
Software Engineering 
for Embedded Systems

Dirk Tetzlaff, Sabine Glesner
Berlin Institute of Technology (TU Berlin)

4th Workshop on Mapping of Applications to MPSoCs
St. Goar, June 29th, 2011

Towards Predicting Recursion Depth 
Using Machine Learning

to Improve Task Mapping



June 29th, 2011

PE2

PE0 PE1

PE3

T1

T2

T1

ML-based Task Mapping[Map2MPSoCs'10]

Dirk Tetzlaff 2/14

Dependence

Program Architecture

T0

T2 T3 T4

Mapping

T5

T1T0

T2 T3

T5

T4

Communication aware

T1T0

T2 T3

T5

T4

Communication

Task Graph Annotated TG

Analyze ML

t0 t1

t2 t3
t4

t5

cxy Communication
amount

tx Execution time

c01

 Communication within loop bodies
Predict loop iteration count[CiSE'10]

 Communication within recursive functions
 Predict recursion depth

Power efficient

T1

T0
T2
T3

T4

T5



June 29th, 2011

Predicting Recursion Depth
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Static analyses: over-approximate
Profiling: strongly input data dependent and expensive
WCET prediction, memory/stack analysis, HW-synthesis tools 
disallow recursion or require annotations[GE+06], [P99], [R06], [BG+06]

 Related Work
 Recursion Flattening[SV08]:

Requires constant initialization and monotonic update
 Recursion Depth Analysis for Special Tree Traversal Algorithms[KP84]

Size of planted planar tree must be known

Use Machine Learning (ML)
 More precise with knowledge of runtime behavior
 Automatically generated and compile time not extended
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Learning Recursion Depth
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 Supervised classification learning
 Runtime behavior discretized into classes

 20 code features
 Parameters, return values, variables

 Structure (tree vs. list vs. array)
 Size (stack frame)

 Function body
 Static number of self-calls (fib vs. fac)
 Arithmetic operations (>> vs. / vs. –)
 File-IO (char vs. string)

weighted with static execution probability
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 153 programs from 12 benchmark suites
 Used for learning loop iteration count[CiSE'10]

 SPEC CPU{95,2000,2006}[1], NAS Parallel Benchmarks[2], 
SWEET WCET[3], BioBench[4], MediaBench II[5], cBench[6], 
LLCbench[7], LMbench[8], X Bench[9], Ptrdist[10]

Comprise only 347 recursive functions (of >26.000)
 Compared to 16.500 loops
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Extended Benchmark Collection
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 395 programs from 31 benchmark suites
 CSiBE[11], Bit Stream Benchmarks[12], Fhourstones

Benchmark[13], FreeBench[14], GCbench[15], Heaplayers[16], 
llvm[17], MallocBench[18], McCat[19], MediaBench[20], 
MiBench[21], OldenBench[22], Phoronix Test Suite[23], 
Prolangs-C[24], Shoot[25], Splash2[26], Trimaran[27], 
UnixBench[28], Versabench[29]

 Now 890 recursive functions (of >70.000)
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Empirical Study of Recursion
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 Loops preferred programming style vs. recursion 
 67.800 loops vs. 890 recursive functions (of >70.000)

 Recursion used for
 media de-/encoding: h263, h264, jpg, speech recognition
 compression: bzip2
 string/tree traversal: parser, interpreter, rsynth, anagram
 biology:  DNA/protein analysis,  sequence alignment
 academic : Fibonacci, Ackermann, FOL prover, N-body 

group motion, sorting, searching
 gaming: chess, go
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Experiments
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 Compiler framework: CoSy
 Feature extraction, static branch prediction, path profiling

 Machine Learning: R Project
 rpart for predictor construction

 890 recursive functions analyzed
 424 actually recurse at least once

 Observed recursion depths: 1 – 300 million
 Recursion depth classified using truncated log10

 1    ..                     9  Ã class 1 
 10    ..                   99  Ã class 2

...
 100 million .. 999.999.999 Ã class 9
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 Self evaluation (self)
 Validation (val)

 331 functions used for learning
 93 functions used for prediction 

Δk-Accuracy

Mean absolute Error

valself
0

1

2

0.28 0.98

Correlation

self val0

0.2

0.4

0.6

0.42 0.30
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 Predicting recursion depth via ML
 Huge collection of 31 benchmark suites 

 About 400 programs
 Empirical study of recursion

 Experimental results
Precise prediction of runtime behavior (error < 1 class)

 Future Work
 Task graph extraction
 Learn execution times
 Apply ML-based task mapping to MPI programs
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