
Software Engineering
for Embedded Systems

Dirk Tetzlaff, Sabine Glesner
Berlin Institute of Technology (TU Berlin)

4th Workshop on Mapping of Applications to MPSoCs
St. Goar, June 29th, 2011

Towards Predicting Recursion Depth
Using Machine Learning

to Improve Task Mapping

June 29th, 2011

PE2

PE0 PE1

PE3

T1

T2

T1

ML-based Task Mapping[Map2MPSoCs'10]

Dirk Tetzlaff 2/14

Dependence

Program Architecture

T0

T2 T3 T4

Mapping

T5

T1T0

T2 T3

T5

T4

Communication aware

T1T0

T2 T3

T5

T4

Communication

Task Graph Annotated TG

Analyze ML

t0 t1

t2 t3
t4

t5

cxy Communication
amount

tx Execution time

c01

 Communication within loop bodies
Predict loop iteration count[CiSE'10]

 Communication within recursive functions
 Predict recursion depth

Power efficient

T1

T0
T2
T3

T4

T5

June 29th, 2011

Predicting Recursion Depth

Dirk Tetzlaff

Static analyses: over-approximate
Profiling: strongly input data dependent and expensive
WCET prediction, memory/stack analysis, HW-synthesis tools
disallow recursion or require annotations[GE+06], [P99], [R06], [BG+06]

 Related Work
 Recursion Flattening[SV08]:

Requires constant initialization and monotonic update
 Recursion Depth Analysis for Special Tree Traversal Algorithms[KP84]

Size of planted planar tree must be known

Use Machine Learning (ML)
 More precise with knowledge of runtime behavior
 Automatically generated and compile time not extended

3/14

June 29th, 2011

Outline

Dirk Tetzlaff 4/14

 Learning Recursion Depth
 Recap: ML-based Compilation

 Benchmarks
 Experiments

 Results

 Conclusion

June 29th, 2011

Recap: ML-based Compilation

Dirk Tetzlaff 5/14

Execute

Training Phase

Compile Phase

Function:
Features  Behavior

Code Features

Extraction
Program

Behavior
Predictions

Code Features

Behavior

ML

Extraction

Profiling

Programs

June 29th, 2011

Learning Recursion Depth

Dirk Tetzlaff 6/14

 Supervised classification learning
 Runtime behavior discretized into classes

 20 code features
 Parameters, return values, variables

 Structure (tree vs. list vs. array)
 Size (stack frame)

 Function body
 Static number of self-calls (fib vs. fac)
 Arithmetic operations (>> vs. / vs. –)
 File-IO (char vs. string)

weighted with static execution probability

June 29th, 2011

Initial Benchmark Suites

Dirk Tetzlaff 7/14

 153 programs from 12 benchmark suites
 Used for learning loop iteration count[CiSE'10]

 SPEC CPU{95,2000,2006}[1], NAS Parallel Benchmarks[2],
SWEET WCET[3], BioBench[4], MediaBench II[5], cBench[6],
LLCbench[7], LMbench[8], X Bench[9], Ptrdist[10]

Comprise only 347 recursive functions (of >26.000)
 Compared to 16.500 loops

June 29th, 2011

Extended Benchmark Collection

Dirk Tetzlaff 8/14

 395 programs from 31 benchmark suites
 CSiBE[11], Bit Stream Benchmarks[12], Fhourstones

Benchmark[13], FreeBench[14], GCbench[15], Heaplayers[16],
llvm[17], MallocBench[18], McCat[19], MediaBench[20],
MiBench[21], OldenBench[22], Phoronix Test Suite[23],
Prolangs-C[24], Shoot[25], Splash2[26], Trimaran[27],
UnixBench[28], Versabench[29]

 Now 890 recursive functions (of >70.000)

June 29th, 2011

Empirical Study of Recursion

Dirk Tetzlaff 9/14

 Loops preferred programming style vs. recursion
 67.800 loops vs. 890 recursive functions (of >70.000)

 Recursion used for
 media de-/encoding: h263, h264, jpg, speech recognition
 compression: bzip2
 string/tree traversal: parser, interpreter, rsynth, anagram
 biology: DNA/protein analysis, sequence alignment
 academic : Fibonacci, Ackermann, FOL prover, N-body

group motion, sorting, searching
 gaming: chess, go

June 29th, 2011

Outline

Dirk Tetzlaff 10/14

 Learning Recursion Depth
 Recap: ML-based Compilation

 Benchmarks
 Experiments

 Results

 Conclusion

June 29th, 2011

Experiments

Dirk Tetzlaff 11/14

 Compiler framework: CoSy
 Feature extraction, static branch prediction, path profiling

