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Background

Radio

» Modern embedded devices support multiple
wireless communication standards.

» We refer to these standards as radios.

» Smartphones, for e.g., include various radios,
such as WCDMA, LTE and IEEE 802.11x.
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Background

Radio

» Modern embedded devices support multiple
wireless communication standards.

» We refer to these standards as radios.

» Smartphones, for e.g., include various radios,
such as WCDMA, LTE and IEEE 802.11x.

Radio Baseband Processing

» The three main stages are filters, modem and codec.
» These stages are customarily implemented as hardware blocks.
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Background

Software Defined Radio (SDR)

» Radio design is shifting from dedicated hardware
blocks to software processes for better flexibility

and cost efficiency. \ﬁ
» SDR is a radio implemented as software processes §
N

that run on a MPSoC.
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Background

Software Defined Radio (SDR)

» Radio design is shifting from dedicated hardware
blocks to software processes for better flexibility
and cost efficiency.

» SDR is a radio implemented as software processes
that run on a MPSoC.

MPSoC architectures for SDR

» combine homogeneous and heterogeneous multiprocessing, including
GPPs, vector processors and weakly programmable accelerators.
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Background

SDR design

» Requirements:

« satisfying temporal requirements such as latency and throughput.
« staying within limited resource budgets, such as battery power.
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» Challenges include
e dynamism: data-dependent workload and system variability.
¢ high workload: e.g. in smartphones, a digital workload of 100GOPS
within 1W power budget.
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Background

SDR design

» Requirements:

« satisfying temporal requirements such as latency and throughput.
« staying within limited resource budgets, such as battery power.

» Challenges include

e dynamism: data-dependent workload and system variability.
¢ high workload: e.g. in smartphones, a digital workload of 100GOPS
within 1W power budget.

» One of our solutions is variation-aware dataflow-based design flow.
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Background

Variation-aware dataflow-based design flow

» The design flow comprises three main aspects.
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Variation-aware dataflow-based design flow

» The design flow comprises three main aspects.

« modeling techniques for radios, storage, arbitration, etc
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Background

Variation-aware dataflow-based design flow

» The design flow comprises three main aspects.

« modeling techniques for radios, storage, arbitration, etc

« scheduling techniques for scarce resources such as power and memory
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Background

Variation-aware dataflow-based design flow
» The design flow comprises three main aspects.
« modeling techniques for radios, storage, arbitration, etc
« scheduling techniques for scarce resources such as power and memory

« analysis techniques to compute buffer-sizing, latency and throughput.
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Outline

What Synchronous Dataflow Scenarios are
and how to analyse them

How to model radios using scenarios
dynamism in Long Term Evolution (LTE)
and how scenarios capture dynamism in LTE
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Synchronous dataflow (SDF)
SDF

» A SDF is a directed graph that can model concurrent tasks.

» consists of actors that communicate tokens through FIFO channels.
» Actors have fixed port rates and execution durations.
» Channels may have fixed number of initial tokens.
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Synchronous dataflow (SDF)
SDF

» A SDF is a directed graph that can model concurrent tasks.

v

consists of actors that communicate tokens through FIFO channels.

v

Actors have fixed port rates and execution durations.

v

Channels may have fixed number of initial tokens.
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Firing of an actor = starting execution
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Synchronous dataflow (SDF)
SDF

» A SDF is a directed graph that can model concurrent tasks.
» consists of actors that communicate tokens through FIFO channels.

» Actors have fixed port rates and execution durations.
» Channels may have fixed number of initial tokens.
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» Firing of an actor = starting execution
» Repetition vector: the number of firings of each actor that brings the

graph back to its original state. e.g for the above SDF, R =[2,1,2]
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Synchronous dataflow (SDF)
SDF

» A SDF is a directed graph that can model concurrent tasks.

» consists of actors that communicate tokens through FIFO channels.
» Actors have fixed port rates and execution durations.
» Channels may have fixed number of initial tokens.

Y 1 2, 2 1,

11 1

» Firing of an actor = starting execution
» Repetition vector: the number of firings of each actor that brings the

graph back to its original state. e.g for the above SDF, R =[2,1,2]

[teration

» is a set of actor firings, as specified by the repetition vector.

» an iteration is marked by the production times of initial tokens, that
is recoreded in a time-stamp vector . TU/ TecmischeUn
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Synchronous Dataflow Scenarios

Scenario-aware Dataflow (SADF)

» A scenario - a single mode of operation of
an application.
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» A scenario - a single mode of operation of

an application. )
PP scenario 1

» For a scenario, behavior is mostly

invariable and modeled with SDF. W
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» A scenario - a single mode of operation of
an application.
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Synchronous Dataflow Scenarios

Scenario-aware Dataflow (SADF)

» A scenario - a single mode of operation of

an application. )
PP scenario 1

» For a scenario, behavior is mostly

invariable and modeled with SDF. W

» Possible transitions can be modeled by a
finite-state machine (FSM). scenario 2

FSM-SADF _»M
» is a tuple F = (S, f), consisting of a set of

scenarios S and a FSM f.
FSM
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Analysing FSM-SADF - single scenario

» Every SDF has a matrix M, whose dimension is |y| x |7].
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» Every SDF has a matrix M, whose dimension is |y| x |7].
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1 2, 2 1
o 1 2 3 2
M= |5 6 5|, iy=distance b/n tokens y & x tokens
7 8 7
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1 2, 2 1
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» Any two consecutive iterations are related by a matrix multiplication
in (max,+) algebra, i.e. 11 =M - y.
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Analysing FSM-SADF - single scenario

» Every SDF has a matrix M, whose dimension is |y| x |7].

y 1 2, 2 1

2 3 2
5 6 5], ixy=distance b/n tokens y & x tokens
7 8 7

11 1

M =

» Any two consecutive iterations are related by a matrix multiplication
in (max,+) algebra, i.e. 11 =M - y.

