

The UML Profile for MARTE: modelling predictable real-time systems with UML

Julio Medina Universidad de Cantabria, Spain julio.medina[at]unican.es

(Based on extracts from the MARTE Tutorial: http://www.omgmarte.org/sites/default/files/TutorialMARTE-Final_version1_1_0.pdf

General Requirements of the MARTE RFP

- Proposals shall support Modeling and Analysis of Real-Time and Embedded (in short MARTE) systems including its software and hardware aspects.
 - The Proposals will define a metamodel and its underlying UML profile.
 - It shall be possible to use independently software and hardware parts of the profile.
 - It shall comply with existing standards (UML2)
 - It shall update the SPT profile 1.1

Ref. of MARTE RFP (realtime/05-02-06): http://www.omg.org/cgi-bin/doc?realtime/05-02-06

The ProMARTE Team

Partners

- Industrials
 - Alcatel*
 - Lockheed Martin*
 - Thales*
- Tool vendors
 - ARTISAN Software Tools*
 - International Business Machines*
 - Mentor Graphics Corporation*
 - Softeam*
 - Telelogic AB (I-Logix*)
 - Tri-Pacific Software
 - France Telecom
 - No Magic
 - Mathworks
- Academics
 - Carleton University
 - Commissariat à l'Energie Atomique
 - ESEO
 - ENSIETA
 - INRIA
 - INSA from Lyon
 - Software Engineering Institute (Carnegie Mellon University)
 - Universidad de Cantabria

* Submitter to OMG UML Profile for MARTE RFP

Design Pattern Adopted for the MARTE Profile

- □ Stage 1 → Description of MARTE domain models
 - Purpose: Formal description of the concepts required for MARTE
 - Techniques: Meta-modeling
- Stage 2 \rightarrow Mapping of MARTE domain models towards UML2
 - Purpose: MARTE domain models design as a UML2 extensions
 - Techniques: UML2 profile

How to read, use, & implement MARTE

(see Section 2)

Extension Units

NFP	Non-Functional Properties	Section 8
Time	Enhanced Time Modeling	Section 9
GRM	Generic Resource Modeling	Section 10
Alloc	Allocation Modeling	Section 11
GCM	Generic Component Model	Section 12
HLAM	High-Level Application Modeling	Section 13
SRM	Software Resource Modeling	Section 14.1
HRM	Hardware Resource Modeling	Section 14.2
RTM	Real-Time objects Modeling	Section 13
GQAM	Generic quantitative Analysis	Section 15
SAM	Schedulability Analysis	Section 16
PAM	Performance Analysis	Section 17
VSL	Value Specification Language	Annex B
CHF	Clock Handling Facilities	Annex C
RSM	Repetitive Structure Modeling	Annex E
AADL	AADL models with UML	Section A.2

Usage & Compliance Cases vs. Extension Units

	1	 	1	 		 	1	.	1	 	i	i	 	1	1
CASE	Level	GRM	NFP	VSL	Time	CHF	SRM	HRM	GCM	Alloc	HLAM	GQAM	PAM	SAM	RSM
Software	Base	X	X		X						X				
	Full			х		х	X		X						
Hardware	Base	х	Х		X			Х							
	Full			х		х			х	х					Х
System	Base	х	х		х					х	х				
	Full			х		х	Х	Х	х						Х
Performance	Base	х	х		x							X	X		
	Full			х		х									
Schedulability	Base	х	х		х							X		x	
	Full			х		х									
Infrastructure	Base	Х	Х		Х		Х								
	Full			х		х				х	х				
Methodologist	Base	х	Х		X			Х			х	X			
	Full			х		х	Х		Х	Х			Х	х	Х

Table 7.2 - Extension Units that must be supported in each Compliance Case

Needs for Model-Based RTES Analysis

MARTE Features for Quantitative Analysis

- Improvements w.r.t. SPT
 - Extend implementation and scheduling models
 - e.g. distributed systems, hierarchical scheduling
 - Extend the set of analysis techniques supported
 - e.g. offset-based techniques
 - Extend timing annotations expressiveness
 - Overheads (e.g. messages passing)
 - Response times (e.g. BCET & ACET)
 - Timing requirements (e.g. miss ratios and max. jitters)
- New features w.r.t. SPT
 - Support for sensitivity analysis
 - Improve modeling reuse and component-based design.
 - Support of the "Y-chart" approach: application vs. platform models

UML-Based Analysis Foundations

- GQAM Profile factorizes common constructs and NFPs
 - Stereotypes define "analysis" abstractions
 - workload events, scenarios,...
 - schedulable entities, shared resources, processing nodes, schedulers...
 - Stereotype attributes define pre-defined NFPs
 - e.g. event arrival patterns, end-to-end deadlines, wcet-bcet-acet,...
- The analysis sub-profiles define model well-formedness rules
 - Let includes "constraints" to construct "analyzable" models, w.r.t...
 - "Analysis Model Viewpoints" (e.g., schedulability analysis viewpoint)
 - Specialized constraints must be refined by technique-specific approaches

The MARTE analysis sub-profiles provide standard constructs to map UML models on <u>well-established analysis techniques</u>

→MARTE "Foundations" and "GQAM" allow for extending to further techniques

GQAM: Dependencies and Architecture

GQAM: Analysis Modeling Structure

Processing schema for model-based analysis

Key reasoning for the use of UML in the scheduling analysis of RTE Systems

- UML is a standard semi-visual language for conceptual modeling that enables the usage of a Model Based approach for software and system engineering.
- MDD and UML have been broadly introduced and used in principle by the software engineering community, and have reached a significant number of practitioners and tool support.
- To take benefit of this in the RTE domain, they need to be capable of supporting the necessary (at least timing) verifications.
- This leads to the necessity of model based scheduling analysis techniques.
- As well as the necessity to have the modeling elements to describe the platform, the interacting environment and the timing requirements.