 Machine Learning: R Project
 rpart for predictor construction

 890 recursive functions analyzed
 424 actually recurse at least once

 Observed recursion depths: 1 – 300 million
 Recursion depth classified using truncated log10

 1 .. 9 Ã class 1
 10 .. 99 Ã class 2

...
 100 million .. 999.999.999 Ã class 9

June 29th, 2011

Experimental Results

Dirk Tetzlaff 12/14

 Self evaluation (self)
 Validation (val)

 331 functions used for learning
 93 functions used for prediction

Δk-Accuracy

Mean absolute Error

valself
0

1

2

0.28 0.98

Correlation

self val0

0.2

0.4

0.6

0.42 0.30

June 29th, 2011

Outline

Dirk Tetzlaff 13/14

 Learning Recursion Depth
 Recap: ML-based Compilation

 Benchmarks
 Experiments

 Results

 Conclusion

June 29th, 2011

Conclusion

Dirk Tetzlaff 14/14

 Predicting recursion depth via ML
 Huge collection of 31 benchmark suites

 About 400 programs
 Empirical study of recursion

 Experimental results
Precise prediction of runtime behavior (error < 1 class)

 Future Work
 Task graph extraction
 Learn execution times
 Apply ML-based task mapping to MPI programs

June 29th, 2011

Benchmark References

Dirk Tetzlaff 15/14

[1] Standard Performance Evaluation Corporation, 2011, http://www.spec.org/benchmarks.html#cpu.
[2] R. F. V. der Wijngaard, “NAS parallel benchmarks version 2.4,” NASA Ames Research Center, Moffett Field, CA,

NAS Technical Report NAS-02-007, October 2002.
[3] J. Gustafsson, “The WCET tool challenge 2006,” in 2nd International Symposium on Leveraging Applications of

Formal Methods (ISOLA’06), November 2007, pp. 248–249.
[4] K. Albayraktaroglu, A. Jaleel, X. Wu, M. Franklin, B. Jacob, C.-W. Tseng, and D. Yeung, “Biobench: A benchmark

suite of bioinformatics applications,” in ISPASS 2005: IEEE International Symposium on Performance Analysis
of Systems and Software, March 2005, pp. 2 –9.

[5] J. E. Fritts, F. W. Steiling, J. A. Tucek, and W. Wolf, “Mediabench II video: Expediting the next generation of
video systems research,” Microprocess. Microsyst., vol. 33, no. 4, pp. 301–318, 2009.

[6] G. Fursin, “Collective tuning initiative: automating and accelerating development and optimization of
computing systems,” in Proceedings of the GCC Developers’ Summit, June 2009.

[7] P. Mucci and K. S. London, “Low level architectural characterization benchmarks for parallel computers,” UT
Computer Science, Tech. Rep. 394, July 1998.

[8] L. McVoy and C. Staelin, “lmbench: Portable tools for performance analysis,” in ATEC ’96: Proceedings of the
1996 annual conference on USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX Association.

[9] T. M. Austin and SimpleScalar LLC, “X benchmarks,” 2004, http://www.simplescalar.com/.
[10] T. Austin, et al., The pointer-intensive benchmark suite, September 1995,

http://pages.cs.wisc.edu/~austin/ptr-dist.html.

June 29th, 2011

Benchmark References (2)

Dirk Tetzlaff 16/14

[11] Arp ́ d Besz ́ des and P. Carlini, “CSiBE benchmark: One year perspective and plans,” Proceedings of GCC
Developers’ Summit Ottawa, 2004.

[12] P. Gustafsson, “Bit stream benchmarks,” 2010, http://user.it.uu.se/~pergu/bitbench/index.html.
[13] J. Tromp, “The fhourstones benchmark,” 2010, http://homepages.cwi.nl/~tromp/c4/fhour.html.
[14] P. Rundberg and F. Warg, “The freebench v1.0 benchmark suite,” 2002,

http://www.elsniwiki.de/index.php/Main/FreeBench.
[15] H. Boehm, “An artificial garbage collection benchmark,” 2010,

http://www.hpl.hp.com/personal/Hans_Boehm/gc/gc_bench.html.
[16] E. D. Berger, B. G. Zorn, and K. S. McKinley, “Composing high-performance memory allocators,” in SIGPLAN

Conference on Programming Language Design and Implementation, 2001, pp. 114–124.
[17] LLVM Team, “LLVM Testing Infrastructure,” 2011, http://llvm.org/docs/TestingGuide.html.
[18] D. Grunwald, B. Zorn, and R. Henderson, “Improving the cache locality of memory allocation,” in Proceedings

of the ACM SIGPLAN 1993 conference on Programming language design and implementation, ser. PLDI ’93.
New York, NY, USA: ACM, 1993, pp. 177–186.

