at run time \rightarrow non-linearity disappears.

Parameter ← Small value set

Parameters vary from a small set of values (multi-versioning).

PolyJIT - Coverage

Coverage

How much execution time is spent inside a SCoP?

- Coverage testing on top of the LLVM Polly project.
- LLVM TestSuite, SPEC2006, PolyBench.
- Evaluate impact of the (static) polyhedral model.
- Extend coverage analysis to run time.
- Run time tests in terms of one single test input.

PolyJIT - Coverage (cont'd)

Test	# of SCoPs		% of Run Time	
	static	approx. max	static	approx. max
403.gcc	562	2752	7.97916	22.72334
smg2000	85	1418	0.51119	75.44391
lencod	153	1405	6.17812	70.42025
cns-typeset	78	1330	0.02395	17.08722
pairlocalalign	153	850	0.01527	18.44517
sqlite3	68	819	2.23905	16.20938
clamscan	185	664	0.10215	1.68986
ldecod	77	636	6.17812	56.60804

Enable Target Code Optimization

- Run time knowledge introduces new constraints.
 - Cache sizes.
 - Communication costs.
 - Actual system load.
 - Power constraints.
- Constraints introduced at run time have no impact on program semantics.

Problem

- No knowledge about the impact of given run time constraints.
- No knowledge about interactions between run time constraints.
- Non-linear constraints.

Feedback-Directed Optimization

Problem

- Unknown interactions between run time constraints.
- Linear approximation for these constraints.
- Approximation yields inefficient target code.

Solution

- Apply run time constraints iteratively.
- Evaluate every single solution with profiling information.
- Accept transformation if benefit passes a given threshold.

Why Feedback-Directed?

Approximated run-time constraint requires us to limit dimension ${\tt i}$ or ${\tt j}$ to values smaller than 2.

Why Feedback-Directed?

Approximated run-time constraint requires us to limit dimension i or i to values smaller than 2.


```
1 \le j \le 3
```

Why Feedback-Directed?

Approximated run-time constraint requires us to limit dimension ${\tt i}$ or ${\tt j}$ to values smaller than 2.

1	\leq	i	\leq	3
1	\leq	j	\leq	3
i	\leq	2		
j	\leq	2		

Feedback Loop

Conclusions

Limitations of static polyhedral methods

- Ineffecient generation of target code.
- Non-linearity restricts the applicability of the model.
- Non-adaptability to changing run time constraints.

Added benefits of dynamic polyhedral methods

- Non-linearity vanishes in many cases.
- Adaptability to changing run time constraints.
- Feedback directed adaptive optimization to evaluate transformations.

Thank You

Thanks for your attention! Questions?