A Simple Example (Classical Scheduling Theory)

- **Typically analyzed with RMA:**
 - Critical instant calculation
 - Utilization bound test or Response time calculation for the first deadline.

More general approach

SAM: Integration Different Approaches

Other Sched. Analysis tools: Livedevices' Real-Time Architect, CoMET from VaST, Vector's CANAlyzer...

General Procedure to Use the SAM Profile

SAM: The Notion of End-To-End Flow

An "End-To-End Flow" is the basic workload unit to be evaluated by schedulability analysis tools.

 \rightarrow An end-to-end flow refers to the entire causal set of steps triggered by one or more external workload events.

End-to-end flows (from MAST)

SAM: Precedence Relations

Execution and communication steps may be causally related by one of the following precedence relations:

SAM: Workload Domain Metamodel (end-to-end)

SAM: Example of Stereotype Extensions Usage

SAM Domain Model	SAM Stereotype	UML Metaclasses	Context
WorkloadBehavior	GaWorkloadBehavior	UML::Interactions::Fragments:: CombinedFragments	Modeled in a high-level interaction
EndToEndFlow	SaEnd2EndFlow	UML::Interactions::Fragments:: InteractionOperand	Modeled in a high-level interaction
WorkloadEvent	GaWorkloadEvent	UML::Interactions::BasicInteractions:: Message	Modeled in a high-level interaction
BehaviorScenario	GaScenario	UML::Interactions::BasicInteractions:: Interaction	Modeled as a low-level interaction nested within a higher-level interaction
Step CommunicationStep ReleaseStep AcquireStep	SaStep SaCommStep GaRelStep GaAcqStep	UML::Interactions::BasicInteractions:: Message	Messages in low-level interactions

SAM: Examples of Behavior Annotations

SAM: Example of Workload Annotations

SAM: Resources Concepts

Provide additional (analysis-specific) annotations to annotate resources platform models

Resources (from GRM)

Domain model for Schedulable resources

Shared resources

Extensions for scheduling

Resource Usage

- 1. If the list usedResources is empty the list subUsages should not be empty and viceversa..
- 2. If the list usedResources has only one element, all the optional lists of attributes refer to this unique Resource and at least one of them must be present.
- 3. If the list usedResources has more than one element, all of the optional lists of attributes that are present, must have that number of elements, and they will be considered to match one to one.
- 4. If the list subUsages is not empty, and any of the optional lists of attributes is present, then more than one annotation for the same resource and kind of usage may be expressed. In this case, if the annotations have also the same source and statistical qualifiers they will be considered in conflict, and hence the ResourceUsage inconsistent.

SAM: Examples of the Stereotypes Usage

SAM Domain Model	SAM Stereotype	UML Metaclasses	Context
ResourcesPlatform	GaResourcesPlatform	UML::StructuredClasses:: SctructuredClass	Main container of resources
SaExecutionHost SaCommunicationHost GRM::Scheduler	SaExecHost SaCommHost Scheduler	UML:: StructuredClasses:: Property	Parts of the resources platform
GRM::SchedulableResource SaCommChannel	SchedulableRes SaCommChannel	UML:: StructuredClasses:: Property	Parts of processing resources

SAM: Example of Resources Stereotype Usage

SAM: Analysis Context concepts

 An analysis context is the root concept used to collect relevant quantitative information for performing a specific analysis scenario.

 An analysis context integrates workload behavior models and resources platform models.

Julio Medina

SAM: Analysis Context Domain Metamodel

SAM: Example of Analysis Context Stereotype Applic.

Example: A Teleoperated Robot

Example of Annotated Scenario with SAM

Example of Annotated Resources Model with SAM

MARTE Tooling

- Current Implementations supporting MARTE
 - Full MARTE Profile & Libraries for Eclipse UML2
 - VSL edition assistant and type checker as a Eclipse plug-in for the UML Papyrus tool and RSA 7.0
 - Implemented by RSA, Magicdraw, Raphsody, PapyrusUML,...
- Links to other tools:
 - Eclipse plug-ins to transform UML models annotated with the SAM profile to input files of MAST, SymTA/S, Cheddar and RapidRMA
 - TimeSquare: handling of Clock Constraint Specification Language

The official OMG web page holds links to al these tools: www.omgmarte.org

MARTE Open Source Eclipse based implementation in UML Papyrus: <u>www.papyrusuml.org</u>

Conclusions on analysis capabilities of MARTE

- Industrial Use of V&V can benefits from MDE
 - Analysis task must be cohesively integrated with Design tasks
 - Application of individual analysis techniques should be regarded as an essential part of an integrated V&V methodology
- Methodological support is still under way:
 - Complex analysis scenarios for Interface-Based Design, Multiobjective Design Space Exploration...
 - Means to manage NFP measurement models
 - Methods to map/transform MoCCs into analysis models

MARTE Frontiers and Challenges

- MARTE defines the language constructs only!
 - Common patterns, base building blocks, standard NFP annotations
 - Generic constraints that do not force specific execution models, analysis techniques or implementation technologies
- It does not cover methodologies aspects:
 - Interface-Based Design, Design Space Exploration
 - Means to manage refinement of NFP measurement models
 - Concrete processes to storage, bind, and display NFP context models
 - Mapping to transform HLAM's into analysis models

MARTE is to the RTES domain as UML to the System & Software domain: a family of well known and open specification formalisms!

Thanks for your attention..!

Questions ?

- □ <u>www.omgmarte.org</u>
 - The MARTE web site
- www.papyrusuml.org
 - On open source Eclipse plug-in for UML2 graphical modeling

Julio Medina