[19] M. Hind and A. Pioli, “Assessing the effects of flow-sensitivity on pointer alias analyses,” in Proc. of the 5th
International Symposium on Static Analysis. London, UK: Springer-Verlag, 1998, pp. 57–81.

[20] C. Lee, M. Potkonjak, and W. H. Mangione-Smith, “Mediabench: a tool for evaluating and synthesizing
multimedia and communicatons systems,” in 30th ACM/IEEE symposium on Microarchitecture, ser. MICRO
30. Washington, DC, USA: IEEE Computer Society, 1997, pp. 330–335.

June 29th, 2011

Benchmark References (3)

Dirk Tetzlaff 17/14

[21] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “Mibench: A free,
commercially representative embedded benchmark suite,” in IEEE International Workshop on Workload
Characterization, 2001, pp. 3–14.

[22] M. C. Carlisle and A. Rogers, “Software caching and computation migration in Olden,” in Proceedings of the fifth
ACM SIGPLAN symposium on Principles and practice of parallel programming, ser. PPOPP ’95. New York, NY,
USA: ACM, 1995, pp. 29–38.

[23] M. Larabel, “Phoronix Test Suite 3.0 Iveland, An Automated, Open-Source Testing Framework,” 2011,
http://www.phoronix-test-suite.com/.

[24] W. Landi and B. G. Ryder, “Programming Languages Research Group, The State University of New Jersey,” 1997,
http://prolangs.cs.vt.edu/rutgers/software.php.

[25] B. Fulgham, “Revived version of Bagley’s Great Computer Language Shootout benchmarks,” 2004,
http://shootout.alioth.debian.org/.

[26] S. Woo, M. Ohara, E. Torrie, J. P. Singh, and A. Gupta, “The SPLASH-2 Programs: Characterization and
Methodological Considerations,” in Proc. of the 22nd Int’l Symposium on Computer Architecture, June 1995.

[27] R. Rabbah and N. Clark, “An infrastructure for research in backend compilation and architecture exploration,”
2007, CCCP group at Georgia Institute of Technology and IBM Research, http://www.trimaran.org/index.shtml.

[28] I. Smith, “Revised BYTE UNIX benchmark suite,” 2007, http://code.google.com/p/byte-unixbench/.
[29] R. M. Rabbah, I. Bratt, K. Asanovic, and A. Agarwal, “Versatility and versabench: A new metric and a benchmark

suite for flexible architectures,” Computer Science and Artifical Intelligence Laboratory Massachusetts Institute
of Technology Cambridge, MA 02139, Tech. Rep., 2004.

June 29th, 2011

References

Dirk Tetzlaff 18/14

[SV08] Greg Stitt and Jason Villarreal, "Recursion Flattening", Proceedings of the
18th ACM Great Lakes symposium on VLSI, ACM, 2008, p. 131-134

[KP84] P. Kirschenhofer and H. Prodinger. "Recursion Depth Analysis for Special
Tree Traversal Algorithms", Automata, Languages and Programming (ICALP),
LNCS, 11th Colloquium Antwerp, Belgium, July 16–20, 1984

[GE+06] J. Gustafsson, A. Ermedahl, C. Sandberg, and B. Lisper. "Automatic
Derivation of Loop Bounds and Infeasible Paths for WCET Analysis Using
Abstract Execution", IEEE International Real-Time Systems Symposium, IEEE
Computer Society, 2006, pp. 57-66

[P99] Patrik Persson. "Live memory analysis for garbage collection in embedded
systems", Proceedings of the ACM SIGPLAN 1999 workshop on Languages,
compilers, and tools for embedded systems, ACM, 1999, pp. 45-54

[R06] D. Ramakrishna Rao, "Efficient stack sizing for very large software systems"
International Conference on Computing Informatics (ICOCI'06), 2006, 1 -10

[BG+06] B. Buyukkurt, Z. Guo, and W. Najjar, "Impact of Loop Unrolling on Area,
Throughput and Clock Frequency in ROCCC: C to VHDL Compiler for FPGAs"
Reconfigurable Computing: Architectures and Applications, Springer Berlin /
Heidelberg, 2006, 3985, 401-412

