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Background

Radio

I Modern embedded devices support multiple
wireless communication standards.

I We refer to these standards as radios.

I Smartphones, for e.g., include various radios,
such as WCDMA, LTE and IEEE 802.11x.

Radio Baseband Processing

I The three main stages are �lters, modem and codec.

I These stages are customarily implemented as hardware blocks.
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Background

Software De�ned Radio (SDR)

I Radio design is shifting from dedicated hardware
blocks to software processes for better �exibility
and cost e�ciency.

I SDR is a radio implemented as software processes
that run on a MPSoC.
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MPSoC architectures for SDR

I combine homogeneous and heterogeneous multiprocessing, including
GPPs, vector processors and weakly programmable accelerators.
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Background

SDR design

I Requirements:
• satisfying temporal requirements such as latency and throughput.
• staying within limited resource budgets, such as battery power.

I Challenges include
• dynamism: data-dependent workload and system variability.
• high workload: e.g. in smartphones, a digital workload of 100GOPS
within 1W power budget.

I One of our solutions is variation-aware data�ow-based design �ow.
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Background

Variation-aware data�ow-based design �ow

I The design �ow comprises three main aspects.

• modeling techniques for radios, storage, arbitration, etc

• scheduling techniques for scarce resources such as power and memory

• analysis techniques to compute bu�er-sizing, latency and throughput.
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Outline

What Synchronous Data�ow Scenarios are
and how to analyse them

How to model radios using scenarios
dynamism in Long Term Evolution (LTE)
and how scenarios capture dynamism in LTE
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Synchronous data�ow (SDF)

SDF

I A SDF is a directed graph that can model concurrent tasks.

I consists of actors that communicate tokens through FIFO channels.

I Actors have �xed port rates and execution durations.

I Channels may have �xed number of initial tokens.

1 2 12

1

1

11

x y z

1 3 2

I Firing of an actor = starting execution

I Repetition vector: the number of �rings of each actor that brings the
graph back to its original state. e.g for the above SDF, R̄ = [2, 1, 2]

Iteration

I is a set of actor �rings, as speci�ed by the repetition vector.

I an iteration is marked by the production times of initial tokens, that
is recoreded in a time-stamp vector γ.
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Synchronous Data�ow Scenarios

Scenario-aware Data�ow (SADF)

I A scenario - a single mode of operation of
an application.

I For a scenario, behavior is mostly
invariable and modeled with SDF.

I Possible transitions can be modeled by a
�nite-state machine (FSM).

FSM-SADF

I is a tuple F = (S , f), consisting of a set of
scenarios S and a FSM f.
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Analysing FSM-SADF - single scenario

I Every SDF has a matrix M, whose dimension is |γ| × |γ|.
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M =

"
2 3 2
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7 8 7

#
, ixy=distance b/n tokens y & x tokens

I Any two consecutive iterations are related by a matrix multiplication
in (max ,+) algebra, i.e. γk+1 = M · γk .

I for the above graph, γ for the �rst 3 iterations are

γ0 =

00
0

 , γ1 =

36
8

 , γ2 =

1013
15

 , γ3 =

1720
22


I Period = 7 time-units & hence, throughput = 1

7
iters. per time-unit.
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Analysing FSM-SADF: multiple scenarios

Exact methods*

I the inverse of maximum cycle
mean (MCM) of the state
space.

Conservative methods†

I linear upper-bounds to γk

I �nd a vector τ̄ and a scalar
number λ such that
γk � τ̄ + k · λ

I Scenario graph: max
s∈S

τs + λs

I Reference schedule: MCM of
the FSM where the weight of
each node is τs + λs .

* M.Geilen and S. Stuijk, CODES+ISSS, 2010

†M.Geilen, ACM tran. on Emb. Comp. Sys. 2010
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Long Term Evolution (LTE)

I LTE is a recent standard in cellular wireless communication.

LTE frame structure for FDD
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FSM-SADF model of LTE
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Analysing FSM-SADF model of LTE

Worst-case throughput computation

I WCT computation of the FSM-SADF model
(×10−4 sub-frames/time-unit)

Method 1 2 3 4 5

Name
Static
SDFG

Scenario
graph

Reference
schedule

State-
space

MaxPlus

WCT 2.6 5.2 6.6 8.9 8.9

I Scenario-based techniques improve the static SDF result by 2 to 3.4
times more.
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Trade-o�s between methods

I There are trade-o�s in conservativeness, run-time and scalability
between the di�erent analysis techniques.

I Methods 2 and 3 trade accuracy for lower run-time - useful for
iterative DSE algorithms.

I Methods 4 and 5 give the exact WCT, at the cost of run-time.

I Method 5 has a run-time in the order of tens of second.
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Conclusions

I Static data�ow models such as SDF that abstract applications
dynamism lead to pessimistic temporal analysis.

I Synchronous data�ow scenarios can be used to capture dynamism in
SDRs.

I Existing timing analysis techniques of SDF scenarios have very low
run-time that scales well with increase in graph size.

Thank you! Questions?
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