» for the above graph, ~ for the first 3 iterations are
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Y% = 10|71 =16],7%2=1[13]|,y3= |20
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Analysing FSM-SADF - single scenario

» Every SDF has a matrix M, whose dimension is |y| x |7].

y 1 2, 2 1

2 3 2
5 6 5], ixy=distance b/n tokens y & x tokens
7 8 7

11 1

M =

» Any two consecutive iterations are related by a matrix multiplication
in (max,+) algebra, i.e. 11 =M - y.

» for the above graph, ~ for the first 3 iterations are

0 3 10 17
Y% = 10|71 =16],7%2=1[13]|,y3= |20
0 8 15 22

» Period = 7 time-units & hence, throughput = % iters. per time-unit.
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Analysing FSM-SADF: multiple scenarios

Exact methods*

» the inverse of maximum cycle
mean (MCM) of the state

space.

* M.Geilen and S. Stuijk, CODES+ISSS, 2010
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Analysing FSM-SADF: multiple scenarios

Exact methods* _ i
_ _ Conservative methods!
» the inverse of maximum cycle

mean (MCM) of the state > linear upper-bounds to v«

space. ) _
» find a vector T and a scalar

number \ such that
Y XT+k-A

» Scenario graph: ma§< Ts + As
sE
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Analysing FSM-SADF: multiple scenarios

Exact methods* _ i
_ _ Conservative methods!
» the inverse of maximum cycle

mean (MCM) of the state > linear upper-bounds to v«

space. ) _
» find a vector T and a scalar

number \ such that
Y XT+k-A

» Scenario graph: ma§< Ts + As
sE

» Reference schedule: MCM of
the FSM where the weight of
each node is 75 + As.

* M.Geilen and S. Stuijk, CODES+ISSS, 2010
TM.Geilen, ACM tran. on Emb. Comp. Sys. 2010
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Long Term Evolution (LTE)

» LTE is a recent standard in cellular wireless communication.
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Long Term Evolution (LTE)

» LTE is a recent standard in cellular wireless communication.

LTE frame structure for FDD

1 Frame (10ms)
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» allocation of the grid to
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sub-frames.
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Long Term Evolution (LTE)

» LTE is a recent standard in cellular wireless communication.

Resource grid of a sub-frame
Time domain (OFDM symbols)
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Long Term Evolution (LTE)

» LTE is a recent standard in cellular wireless communication.

LTE frame structure for FDD Resource grid of a sub-frame
Time domain (OFDM symbols)
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FSM-SADF model of LTE

1
Sy : X(dec) =192, R(p) = 1 Sy : X(dec) = 895, R(p) = 12

S3 : X(dec) = 970, R(p) = 13 Sg : X(dec) = 820, R(p) = 11 TU r;:z;m: Universiteit
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Analysing FSM-SADF model of LTE

Worst-case throughput computation

» WCT computation of the FSM-SADF model
(x10~* sub-frames/time-unit)

Method 1 2 3 4 5
Static Scenario Reference | State-

Name SDFG graph schedule space MaxPlus

WCT 2.6 5.2 6.6 8.9 8.9

» Scenario-based techniques improve the static SDF result by 2 to 3.4

times more.
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Trade-offs between methods

Throughput (sub-frames/time-unit)

/ Electronic Systems Group

between the different analysis techniques.

» There are trade-offs in conservativeness, run-time and scalability

“

Number of Initial Tokens

(a) Varying number of initial tokens

Number of \mllal Tokens

(b) Varying number of initial tokens
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Trade-offs between methods

» There are trade-offs in conservativeness, run-time and scalability
between the different analysis techniques.

» Methods 2 and 3 trade accuracy for lower run-time - useful for
iterative DSE algorithms.

/ Electronic Systems Group

(a) Varying number of initial tokens

Number of Initial Tokens

(b) Varying number of initial tokens
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Trade-offs between methods

between the different analysis techniques.

» There are trade-offs in conservativeness, run-time and scalability

» Methods 2 and 3 trade accuracy for lower run-time - useful for

v

Throughput (sub-frames/time-unit)
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iterative DSE algorithms.

Methods 4 and 5 give the exact WCT, at the cost of run-time.
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Trade-offs between methods

There are trade-offs in conservativeness, run-time and scalability
between the different analysis techniques.

“

» Methods 2 and 3 trade accuracy for lower run-time - useful for
iterative DSE algorithms.

» Methods 4 and 5 give the exact WCT, at the cost of run-time.
» Method 5 has a run-time in the order of tens of second.

80
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(a) Varying number of initial tokens
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» Static dataflow models such as SDF that abstract applications
dynamism lead to pessimistic temporal analysis.
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» Static dataflow models such as SDF that abstract applications
dynamism lead to pessimistic temporal analysis.

» Synchronous dataflow scenarios can be used to capture dynamism in
SDRs.
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» Static dataflow models such as SDF that abstract applications
dynamism lead to pessimistic temporal analysis.

» Synchronous dataflow scenarios can be used to capture dynamism in
SDRs.

» Existing timing analysis techniques of SDF scenarios have very low
run-time that scales well with increase in graph size.
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» Static dataflow models such as SDF that abstract applications
dynamism lead to pessimistic temporal analysis.

» Synchronous dataflow scenarios can be used to capture dynamism in
SDRs.

» Existing timing analysis techniques of SDF scenarios have very low
run-time that scales well with increase in graph size.

Thank you! Questions?
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